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Abstract
This paper presents a low-cost pipeline surface 3D detection method based on line structured light. The method adds 3D
detection to the robot at a meager cost and change. The optical flow method is used to derive the motion information of the
robot to replace the motion closed loop. Finally, the depth data for the entire surface are generated automatically only from the
camera and the line laser projector, without using other devices. In addition, a novel spot centroid extraction algorithm based
on the color region of interest and an adaptive threshold is presented. This method can accurately detect the laser centroid in
the pipeline surface. We conducted experiments with a quadruped robot and validated algorithms. The experimental results
show that the proposed method achieves 3D detection on a trackless robot at a meager cost and is superior to standard depth
sensors.

Keywords 3D detection · Line structured light · Optical flow · Laser · Robot

1 Introduction

As pipelines are spread across deep underground tunnels,
ensuring the integrity of the pipeline surface is difficult
owing to the high temperature and humid underground
environment. Regular detection of pipeline surface defect
profiles is required to ensure pipeline safety [1–3]. Previ-
ously, pipeline detection typically required human resources.
Manual detection has security breaches and significant sub-
jectivity, leading to missed and false detections [4], and
the safety of the workers cannot be guaranteed due to
the high-temperature environment. As robotic technology
and optical sensors develop, pipeline surface detection can
employ robots installed with optical sensors [5].

Estimating depth from the pipeline surface image using
optical sensors has been essential to solving the problem
of identifying and locating underground pipeline defects.
Therefore, drawing a dense and accurate depth map of the
pipeline surface is the first step. The existing technologies for
depth maps of object surfaces are divided into the following
two main parts: binocular stereo vision and structured light
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[6]. Binocular stereo vision has several advantages: simplic-
ity, low cost, and fast detection speed. It is commonly used
in autonomous driving, object recognition, and scene depth
mapping [7]. Mansour et al. [8] compared the performance
of binocular disparity and motion parallax for depth estima-
tion of stationary objects. In short distances, the binocular
technique shows greater accuracy. Priya et al. [9] used binoc-
ular stereo-vision technology to identify obscured objects.
To resolve the self-obscuring problem, an improved geomet-
ric mapping technique is proposed for 3D object recognition
by using camera self-calibration techniques. In these studies,
binocular visionwas severely affected by ambient lighting. A
change in light can lead to a matching failure, and the image-
matching accuracy is lower when the texture is less on the
object’s surface. Underground tunnels often have insufficient
light, and the surface texture of pipelines rarely varies. The
surface images cannot be clearly photographed.

In contrast, structured light technology can effectively
address these limitations. Structured light technology is an
active detection method that uses an artificial light source to
project a beamonto the surface of an object. Spatial triangula-
tionmeasures the depth of the object’s surface defect contour.
Structured light technology can be applied in different ways,
such as dot structured light, coded structured light, and line
structured light [10, 11]. The accuracy of point structured
light depends on the density of the point clouddata; the denser
the point cloud, the higher the precision. The most common
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use of point structured light is Face ID on iPhone. Coded
structured light is significantly disturbed by ambient light
and typically requires a specific image processing method.
Using a unique image processing method may increase the
computational complexity and make the detection slower.

Compared with the aforementioned types of structured
light, line structured light has strong anti-jamming, improved
precision, and fast scanning speed. In addition, it is suit-
able for the real-time generation of depth maps of object
surface contours [12]. For example, Liang et al. [13] built
a 3D pavement inspection system based on multigroup line
structured light. The three-dimensional data filtering method
was used to recover the pavement contour points and elimi-
nate noise. The 3D reconstruction of the pavement contours
was achieved using the Delaunay triangulation algorithm. In
[14], a 3D shapemeasurementmethodwas proposed for large
objects using line structured light. This method uses a binoc-
ular camera to simplify the light plane calibration process.
Based on the standard ball-hand-eye calibration, it combines
a modified space circle fitting method to achieve line struc-
tured light fusion of arbitrary light planes, which is more
accurate than the traditional measurement method. Shang
et al. [15] proposed and built a gear tooth profile detection
system based on incoherent line structured light. The system
uses line structured light, which is generated by spherical
light from an incoherent light source via a gap and then irra-
diates the gear surface to form an optical stripe image. This
method has high accuracy and is less affected by speckle
noise.

