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Abstract
The utilization of Convolutional Neural Networks (CNNs) in hyperspectral image (HSI) classification has become com-
monplace. However, traditional CNNs cannot fully extract the features of HSI and are prone to gradient vanishing when
the network layer is deepened. We suggest a 2D–3D hybrid convolution and pre-activated residual networks-based HSI
classification (HSIC) approach to tackle these problems. Firstly, the joint spatial–spectral features of HSI are extracted by
a two-layer 3D convolution. Secondly, combining the advantages of 2D and 3D convolution to construct a spatial–spectral
feature extraction module based on pre-activated residual networks, which can accelerate the convergence speed of the model
while enhancing the capability of advanced spatial semantic feature extraction of HSI. Then, multiple residual modules are
connected to take advantage of the different forms of features extracted by each convolutional layer, while multi-feature fusion
is performed between blocks to achieve feature complementarity. Finally, a long-distance residual connection is introduced
to fuse the shallow and deep features effectively, which further strengthens the expression ability of features. The results of
the experiments conducted on three HSIs show that the overall classification accuracy of the model reaches 99.56%, 99.45%
and 99.43%, respectively, when 10%, 1% and 1% of samples are randomly selected for training in each ground object class.
Compared with other related CNN-based HSI classification models, our model can obtain higher classification accuracy. Con-
sequently, the suggested method is capable of achieving feature reuse and obtaining deep high-level spatial–spectral features
with superior discriminative and robustness, and its classification performance is superior to that of existing state-of-the-art
methods.

Keywords Hyperspectral image classification · Hybrid convolution · Pre-activated residual networks · Feature fusion ·
Long-distance residual connection

1 Introduction

Hyperspectral Image (HSI) has the characteristics of map
unity, rich spatial information, wide range of spectral bands,
high resolution, etc., which enhances the ability of remote
sensing (RS) to observe the ground and the ability of fea-
ture identification, and has been widely utilized in many
fields, such as military exploration [1], environmental mon-
itoring, precision agriculture and medical diagnosis [2], etc.
Hyperspectral image classification (HSIC) is one of the basic
problems in RS image processing, and it is also the basis
and key of RS image analysis and interpretation. The main
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goal of HSIC is to recognize the actual ground object from
the image, i.e., to give a unique category to each pixel in
the image. In early HSIC, traditional machine learning algo-
rithms such as support vector machine (SVM) [3], random
forest (RF) and logistic regression (LR)mostly focus only on
spectral information. However, the same ground object has
spectral differences in different spaces, and different ground
objects may also have similar spectral characteristics. There-
fore, since such methods ignore the rich spatial structural
features, resulting in classification results that often contain
a large amount of noise, it is difficult to achieve accurate
classification of complex features [4], so integrating spec-
tral and spatial information is an effective way to improve
the HSIC results. Considering that there is often interrelated
information between spatially neighboring image elements,
methods such asMarkov Random Fields [5] andMorpholog-
ical Attribute Profiles have been used to obtain the spectral
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and spatial information of HSI with good results. However,
the above hand-crafted spatial–spectral features rely heav-
ily on rich expertise, and the shallow features extracted have
limited impact on the enhancement of classification preci-
sion.

Over the past few years, DL-based image classifica-
tion techniques have become increasingly popular in HSIC
[6]. By using these methods, it is possible to automat-
ically extract abstract features from low-level semantics
to high-level semantics in images with better representa-
tion performance, which makes the subsequent classification
resultsmore accurate. Convolutional Neural Network (CNN)
is a prime example of a DL model that exhibits supe-
rior performance in feature extraction and classification.
1DCNNs are only able to identify the spectral character-
istics of images for HSI pixel-level categorization [7]. In
order to make the most of the spectral and spatial features
of HSIs, scholars have proposed 2D and 3D CNN models
in succession. Among them, Zhao et al. [8] used a two-
dimensional CNN (2DCNN) for HSIC, which considered
the important role of the spatial information of HSI. How-
ever, extracting spectral and spatial features individually
does not take full advantage of the combination of spec-
tral and spatial data and requires complex pre-processing.
Considering that HSI has a 3D cubic structure, Li et al.
[9] directly used 3D convolution to obtain the spatial–spec-
tral features of HSI and achieved the improvement of HSIC
accuracy. 3DCNN is more computationally intensive than
2DCNN and has higher memory requirements. Zheng et al.
[10] sought to simplify the model while still maintaining a
high level of classification accuracy. They created a mixed
convolutions and covariance pooling model (MCNN-CP)
by combining the advantages of 3DCNN and 2DCNN, and
verified the potential of hybrid convolution in HSIC. Fırat
et al. [11] introduced a depthwise separable convolution
based on a 2D–3D hybrid convolution model, which effec-
tively improves the accuracy of HSIC. However, the above
models tend to ignore the variability in the importance of
different features affecting the classification results. Con-
sidering the difference in the contribution of different types
of features to the classification results [12], Shi et al. [13]
suggested a 3D coordination attention mechanism network
(3DCAMNet). Specifically, they used a combination of 3D
convolution and attention mechanism to ascertain the dis-
parity in significance between various spectral bands, which
ultimately achieves the improving of themodel performance.
However, with the deepening of the network structure, the
performance gradually decreases and the degradation prob-
lem easily occurs.