The types mentioned above studies used different meth-
ods to improve line structured light detection accuracy and
achieved significant results.However, the line structured light
sensors must be mounted on the device with tracks. The
lateral movement information can be obtained to form a
depth plane across the object’s surface. The confined envi-
ronment of underground tunnels makes sensor movement
tracks impractical. Figure 1 shows the tunnel that needs to be
detected in this paper.Depth information can also be captured
using binocular cameras and dot matrix sensors in scenes
without track. However, both sensors are costly and are sensi-
tive to ambient light andnoise. Toovercome these limitations,
this study presents a novel low-cost detection method using
line structured light to detect surface contours. This method
eliminates the need for a track or dedicated camera; just add
a line laser projector (less than $15) near an ordinary camera
on the robot.

Recognizing spot distortion of line laser can only obtain
1D depth information. Based on the robot’s unidirectional
motion characteristics, we propose amethod that uses optical
flow instead of amotion closed loop to scan a surface. The 1D
depth information of the laser and the lateral motion infor-
mation of the image are combined to generate the surface
contour information. We also propose an adaptive threshold

Fig. 1 Underground Tunnel with Pipelines

spot centroid extraction algorithm and a de-jitter algorithm
tomap depth images accurately. This methodmakesminimal
changes to the robot at a meager cost and provides a highly
accurate depth image of the pipeline surface.

The remainder of this paper is structured as follows: Sect. 2
describes the line structured light scheme for measuring the
longitudinal depth of an object surface, Sect. 3 presents the
details of the image-shift measurement based on optical flow,
and Sect. 4 describes the de-jittering and deep map genera-
tion processes. The experimental results are presented and
discussed in Sect. 5. Finally, the conclusions are shown in
the last section.

2 Depth detection based on the line
structured light method

2.1 Scheme of the Line Structured Light Detection

A line structured depth sensor is a device that uses a camera to
recognize spot distortion to determine the 3D structure of an
object. The detection mode is divided into 1D and 2D struc-
tured light. 2D structured light produces 3D information in
one shot, commonly called dot structured light and line array
structured light. 1D structured light is line laser projection.
As shown in Fig. 2, a relative motion along the direction of
the normal line of light is still required to construct the depth
information of the object’s surface.

The laser normal line is the x-axis, whereas the parallel
line of the laser is the y-axis, and the depth direction is the
z-axis, as shown in Fig. 2. If a certain distance exists between
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Fig. 2 Principle of 1D Line Structured Light

Fig. 3 Quantitative Relationship Between Deep and Laser Line Distor-
tion

the camera and the laser sensors or the laser sensors are at a
certain angle to the plane, the distortion of the laser line on the
object will be reflected in the imaging plane of the camera.
From the vertical view of the structure shown in Fig. 2, the
relationship between the laser line deformation and distance
to the object can be quantified.

As shown in Fig. 3, the imaging plane has the same pro-
portional relationship as the actual plane.

xpixel_n
n pixels

� d tan β + l

D tan β
(1)

where:

D � 2l tan
α

2
(2)

wherenpixels are the number of pixels in each rowof the image
captured by the complementary metal oxide semiconductor
(CMOS), xpixel_n is the number of pixels in the n row from

the laser point to the midpoint, d is the distance between the
CMOSand the laser,D and l are the length and distance of the
plane to be taken, respectively, α is the field of view (FOV)
of the lens, and β is the laser offset angle.