Residual connections in Residual Networks (ResNet) [14]
can deepen the number of network layers and optimize the
model structure. Qing et al. [15] introduced residual connec-
tions in 2DCNN to improve the HSIC accuracy. He et al.

[16] combined 3DCNN and residual connection to construct
a HSIC model, which still has some room for improvement
in classification performance due to not fully utilizing the
spatial–spectral information of HSI. To address the above
problems, Cao et al. [17] built a comprehensive hybrid con-
volution residual network (BHModel) to improve the feature
learning of HSI, which uses 2D–3D convolutional mixing to
drastically decrease the amount of parameters, thus making
the network architecture simpler. The single way of fea-
ture fusion and the underutilization of shallow features lead
to certain limitations in the improvement of classification
effect. Dang et al. [18] built a lightweight model (JPModel)
for HSIC. The method reduces the network parameters and
increases the paths for learning features by combining resid-
ual connection with depthwise separable convolution, which
further improves the classification accuracy. He et al. [19]
used a multi-scale residual network (SSMRN) to obtain the
spectral-spatial information of HSI, which effectively learns
the target features. Lei et al. [20] introduced capsule residual
blocks to increase the depth of the network, and although
more critical information was extracted, the complexity of
the proposed MS-CapsNetW was relatively high.

The residual network described above can cope with the
phenomenon of degradation, but it is also hindered by the
slownetwork speed and underutilization of extracted features
due to direct convolution operation on the data. Pre-activated
residual connection can reduce the complexity of the model
and make the model converge faster. So introducing the pre-
activation mechanism [21, 22] into the residual network can
improve the network structure of the original residual mod-
ule, which can not only improve the training speed, but also
obtain deeper features with stronger representativeness in
the joint learning of spatial–spectral features. To address
the problem of insufficient feature utilization, for deep net-
workmodels, the long and short distance residual connection
approach [23, 24] can solve the problem of gradient van-
ishing on the one hand, and on the other hand, for the
loss of feature information caused by convolutional oper-
ation, this approach can also achieve the connection between
the bottom and the top network, so as to ensure the sta-
bility of the training of the deep network. Consequently,
the strategy partially compensates for the missing data and
contributes to the enhancement of the feature fusion capabil-
ity.

Inspired by the above research works, this study proposes
a HSIC model PMCRNet on the basis of 2D–3D hybrid con-
volution and pre-activated residual network. PMCRNet can
effectively compensate for the defect of incomplete feature
extraction and enhance the computational performance. The
major contributions of this study are as follows.

1. By utilizing a combination of hybrid convolution and a
pre-activated residual module, we can obtain the deep
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spatial–spectral joint features of HSI, which can accel-
erate the convergence speed of the model and minimize
the amount of parameter computation while enhancing
the ability of advanced spatial-semantic feature extrac-
tion.

2. We adopt the long and short distance residual connec-
tion to effectively fuse shallow and deep information to
obtain advanced semantic features. This approach further
increases the expressiveness of the features and addresses
the gradient vanishing issue in deep network when the
number of layers increases.

3. We experimentally validate and comparatively analyze
the model of this study with seven other state-of-the-art
related models on three publicly available HSI datasets.
The HSIC experimental results show that the proposed
PMCRNet outperforms other HSIC methods.

2 Residual neural network

In classification tasks, shallow networks have limited feature
extraction capabilities, so more complex and rich features
need to be learnt by building deeper networks. However, as
the network layers continue to deepen and become saturated
there will be a decrease in model performance. Therefore,
relying solely on increasing the number of network layers
will not necessarily improve classification accuracy. He et al.
proposed Resnet to effectively avoid the problem of gradient
degradation. The core of ResNet is Residual Building Block
(RBB), which mainly consists of convolutional layers, batch
homogenization layer, and activation function ReLU.

2.1 Convolutional layer

The convolutional layer is employed to acquire the feature
information from the input, which is composed of multiple
convolutional units. The back propagation algorithm opti-
mizes the parameters of each convolutional unit. The features
are extracted by regular shifting and convolution operations
on the input image by different sized receptive fields. The
computational process of the convolutional layer is defined
as

xlj � f

⎛
⎝ ∑

i∈Mj

xl−1
i ∗ kli j + blj

⎞
⎠ (1)

where xlj represents the jth feature map of layer l, f (·) is
the activation function,Mj denotes the set of input feature
maps,xl−1

i represents the ith feature map of layer l-1,kli j
denotes theweight from the ith convolution kernel in layer l-1

to the jth convolution kernel in layer l, * denotes a convolu-
tion operation,blj denotes the bias term of the jth convolution
kernel of layer l.

2.2 Batch normalization

For the network, Batch Normalization (BN) can speed up
the convergence and improve the generalization ability. By
deriving the mean and variance of each batch of data for
normalization, it is possible tomake each layer of information
within the effective range that can be passed on to the next
layer, and the process is computed through

w � v − c(v)√
d(v)2 + ε

(2)

where w is the activation value normalized to the network, v
is the activation value of a particular layer of the network, c(v)
and d(v) represent the mean and the variance, respectively.ε
is a constant close to zero.

2.3 Activation function

Rectified Linear Unit (ReLU) is the most commonly used
activation function in neural networks, which can help to
reduce the issue of vanishing gradients and speed up the con-
vergence of networks. The function is calculated as follows:

ReLU(z) � max(0, z) (3)

where z and ReLU(z) are the input and output of the activa-
tion function, respectively.

2.4 Residual module

RBB uses shortcut connections to skip blocks of convolu-
tional layers for efficient transfer of information, avoiding
gradient explosion and vanishing, which helps construct
deeper neural network structures and enhances the ultimate
efficiency of the network.

Figure 1a shows the original RBB structure, and the exe-
cution path of residual is “Input x → Convolution layer
→ BN → ReLU → Convolution layer → BN → Out-
put F(x)”. Directly performing convolution operation on the
data will increase the computational complexity of network
training and slow down the training network. He et al. [24]
improved the original residual module and proposed Pre-
activated Residual Building Block (PARBB), the specific
structure is shown in Fig. 1b. The execution path of resid-
ual is “Input x → BN → ReLU → Convolutional layer
→ BN → ReLU → Convolutional layer → Output F(x)”.
The pre-activated residual approach puts the BN layer and
the activation function before the convolution layer, which
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Fig. 1 Different types of residual unit structures

expands the range of constant mapping, makes the transmis-
sion of information smoother and the network more stable,
and helps to improve the feature learning capacity of the net-
work. The computation of the residual module is expressed
as follows:

y � x + F(x) (4)

where x denotes the input of RBB, y denotes the desired
output of RBB. The residual, denoted as F(x), signifies the
disparity between the desired output and the input.

3 Proposedmethod

3.1 Hybrid convolutional residual module

HSI is a 3D cube image whose rich and fine spatial and
spectral features can be extracted using CNN. When using
2DCNN as the HSIC model, the original HSI needs to be
preprocessed, leading to a decrease in spectral dimensional
information. 3D convolution can directly take HSI as the
input to the network without complex preprocessing, and
it can extract spatial and spectral features at the same time.
However, 3DCNNneedsmore parameters to learn,which has
the limitation of high computational complexity. And there is
a considerable amount of redundant information and noise in
HSI band, so the 3D convolution alone does not yield ideal
HSIC results. To address these problems, we combine 2D
convolution, 3D convolution and PARBB to design a hybrid
convolution residual module (HCRM), which can effectively
make up for the defects of incomplete feature extraction
and improve the computational efficiency. The structure of
HCRM is given in Fig. 2.

Conv3D and Conv2D denote 3D convolutional layer and
2D convolutional layer, respectively. BN denotes batch nor-
malization. ReLU is activation function. The first Conv3D
is used to implement spatial–spectral joint features learning
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Fig. 2 Hybrid convolutional residual module (HCRM)

on the input. Then, in branch a, to make the data dimen-
sions satisfy the requirements of Conv2D, the feature map
is concatenated in the spectral and channel dimensions and
thus reconstructed (reshape) from a 4D tensor to a 3D
tensor, which is fed into a PARBB for deep feature learn-
ing. In branch b, to enhance the information transfer, the
further extracted spatial–spectral features from the second
Conv3D are reshaped and element-wise added with the fea-
tures obtained from branch a. The fused features are then
fed into Conv2D to achieve spatial information enhancement
after which we get feature A. On the other hand, to reduce
the complexity and speed up the convergence, the features
are first reshaped into a 3D tensor and then input into another
PARBB to get the featureB in branch c. Finally, featureA and
feature B are fused by element-wise adding and reshaped into
a 4D tensor as output. HCRM is able to strengthen the ability
to learn spatial–spectral joint features and features of differ-
ent abstraction levels while ensuring the effective delivery of
information, which in turn improves the HSCI effect.

3.2 HSICmodel based on 2D–3D hybrid convolution
and pre-activated residual

Figure 3 shows the basic framework of the proposed PMCR-
Net. It mainly consists of five parts, feature extraction,
HCRMs, feature fusion, full residual learning, and classi-
fication.

1. Feature extraction. This part is composedof twoConv3D.
The first one is composed of 32 convolutional kernels of
size 3 × 3 to extract shallow features, which is benefi-
cial to retain more positional and detail information. The
second one adopts 32 convolutional kernels of size 3 ×
3 to capture deeper information of the HSI. The result
of a single 3D convolution kernel on a block of 3D HSI
data is a 3D tensor, whereas the feature map extracted by
multiple 3D convolution kernels can be regarded as a 4D
tensor, and thus the final output of the feature map in this
part is a 4D tensor.
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2. HCRMs. After the feature extraction part, higher-order
features at different semantic levels are further extracted
by three HCRMs. Each HCRM is a tandem structure
consisting of two Conv3D and two Conv2D. Based on
the PARBB, the first Conv3D span connects the first
Conv2D and the second Conv3D span connects the sec-
ond Conv2D. This design not only mines the useful
spatial–spectral information in HSI at a deeper level, but
also reduces the computational complexity.

3. Feature fusion. To reduce the loss of HSI features and
enhance the comprehensive representation of features at
different levels, the features output from each HCRM are
input into the Concat layer for splicing. Then, a Conv3D
consisting of 32 convolutional kernels of size 3 × 3 is
used as a transition layer to ensure that the number of fea-
tures outputted by the network is the same as the number
of shallow features, so as to obtain fused features with
stronger representation capability.