Letting

C1 � n pixelsd

2 tan α
2

(3)

C2 � n pixels

2 tan α
2 tan β

(4)

Subsequently, according to formula (1) and formula (2),
the inverse relations between l and xpixel_n is obtained as
follows:

l � C1

xpixels_n + C2
(5)

where C1 determines the proportion between xpixel_n and l,
which is the detection accuracy of the line structured light
sensor. npixels depend on the resolution of the CMOS, and α

depends on the focal length of the lens. If the camera and lens
type is fixed, it is necessary to increase d in the experiment.
C2 can change the offset between xpixel_n and lwithout affect-
ing the detection accuracy. Therefore, the mounting angle of
the laser β is negligible. The depth detection range of the line
structured light sensor at β � 90 is:

d tan
(
90◦ − α

2

)
< l < ∞ (6)

2.2 Spot centroid extraction

The shape of the object’s surface can be determined from the
positions of the laser lines in the captured image. Because
the laser line is directed vertically, each line of the pixels
in the image should contain a laser spot without regard to
blind spots. The laser line maintained a certain width when
it hit the object’s surface. The spot centroid of the laser is
the best symbol for the laser position [12]. To achieve color-
based fault detection, it is necessary to use RGB cameras
rather than monochrome cameras or filters. In addition, for
providing the basic data of the optical flow method below,
ambient light is also essential.

Color and brightness are essential factors in assessing the
laser light position because the laser is a high-intensity light
with monochromaticity. Generally, the image’s color is seg-
mented in the HSV color space, where H is the hue, S is the
saturation, andV is the value. Tofilter the color features of the
image more intuitively, it is necessary to convert each pixel’s
RGB (red, green, blue) values toHSV (hue, saturation, value)
values. The commonly used expression for converting RGB
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Fig. 4 HSV Value and Gray Intensity Value Using Laser Illuminate on
Different Backgrounds

Fig. 5 Process of Color Region of Interest Extraction

to grayscale in OpenCV is as follows:

Gray � R × 0.299 + G × 0.587 + B × 0.114 (7)

where the green component has maximumweight; therefore,
a green laserwas chosen for this study. The color of the object
also influences the determination of the laser spot. Figure 4
shows the results of the green laser illuminated on white and
black backgrounds.

The HSV values of the spot centroid were 80, 252, and
250 for the green laser light on the black background, which
is easily distinguished as the green light. Owing to the satu-
ration limitations of the CMOS camera, the high-brightness
green light is reflected as white when the laser is illuminated
on awhite background.As shown in Fig. 4, theHSVvalues of
the spot were removed from the range of green light, where
H � 96, S � 3. The luminance value of the spot centroid
illuminated on the black background was lower than that on
the white background in the grayscale image. It is difficult to
obtain the spot centroid of the laser line by relying on a fixed
color and luminance thresholds. Therefore, a novel spot cen-
troid extraction algorithm is proposed based on a color region
of interest and an adaptive background luminance threshold.

The colored region of the interest extraction process is
shown in Fig. 5. First, the green area of the image is extracted
in the HSV color space, and the image mask was formed
with only one and zero values. Considering the influence

Fig. 6 Spot Centroid Extraction Process

of ambient light and background color, the range of green
HSV values is increased. In Fig. 5, the edges of the laser line
in the white background are identified as green in the image
mask. The central area of the line is defined as white owing to
saturation limitations. Second, a 30 × 1 lateral convolution
kernel is used to dilate the image mask to link the lateral
masked regions. Third, the mask was corrupted using a 50
× 50 square convolution kernel to reduce the extent of the
green area. Finally, the original image is overlaid with an
image mask to obtain the green effective area map.

Extracting the green effective area substantially reduced
the misidentification of the other colored light spots. The
average gray value of row n in the valid region is calculated
as follows:

Iaverage_n �
∑pix

x�1 I (n, x)

pn
(8)

where pix is the total number of horizontal pixels in the orig-
inal image,pn is the total number of nonzero pixels in row n,
and I(n,x) is the gray value of pixel x in row n.

Using the value Iaverage_n, the thresholdIthreshold_n in row
n is calculated as follows:

Ithreshold_n � K (Imax _n − Iaverage_n) + Iaverage_n (9)

where Imax_n is the maximum gray value of all pixels in the
row n and K is the threshold correction factor. The process
of spot centroid extraction is shown in Fig. 6.

The gray value curve of row n intersects with Ithreshold_n
at points PtA and PtB. The pixel positions at the center of
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Fig. 7 Results of the Spot Centroid Extraction Algorithm

the PtA and PtB are the coordinates of the laser spot cen-
troid. The threshold correction factor K is between 0.5 and
1. The smaller values of K capture the more accurate spot
centroids, but in lighter reflective materials, other spots are
easily caught. The larger values of K can filter out irrelevant
spots, but it may cause a spot centroid offset in dark or rough
materials. Using extensive testing, the selected value of K �
0.9 is suitable for the pipeline surface.

Figure 7 shows the results of the spot centroid extraction
algorithm implemented usingOpenCVv3.8 andPythonv4.2.

The algorithm proposed in this study effectively avoids
the background color and ambient illumination effects on
the recognition of spot centroids. However, the spot cen-
troid constitutes only 1D depth information. Hence, it was
necessary to use the relative motion of the camera in the pho-
tographic plane to obtain a complete 2D depth image. This
study is oriented toward an application environment with-
out track. Therefore, visible image processing methods can
indirectly obtain feedback from the camera motion and plot
depth images.

3 Imagemotionmeasurement

The essential condition for obtaining plane depth information
is to capture the camera’s motion along the x-axis. We used
the optical flow method to track the feature points, calculate

the moving pixel values in the image, and thus determine the
relative motion between the camera and the image.

First, Harris feature corner points were captured for the
camera frame [16]. The basic principle is to set a sliding
window in the image and calculate the average gray value
change within the window. The gray value in the window
has a more uniform distribution when there is no change in
the gray value. Edge features are contained in the window
when the gray value changes in one direction. This window
contains corner features when the grayscale value changes in
both directions. The change in the gray value was calculated
as follows:

E(u, v) �
∑
x , y

w(x , y)[I (x + u, y + V ) − I (x , y)] (10)

whereE(u,v) is the change in gray value along the (u,v) direc-
tion, w(x,y) is a window function generally chosen as a 2D
Gaussian function, and I(x,y) is the intensity of a grayscale
image at location (x,y). Setting different values for u and v
can determine the direction of the movement of the window.
In this study, 100 feature points were selected in the area
beyond the planned laser line, and the pixels of these feature
points were tracked.

The optical flow is a method for calculating the pixel
motion vector in an image [17]. The pixel I(x,y,t) is the light
intensity of an image at time t. In the next frame, dt is the
duration taken to move distance (dx,dy).

Assuming that the light intensity of the pixel is constant
before and after the movement:

I (x , y, t) � I (x + dx , y + dy, t + dt) (11)

A Taylor expansion in the right-hand side of the formula
(11) gives:

I (x , y, t) � I (x , y, t) +
∂ I

∂x
dx +

∂ I

∂y
dy +

∂ I

∂t
dt + ε (12)

where ε is the higher order that is negligible; hence,

∂ I

∂x
dx +

∂ I

∂y
dy +

∂ I

∂t
dt � 0 (13)

In the discrete case, ∂ I represents the change in the gray
level of adjacent pixels in a given direction. The pixel dis-
placements (x,y) along the x- and y-axis are dx and dy,
respectively, and the time taken to reach the new pixel posi-
tion I(x + dx,y + dy) is dt. The pixels in the adjacent frame
can be used to calculate dx using formula (13) when dt is a
single frame.