4. Full residual learning. It consists of both pre-activated
short-range residual connections and long-range residual
connections. The use of short-distance residual connec-
tions can alleviate the training problem of the deep
network. The long-distance residual connection is used
to fuse the output of the feature extraction part and the
output of the feature fusion part to achieve the effective
extraction of deep features and shallow information. The
above structure can supplement the loss information to
a certain extent and improve the fusion performance of
PMCRNet, thus obtaining better HSIC results.

5. Classification. First, a Conv2D with 32 convolution ker-
nels is used to convolve the output featuremap to improve
computational efficiency. Then, the output is subjected to
a maximum pooling operation to retain the most influen-
tial factors in the feature region, thus effectively avoiding
information loss. Finally, the output is processed through

the fully connected layer to get the HSIC result by Soft-
max function. The function is obtained by

softmax(ch) � ech∑D
d�1 e

cd
(5)

where ch is the output of the hth node,D represents the count
of output nodes, specifically the count of categories desig-
nated for classification. In addition, we also employ Dropout
to effectively prevent the overfitting phenomenon, and at the
same time, it can reduce the dependence on local features
and enhance the generalization ability of PMCRNet.

4 Experiments and analysis

4.1 Dataset description

In order to validate the effectiveness of PMCRNet proposed
in this paper, experiments are conducted using three publicly
available HSI datasets, Indian Pines, Pavia University and
Salinas. The details are shown in Table 1.

4.2 Experimental environment

The hardware environment utilized for the experiment is Intel
Core i7-13700F processor, 32 GB RAM, RTX3090 24 GB
graphics card. The software environment is based onKeras as
themain deep learning framework. The compiler is Pycharm,
and the compilation environment is Python3.6.

4.3 Selection of evaluation indicators
and experimental data

Overall Accuracy (OA), Average Accuracy (AA) and Kappa
coefficient are introduced as evaluation indicators. OA is the
proportion of the number of samples in which the predicted
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Table 1 Description of three
datasets Dataset Spatial

dimension
Spectral
bands

Spatial resolution (m) Wavelength
(um)

Categories

IP 144 × 144 200 25 0.4–2.5 16

PU 610 × 340 103 1.3 0.43–0.86 9

SA 512 × 217 204 3.7 0.36–2.5 16

category is the same as the actual category to the total sample
size and can be expressed as:

OA �
∑

i nii∑
i Ni

(6)

where ni j represents the number of samples of class i in
the image that were incorrectly predicted as class j. nii rep-
resents the number of correctly classified samples in class
i.Ni � ∑

j ni j is the total number of samples of class i to
be classified. OA can be a good assessment of classifica-
tion effectiveness, but for multi-category classification when
there is an unequal distribution of categories in the dataset,
those categories with more samples have a greater impact on
the OA value.

AA is the ratio of correctly predicted samples in each
category to the total number of samples, which reflects the
classification of each category in an integrated way. It can be
expressed as:

AA � 1

k

∑
i

nii
Ni

(7)

where k represents the number of categories of the sample to
be classified.

Kappa coefficient is ameasure of consistency and can also
be employed to evaluate the accuracy of classification. The
degree of agreement between the actual classification results
and the predicted results is what determines consistency. It
can be expressed as:

Kappa �
∑

i Ni
∑

i nii − ∑
i

(∑
j ni j · ∑

j n ji

)

(∑
i Ni

)2 − ∑
i

(∑
j ni j · ∑

j n ji

) (8)

where a higher Kappa coefficient represents a better classifi-
cation effect of the model, i.e., the samples are less likely to
be missed and misclassified.

The proportion of training set samples for IP is 5% and
the remaining samples are the test set. The proportion of
training set samples for PU and SA is 1% and the remaining
samples are the test set. In order to ensure the randomness of
the samples, the dataset division is to randomize each class

Fig. 4 Impact on spatial neighborhood blocks of different scales

of samples and then extract them according to the propor-
tion. The experiment was repeated 10 times with a randomly
divided dataset and then the average was taken as the final
classification accuracy of our experiment.

4.4 Experimental parameter setting

We utilized Adam to optimize the loss function. Adam is
an extension of stochastic gradient descent algorithm, which
saves memory space and is computationally efficient. We
chose a learning rate value of 0.001, batch size of 32, epoch
of 600, and a ratio of 0.5 neurons removed from the Dropout
layer in full connectivity.

Spatial neighborhood information has a significant impact
on the HSIC accuracy. Choosing too small a spatial neigh-
borhood can result in not obtaining discriminative features
for key spectral bands, while too large a spatial neighborhood
may introduce noise. The effect of spatial neighborhood size
on the HSIC results is shown in Fig. 4. With the increase of
spatial neighborhood size, the accuracy shows an increasing
trend. However, when the size increases to a certain range,
the accuracy shows a decreasing trend. For IP, PU and SV
datasets, the optimal spatial neighborhood size is 15 × 15,
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Table 2 Comparison of the
structure and ablation results of
the four models

Model 2D–3D-CNN Long
connection
module

Pre-activated
residual
module

IP
(OA/%)

PU
(OA/%)

SA
(OA/%)

Model A
√ × × 94.78 95.12 95.2

Model B
√ √ × 96.12 95.97 96.02

Model C
√ × √

98.63 98.59 98.64

Model D
√ √ √

99.56 99.45 99.43

19 × 19 and 17 × 17, respectively. The above results indi-
cate that when the ground objects in a HSI occupy a larger
area, it contains more information, so choosing a relatively
large spatial neighborhood is more conducive to preserving
the spatial information of each category of the ground object.