The optical flow method was performed on 100 feature
points. Not all feature points can be tracked accurately; for
example, the similarity and the loss of feature points can
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Fig. 8 Process of the Image Motion Measurement Based on Optical
Flow Method

cause errors. The dx of 100 feature points are randomly
arranged and use median filtered, which a window size is
3, to correct the error points. The mean value is then calcu-
lated for 100 dx to obtain the overall dx of the adjacent frame.
This process is illustrated in Fig. 8.

4 The image shake and generation depth
image

The jitter will produce the motion displacement along the y
and z axis (as shown in Fig. 2) when the line structured light
sensor is mounted on the detection robot. This becomesmore
obvious when the ground is uneven or using a quadruped
robot. The depth data are distorted owing to the jitter along
the y-axis. The jitter along the z-axis causes periodic changes
in the depth data.

The longitudinal movement of image dy can be calculated
using the method described in Sect. 3, which is similar to dx.
The distance dz between the camera and the target plane is
reflected in the scaling of the frame and can be confirmed
by the relative position of the critical feature points between
adjacent frames. The affine matrix between the n frame and
the n + 1 frame is:

Maf f ine_n �
⎡
⎢⎣
Simg_n 0 Tx_n

0 Simg_n Ty_n
0 0 1

⎤
⎥⎦ (14)

where Tx_n and Ty_n are the translations of the screen along
the x and y axis, respectively. Simg_n is the screen scaling
factor. The scaling of the screen Simg_n is equal to the scale
of the camera distance change Sdis_n, as shown in Fig. 3.
Figure 9 shows the actual depth data without jitter, calculated
using the depth data L of each current frame divided by Sdis_n
of the frame.

The depth image is presented using the grayscale image
construction method when obtaining the camera motion in

Fig. 9 Calculation Process of Image Depth Data De-jittering

Fig. 10 Depth Image Generation Process

three directions. First, jitter compensation is applied to the
full-depth data in each frame. The minimum to maximum
distance is then mapped to grayscale values ranging from 0
to 65,535.A grayscalematrix ofwidth dx and heightmpixels is
constructed. Finally, the graymatrix of all frames in the video
is stitched horizontally, and the effects of dy are eliminated
vertically. The process of depth-image generation is shown
in Fig. 10.

5 Analysis and experiments

5.1 Theoretical accuracy analysis

The detection accuracy of the depth sensors can be defined
in terms of the following three aspects: vertical resolution,
lateral resolution, and depth resolution. In this study, the ver-
tical resolution of the line structured light sensor depended
on the pixel number of the CMOS and the actual size of
the frame in the field of view. The relationship between the
length D of the subject plane, the object distance I , and field
of view angle α in 1D is displayed in Fig. 3. In practice, the
distribution of the field of view and lens field of view in a
common arrangement such as 1920 × 1080 pixel CMOS is
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Fig. 11 Distribution of 1920 × 1080 pixel CMOS in the Field of View
and Lens Field of View

shown in Fig. 11. By combining formula (2), the actual ver-
tical resolution of the screen in the field of view is calculated
as:

Dvertical � 9√
337

l tan
α

2
(15)

The theoretical resolution in the vertical direction is then
calculated as follows:

Rvertical � Dvertical

1080
(16)

where the unit is mm/pixel.
The lateral detection accuracy is mainly influenced by the

inter-frame distance of the video. Assuming that the camera
moves at a speed of v, the unit is mm/s. The video frame
rate is f , and the unit is fps. Therefore, the lateral detection
accuracy is defined as follows:

Rlateral � v

f
(17)

The depth detection accuracy varies with the distance of
the camera from the subject plane, which is the position of
the laser spot in the frame. The depth detection accuracy is
obtained as follows:

Rdeep � C1

xpixels_n + C2
− C1

xpixels_n + 1 + C2
(18)

5.2 Experimental results

The line structured light sensor system used in this study is
illustrated in Fig. 12. The camera used was a RICOH GR3
[18]. The parameters used in these experiments are listed in
Table 1.