4.5 Ablation experiment

To validate the effectiveness of the 2D–3D-CNN long
connectivity-based module and the pre-activation residual
module, ablation experiments were performed on the three
datasets. Using 2D–3D-CNN as the baseline model, the
influence of the classification performance of different com-
ponents in the proposed model is discussed by separately
and fully introducing the long-connection module and the
pre-activated residual module. The structure and experimen-
tal results of the four models are shown in Table 2, where
model D is the proposed model.

From Table 2, it can be found that model D exhibits the
best performance on all three datasets, with OA above 99%.
Model B improves OA on all three datasets compared to
model A, proving that long connection approach improves
the sample classification performance. Model C achieves a
small improvement in classification accuracy on the three
datasets. The above experimental results illustrate that when
the pre-activated residual module and the long-short con-
nection are introduced into the 2D-3D hybrid model, the
performance and classification ability of the model can be
improved to a certain extent.

4.6 Experimental results and analysis

To verify the HSIC effect of PMCRNet, we conducted
experimental comparisons using 2DCNN [8], 3DCNN [9],
MCNN-CP [10], BHModel [17], JPModel [18], SSMRN
[19],MS-CapsNetW [20] and PMCRNet. To ensure fairness,
all experiments were conducted under the same settings, and
the network parameters of the compared methods are kept
consistent with the references.

Tables 3, 4 and 5 show the detailed classification results
on the three datasets, respectively. It can be seen that the
accuracy of 2DCNN is low, and there is a large gap between

it and other methods on all three datasets due to the insuf-
ficient learning ability. The accuracy of 3DCNN is better
than that of 2DCNN. In the three datasets, comparing the
results of 3DCNN with 2DCNN, OA is 4.05%, 4.23% and
4.45% higher, AA is 1.85%, 5.89% and 4.29% higher, and
the Kappa coefficient is 4.63%, 5.62% and 4.95% higher.
This indicates that 3D convolution has a certain advantage
in terms of spatial–spectral joint feature mining capability.
Compared with the single 2DCNN and 3DCNN, MCNN-CP
hybrid convolutional model also improves the HSIC effect
on the three datasets, and the OA on the three dataset are
2.86%, 1.79% and 1.43% higher than that of the 3DCNN,
the AA is improved by 5.25%, 1.22% and 1.58%, and the
Kappa coefficient is improved by 3.24%, 2.28% and 1.59%,
respectively, which verifying the potential of the hybrid
model in mining HSI features. The OA, AA and Kappa
coefficients of BHModel, JPModel, SSMRN, PMCRNet and
MS-CapsNetW are higher than those of MCNN-CP, which
proving the effectiveness of introducing residual structure.

Among the five residual models, BHModel has the low-
est OA due to the simple structural design and limited
ability to extract features. On the three datasets, compared
to BHModel, the OA of JPModel improved by 0.86%,
1.24% and 0.43%, respectively, the AA decreased by 0.41%,
improved by 1.67% and 0.27%, respectively, theKappa coef-
ficients improved by 0.99%, 1.67% and 0.48%, respectively.
The reason is that JPModel combines residuals connection
with depthwise convolution, usingmultiple residuals stacked
to continuously extract spatial context features and spectral
features of the data cube. Compared to JPModel, SSMRN
has 0.99%, 0.8% and 0.76% higher OA, 2.01%, 1.22% and
1.11%higherAAand1.12%,1.05%and0.85%higherKappa
coefficients on the three datasets, respectively. The reason is
that SSMRN uses a multi-scale residual structure to capture
spectral-spatial information, which can effectively learn the
features of the target ground objects. Compared to SSMRN,
MS-CapsNetW improves OA by 0.51%, 0.28% and 0.55%,
AA by 0.45%, 0.44% and 0.27%, and Kappa coefficient by
0.58%, 0.38% and 0.62% on the three datasets, respectively.
The above results indicate that the two-channel residual con-
nection can better increase the depth of the model and extract
more advanced and comprehensive features, which in turn
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Table 3 Classification results (%) of different methods on IP dataset