Fig. 12 Line Structured Light Sensor Detection System

Table 1 Parameters used in the experiments

Parameter Value

Camera CMOS vertical resolution 1080pixels

Camera CMOS lateral resolution 1920pixels

Camera CMOS diagonal size APS-C (29.3mm)

Lens focus 18 mm

Equivalent angle of FOV 84°

Frame rate of camera 50fps

Single-frame exposure 1/640 s

Center distance between laser and CMOS 135 mm

To compare the effectiveness of the line structured light
sensor mentioned in this study with other depth sensors, we
conducted a comparison test using a RealSense D455 [19]
released by Intel in 2020. The RealSense D455 contains a
binocular camera and lattice sensor, utilizing advanced algo-
rithms to combine the benefits of both. In the experiment,
a line structured light sensor was mounted on the Unitree
quadruped walking detection robot. The experimental envi-
ronment is shown in Fig. 13.

The tested objects were concrete walls and fiberglass
pipes, as shown in Fig. 14. Themaximumdifference between
the bulge and the depth of the dent was 38 mm for the con-
crete walls and 12 mm for the fiberglass pipes.

The robot moved at a speed of 0.2 m/s during the con-
crete wall test. The average distance between the camera
and the subject was 850 mm. With the parameters listed in
Table 1, the depth detection resolution of the line structured
light sensor is approximately 3.2 mm. The depth detection
accuracy of theRealSenseD455was 2%of the distance, indi-
cating a resolution of approximately 17 mm. The process of
the detection algorithm is shown in Fig. 15, and the results
of the detection experiments are shown in Fig. 16. Under
the experimental conditions, the RealSense D455 could only
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Fig. 13 Virtual Experimental Environment

Fig. 14 Experimental Test Subjects

detect bulges and depressions and could not detect depths
and shapes. The RealSense D455 is more sensitive to noise.
For example, more white spots appear in Fig. 16b, whereas
the proposed line structured light sensor is virtually immune
to noise.

The robot moved at a speed of 0.2 m/s in the fiberglass
pipe tests. The average distance between the camera and the
subject was 450 mm. The depth detection resolution of the
line structured light sensor was approximately 0.7 mm. The
experimental results of the line structured light sensor with
and without the jitter compensation algorithm are shown in
Figs. 17 and 18, respectively. In Fig. 17, the distance between

Fig. 15 Process of the detection algorithm

Fig. 16 Measurement Results of Two Depth Detection Sensors

the camera and the subject surface changes frequently due to
the robot’s movement jitter. A large number of longitudinal
stripes appeared in the depth image. With the addition of
the jitter-compensation algorithm, a clear depth image was
obtained, as shown in Fig. 18.
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Fig. 17 Experimental Results without Jitter Compensation

Fig. 18 Experimental Results with the Jitter Compensation Algorithm

Fig. 19 Depth Detection Result of the RealSense D455

The depth detection results of the RealSense D455 are
shown in Fig. 19. The RealSense D455 could not capture
point cloud data in highly reflective areas owing to the illu-
mination at the top of the pipe. The binocular camera could
not capture contour details, resulting in significant data loss.
The line structured light sensor using the spot centroid extrac-
tion algorithm proposed in this study can completely exclude
interference from the external light.

The surface contour detection method based on the line
structured light proposed in this study is superior to the
RealSense D455 depth sensor in terms of image resolution
and depth resolution. The spot centroid extraction algorithm
adapts to the background brightness threshold and removes
the effects of the external illumination and the object color.
The jitter compensation algorithm compensates for the depth
data fluctuations caused by trackless motion.

6 Conclusion

This study presents a low-cost method for pipeline surface
contour detection used in quadrupedal robots. In the detection
robot with a visible light camera, only one line laser projec-
tor with less than $15 is added; the robot has no additional

modifications or cost. In the process of detection, not only the
visible image is retained, but also the high-precision depth
image is generated. The experiments showed that the pro-
posed method could detect surface contours more accurately
than the commonly used RealSense D455 depth sensor.
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