Ground 2DCNN 3DCNN MCNN-CP BHModel JPModel SSMRN MS-CapsNetW PMCRNet

Alfalfa 93.93 86.66 100.00 100.00 100.00 100.00 100.00 100.00

Corn-no-till 82.29 92.84 91.87 95.79 97.68 99.29 99.68 99.84

Corn-min-till 83.11 82.35 96.40 96.41 93.72 98.31 97.45 100.00

Corn 71.91 78.57 97.07 98.46 100.00 100.00 100.00 100.00

Grass-pasture 97.34 98.78 99.51 99.50 95.75 91.19 100.00 98.85

Grass-trees 83.71 94.26 99.08 96.32 97.29 100.00 97.91 99.39

Grass-pasture-mowed 96.00 100.00 96.15 92.85 100.00 100.00 100.00 100.00

Hay-windrowed 97.93 99.76 99.76 98.84 100.00 100.00 100.00 99.76

Oats 90.00 75.00 100.00 100.00 80.95 100.00 100.00 100.00

Soybeans-no-till 86.04 84.45 96.53 93.79 96.82 96.65 98.74 100.00

Soybeans-min-till 90.29 95.47 94.09 96.37 98.11 98.25 98.57 99.10

Soybeans-clean-till 77.69 86.09 81.17 94.03 96.99 100.00 98.52 98.52

Wheat 100.00 98.92 100.00 99.46 100.00 100.00 99.46 100.00

Woods 97.98 97.67 99.29 98.61 100.00 99.73 100.00 100.00

Bldg-grass-tree 84.09 91.11 94.97 99.39 93.66 99.71 100.00 100.00

Stone-steel-towers 100.00 100.00 100.00 97.64 100.00 100.00 100.00 100.00

OA (%) 88.22 92.27 95.13 96.67 97.53 98.52 99.03 99.56

AA (%) 89.52 91.37 96.62 97.34 96.93 98.94 99.39 99.71

Kappa (%) 86.57 91.20 94.44 96.20 97.19 98.31 98.89 99.50

The optimal results of the classification accuracies for each class of ground objects, OAs, AAs and Kappa coefficients corresponding to each method
in the experiment are bolded

Table 4 Classification results (%) of different methods on PU dataset

Ground 2DCNN 3DCNN MCNN-CP BHModel JPModel SSMRN MS-CapsNetW PMCRNet

Asphalt 96.64 97.21 97.73 98.23 98.89 99.84 98.55 99.65

Meadows 96.89 98.61 98.88 99.37 99.56 99.69 99.77 99.94

Gravel 76.57 93.77 90.87 84.55 90.47 92.97 93.42 96.93

Trees 84.42 94.59 94.03 97.77 91.92 88.85 98.57 96.61

Painted metal sheets 99.23 100.00 100.00 100.00 100.00 100.00 100.00 99.64

Bare soil 76.24 80.74 90.54 90.23 97.16 99.28 99.83 100.00

Bitumen 65.16 90.68 80.57 91.82 99.56 99.91 99.73 100.00

Self-blocking bricks 85.89 88.67 93.04 93.26 94.18 99.20 94.65 99.20

Shadows 100.00 89.79 99.37 98.28 96.79 99.74 98.95 99.72

OA (%) 89.82 94.05 95.84 96.44 97.68 98.48 98.76 99.45

AA (%) 86.78 92.67 93.89 94.83 96.50 97.72 98.16 99.08

Kappa (%) 86.55 92.17 94.45 95.24 96.91 97.96 98.34 99.26

The optimal results of the classification accuracies for each class of ground objects, OAs, AAs and Kappa coefficients corresponding to each method
in the experiment are bolded

improve the HSIC accuracy. Comparing the four residual
models mentioned above, PMCRNet has the highest OA, AA
andKappa coefficients, suggesting that when introducing the
pre-activated residual structure, more informative features
can be utilized effectively.

Figures 5, 6 and 7 show the classification results obtained
with different methods on the three datasets. As can be seen,
compared with other comparative methods, the HSIC result
map of PMCRNet has the least number of misclassified
ground objects, and is overall smoother and has only a very
few noise points, which is closer to the ground truth map.
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Table 5 Classification results (%) of different methods on SA dataset

Ground 2DCNN 3DCNN MCNN-CP BHModel JPModel SSMRN MS-CapsNetW PMCRNet

Broccoli-green-weeds-1 99.03 100.00 100.00 99.88 99.49 100.00 100.00 100.00

Broccoli green-weeds-2 98.50 99.16 99.31 99.04 99.55 99.88 99.55 100.00

Fallow 97.27 97.54 99.09 98.26 98.92 99.20 99.65 99.82

Fallow-rough-plough 83.50 88.92 96.03 95.33 96.60 96.63 97.74 94.92

Fallow-smooth 89.51 94.03 96.93 96.43 95.32 99.53 98.70 99.87

Stubble 100.00 100.00 100.00 100.00 99.97 99.97 100.00 100.00

Celery 98.65 98.83 99.62 99.53 99.34 99.81 99.93 99.96

Grapes-untrained 85.81 92.00 94.29 95.51 95.65 97.12 98.37 99.58

Soil-vineyard-develop 98.29 98.21 99.91 99.96 99.64 99.98 99.96 100.00

Corn-senesced-green-weeds 90.23 96.17 95.98 97.30 98.79 99.55 99.82 99.11

Lettuce-romaine-4wk 78.67 89.57 96.43 98.14 96.94 99.24 98.83 99.78

Lettuce-romaine-5wk 92.83 97.95 98.64 98.10 98.60 99.24 99.82 99.88

Lettuce-romaine-6wk 80.00 95.03 94.51 96.72 97.65 99.87 100.00 99.87

Lettuce-romaine-7wk 95.18 96.04 94.33 96.13 95.40 99.57 99.47 98.34

Vineyard-untrained 75.09 86.95 88.09 93.13 95.66 94.64 96.64 98.30

Vineyard-vertical-trellis 95.76 96.47 98.99 98.67 98.93 99.93 99.93 100.00

OA (%) 90.32 94.77 96.20 97.23 97.66 98.42 98.97 99.43

AA (%) 91.14 95.43 97.01 97.63 97.90 99.01 99.28 99.34

Kappa (%) 89.23 94.18 95.77 96.91 97.39 98.24 98.86 99.36

The optimal results of the classification accuracies for each class of ground objects, OAs, AAs and Kappa coefficients corresponding to each method
in the experiment are bolded
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Fig. 5 Classification results of different methods for IP. a False color image b 2DCNN c 3DCNN d MCNN-CP e BHModel f real ground data
g JPModel h SSMRN i MS-CapsNetW j PMCRNet

4.7 Runtime comparison

To better evaluate the HIC performance of the model, the
training time, testing time and the number of parameters
of different methods on the three datasets were analyzed
through experiments. The number unit of model parameters
isM � 106. The number of model parameters and compari-
son results are shown in Table 6

From Table 6, it can be seen from the results of training
time and test time that PMCRNet takes more time to train
than 2DCNN, 3DCNN, MCNN-CP and BHModel, mainly
due to that it uses multiple hybrid convolutional blocks
and adds long and short residual connections and a pre-
activation mechanism to the network, thus increasing the
training time. However, PMCRNet consumes less time than
JPModel, SSMRN and MS-CapsNetW, mainly because of
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Fig. 6 Classification results of different methods for PU. a False color image b 2DCNN c 3DCNN d MCNN-CP e BHModel f real ground data
g JPModel h SSMRN i MS-CapsNetW j PMCRNet
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Fig. 7 Classification results of different methods for SA. a False color image b 2DCNN c 3DCNN d MCNN-CP e BHModel f real ground data
g JPModel h SSMRN i MS-CapsNetW j PMCRNet
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the higher utilization of the parameters of itself, which can
better mine the rich spatial–spectral features in HSI for fea-
ture reuse and enhanced information transfer. In terms of the
number of parameters, 2DCNN, 3DCNN, MCNN-CP and
BHModel can quickly complete the model training due to
the simple structure and small number of parameters, but
this also leads to the model not fully extracting the features,
and theHSIC accuracy is not good. Comparedwith JPModel,
SSMRN and MS-CapsNetW, the proposed method reduces
the number of parameters, reduces the computational com-
plexity, and achieves better classification results.

Although PMCRNet does not achieve the optimal time
consumption, comprehensive consideration of the HSIC
accuracy and the number of parameters and other indicators
can be found that the model has a better classification effect
and is more suitable for a variety of practical engineering
application scenarios.

4.8 Effectiveness of small sample sizes

To further demonstrate the effectiveness of the proposed
method, 10,20,30,40,50 samples were randomly selected as
training data for the experiments in each category of ground
objects in IP, PU, and SA datasets, respectively. Figure 8
shows the comparison of OA of different methods under
small sample conditions. It can be seen that our method still
achieves the optimal classification results, which proves the
robust effectiveness of this method in the case of small sam-
ple sizes.

5 Conclusion

This work combines 2D-3D hybrid convolution and pre-
activated residual network to propose PMCRNet for HSIC.
Compared with the traditional residual-based methods,
PMCRNet can effectively accelerate the network training
speed and reduce the parameter computation. In addition,
the use of long and short distance residual connections solves
the problem of gradient disappearance in the deep network,
facilitates back propagation and better integrates the input
information of the current layer. The method achieves the
enhancement of feature reuse and information transfer,which
helps to improve the ground object classification accuracy
of HSI. By evaluating the classification effectiveness of the
three datasets and comparing it with seven related state-of-
the-art models, the results show that the model outperforms
similar networks while ensuring higher classification accu-
racy.
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Fig. 8 Classification results of small sample sizes. a IP dataset b PU dataset c SA dataset

Author contributions HL conceptualized and designed the algorithm,
contributed to algorithm improvements, and critically revised the
manuscript for important intellectual content. YS built the model, ver-
ified and analyzed it experimentally, prepared the original manuscript
draft. HZ assisted with manuscript writing and revisions, supervised
the project, provided strategic direction in algorithm development and
testing, and conducted a thorough review and final approval of the
manuscript prior to submission. ML visualized experimental results.
All authors reviewed the manuscript.

Funding This work was supported by Zhejiang Provincial Education
Department General Research Project (No. Y202248546), Public Wel-
fare Applied Research Project of Huzhou (No. 2023GZ29), Natural
Science Foundation of Huzhou (No. 2023YZ55) and Zhejiang Provin-
cialCollegeStudent Innovation andEntrepreneurshipTrainingProgram
Project (No. S202310347089).

Data availability The data that support the findings of this study are
openly available in http://www.ehu.eus/ccwintco/index.php?title=Hype
rspectral_Remote_Sensing_Scenes

Declarations

Conflict of interest The authors declare no conflict of interest.

Ethical approval Not applicable.

References

1. Zhao, C., Wang, M., Feng, S.: A sparse and spectral smooth reg-
ularized low-rank tensor decomposition method for hyperspectral
target detection. Int. J. Remote Sens. 43(12), 4608–4629 (2022)

2. Gao, H., Wang, M., Sun, X., Cao, X., et al.: Unsupervised dimen-
sionality reduction of medical hyperspectral imagery in tensor
space. Comput. Methods Progr. Biomed. 240, 107724 (2023)

3. Liu,G.,Wang,L., Liu,D.:Hyperspectral image classification based
on a least square bias constraint additional empirical risk mini-
mizationnonparallel support vectormachine.RemoteSens.14(17),
4263 (2022)

4. Wang, H., Celik, T.: Sparse representation-based hyperspectral
image classification. Sign. ImageVideo Process. 12(5), 1009–1017
(2018)

5. Tan, X., Xue, Z., Yu, X., Sun, Y., et al.: Hyperspectral image clas-
sification with deep 3D capsule network andMarkov random field.
IET Image Process. 16(1), 79–91 (2022)

6. Yang, L., Chen, J., Zhang, R., Yang, S., et al.: Precise crop
classification of UAV hyperspectral imagery using kernel tensor
slice sparse coding based classifier. Neurocomputing 551, 126487
(2023)

7. Hu, W., Huang, Y., Wei, L., Zhang, F., et al.: Deep convolutional
neural networks for hyperspectral image classification. J. Sensors
2015, 258619 (2015)

8. Zhao, W., Du, S.: Learning multiscale and deep representations
for classifying remotely sensed imagery. ISPRS J. Photogramm.
Remote Sens. 113, 155–165 (2016)

9. Li, Y., Zhang, H., Shen, Q.: Spectral–spatial classification of hyper-
spectral imagery with 3D convolutional neural network. Remote
Sens. 9(1), 67 (2017)

10. Zheng, J., Feng, Y., Bai, C., Zhang, J.: Hyperspectral image clas-
sification using mixed convolutions and covariance pooling. IEEE
Trans. Geosci. Remote Sens. 59(1), 522–534 (2021)

11. Fırat, H., Asker, M.E., Hanbay, D.: Classification of hyperspec-
tral remote sensing images using different dimension reduction
methods with 3D/2D CNN. Remote Sens. Appl.: Soc. Environ. 25,
100694 (2022)

12. Liu,Z.,Mao,X.,Huang, J.,Gan,M., et al.: Stratified attentiondense
network for image super-resolution. Sign. Image Video Process.
16(3), 715–722 (2022)

13. Shi, C., Liao, D., Zhang, T., Wang, L.: Hyperspectral image clas-
sification based on 3D coordination attention mechanism network.
Remote Sens. 14(3), 608 (2022)

14. He,K., Zhang,X., Ren, S., Sun, J.:Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 770–778; 2016.

15. Qing, Y., Liu, W.: Hyperspectral image classification based on
multi-scale residual network with attention mechanism. Remote
Sens. 13(3), 335 (2021)

16. He, Z., Shi, Q., Liu, K., Cao, J., et al.: Object-oriented man-
grove species classification using hyperspectral data and 3-D
siamese residual network. IEEEGeosci. Remote Sens. Lett. 17(12),
2150–2154 (2020)

17. Cao, F., Guo, W.: Deep hybrid dilated residual networks for
hyperspectral image classification. Neurocomputing 384, 170–181
(2020)

18. Dang, L., Pang, P., Lee, J.: Depth-Wise separable convolution
neural network with residual connection for hyperspectral image
classification. Remote Sens. 12(20), 3408 (2020)

123

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes


Signal, Image and Video Processing (2024) 18:3815–3827 3827

19. He, S., Jing, H., Xue, H.: Spectral-spatial multiscale residual
network for hyperspectral image classification. Int. Arch. Pho-
togramm. Remote Sens. Spat. Inf. Sci. 43, 389–395 (2022)

20. Lei, R., Zhang, C., Zhang, X., Huang, J., et al.: Multiscale fea-
ture aggregation capsule neural network for hyperspectral remote
sensing image classification. Remote Sens. 14(7), 1652 (2022)

21. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep
residual networks. In Computer Vision–ECCV 2016: 14th Euro-
pean Conference, Amsterdam, The Netherlands, October 11–14,
2016, Proceedings, Part IV 14, pp. 630–645: Springer, 2016

22. Gao, H., Yang, Y., Yao, D., Li, C.: Hyperspectral image classifica-
tion with pre-activation residual attention network. IEEE Access
7, 176587–176599 (2019)

23. Huan, H., Li, P., Zou, N., Wang, C., et al.: End-to-End super-
resolution for remote-sensing images using an improved multi-
scale residual network. Remote Sens. 13(4), 666 (2021)

24. Wang, X., Xu, H., Yuan, L., Dai, W., et al.: A remote-sensing
scene-image classificationmethod based on deepmultiple-instance
learning with a residual dense attention convnet. Remote Sens.
14(20), 5095 (2022)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123


	Hybrid 2D–3D convolution and pre-activated residual networks for hyperspectral image classification
	Abstract
	1 Introduction
	2 Residual neural network
	2.1 Convolutional layer
	2.2 Batch normalization
	2.3 Activation function
	2.4 Residual module

	3 Proposed method
	3.1 Hybrid convolutional residual module
	3.2 HSIC model based on 2D–3D hybrid convolution and pre-activated residual

	4 Experiments and analysis
	4.1 Dataset description
	4.2 Experimental environment
	4.3 Selection of evaluation indicators and experimental data
	4.4 Experimental parameter setting
	4.5 Ablation experiment
	4.6 Experimental results and analysis
	4.7 Runtime comparison
	4.8 Effectiveness of small sample sizes

	5 Conclusion
	References




