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Abstract
This article proposed an improved signal subspace-based approach for parameter estimation in the bistatic multiple-input
multiple-output radar system with an electromagnetic vector sensor (EMVS). In the proposed method, we recovered the joint
transmit–receive polarization steering vector from the entire signal subspace using least squares by exploring the property of
the Kronecker product and then recovered the transmit or receive polarization steering vector by position average process. We
also proved that, in the recovered transmit polarization vector, the receive polarization parameters do not affect the estimation
of the transmit polarization parameters. The same applies to the receive polarization vectors. Finally, the azimuth angle and
polarization parameters are estimated using the ‘Vector Cross-Product’ and the least-squares strategy. The improved parameter
estimation approach can realize automatic parameter pairing and have a better parameter estimation performance than the
previous corresponding algorithms when it works on the subspace obtained in different ways since the proposed method uses
the whole signal subspace instead of a part of the signal subspace to estimate the parameters. Simulation results verify the
performance improvement of the proposed algorithm.

Keywords Angle estimation · MIMO radar · Electromagnetic vector sensors

1 Introduction

Multiple-input multiple-output is an emerging direction esti-
mation technology in radar systems since it has unique
advantages and outstanding performance compared to the
traditional phased array radar system [1–3]. The estima-
tion of the direction-of-departure (DOD) and direction-of-
arrival (DOA)has been extensively studied formultiple-input
multiple-output radar [4–8]. However, the number of studies
studied on two-dimensional (2D) problems, namely azimuth,
elevation, 2D-DOD, and 2D-DOA estimation, is limited
[9–11]. Chen and Zhang developed a PM-based algorithm
for 2D-DOD and 2D-DOA estimation algorithms in MIMO
radar with arbitrary arrays [9]. An improved ESPRIT-based
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algorithm was introduced for 2D-DOD and 2D-DOA esti-
mation in MIMO radar with arbitrary arrays [12]. In [13],
a new approach that combines ESPRIT and joint diagonal-
ization technology was proposed for 2D-DOD and 2D-DOA
estimation in bistaticMIMO radar with an L-shaped array. In
[10], a novel tensor-ring decomposition-basedmethod is pro-
posed for 2D-DOA and 2D-DOD estimation, which makes
full use of the multi-dimensional structure of the MIMO out-
put and can improve estimation performance. Thesemethods
developed for 2D-DOD and 2D-DOA estimation are based
on scalar sensors. A typical characteristic of [9, 12, 13] is
that the antenna array is scalar sensors susceptible to exter-
nal interference. As an alternative to the scalar sensor, the
electromagnetic vector sensor (EMVS) brings new devel-
opment space for target positioning [14]. The EMVS at a
certain point in space can provide a 2D direction finding
[15]. Besides, it can also provide the polarization state of the
input signal, which provides new potential possibilities for
detecting invisible targets.

The use of EMVS for direction finding has become a hot
research topic, and various estimators have been proposed
in [14–21]. In bistatic MIMO-EMVS radar, there are eight
parameters used to describe the position of the target, which
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can better resist interference. Generally speaking, there are
two types of parameter estimation methods in the bistatic
MIMO-EMVS radar. The first one recovers the normalized
polarization vector by exploiting the rotation invariance of
the normalized polarization vector. Then, all the parameters
are estimated from the recovered normalized polarization
vector [20–22]. This type of method does not have high
requirements on the shape of the array but completely ignores
the spatial steeringmatrix. The second type ofmethod is suit-
able for spatial steeringmatrices with rotation invariance and
uses the rotation invariance of the spatial steering matrix to
estimate spatial angle variables. In this paper, we discussed
the last one.Ageneral bistaticMIMO-EMVS radarwithmul-
tiple transmit and receive EMVSs was introduced in [23],
and an ESPRIT-like algorithm was proposed to estimate 2D-
DOD, 2D-DOA, 2D transmit polarization angle (TPA) and
2D receive polarization angle(RPA). First, the signal sub-
space is obtained by performing eigendecomposition (EVD)
on the covariancematrix of the received data. Next, a rotation
matrix is obtained from the 6N or 6M rows of the signal sub-
space by exploiting the rotation invariance of the receive or
transmit array manifold and using it to recover the receive
or transmit polarization vector from these rows where N
or M is the number of the receive or transmit arrays. The
2D-DOA and 2D-DOD are estimated via the ‘Vector Cross-
Product’ idea using the recovered spatial response vector.
Then, the 2D-TPA and 2D-RPA are calculated using the
least-squaresmethod. Finally, the orthogonality of the virtual
steering vector and the noise subspace are used to pair the
transmit and receive parameters. In [24], the signal subspace
is obtained by performing high-order SVD on the covariance
tensor, and then, all parameters are estimated using the same
process as that in [23]. The HOSVD-based algorithm can
improve the signal-subspace estimation accuracy to improve
the parameter estimation performance, but it suffers a high
computational complexity. To avoid decomposition, the sig-
nal subspace is obtained by the propagator method (PM) in
[25]. Then, all parameters are estimated using the same pro-
cess in [23], except the elevation angle is calculated from
the rotation matrix. The above algorithms only select 6N or
6M rows of the signal subspace to estimate all parameters
and do not fully utilize the entire signal subspace. Further-
more, in [26], by exploiting the rotation invariance of the
virtual array manifold, the elevation angle is estimated from
the entire signal subspace obtained by PM. However, the
other parameters estimation process is the same as that in
[23], except there is no need for the other pairing process. It
is a pity that only the elevation angle estimation fully uses the
entire signal subspace. We know that all algorithms based on
signal subspace do not fully use the entire signal subspace
to estimate all parameters through the above introduction.
They only select 6N or 6M rows of the signal subspace to
estimate the parameter and waste most of the signal sub-

space, which will cause performance degradation. Besides,
as shown in [23], the parameter estimation accuracy is also
affected by the position of the selected part in the signal sub-
space. Different positions of the selected part in the signal
subspace will bring different estimation results. So, it is dif-
ficult to determine which part can get the best estimation
effect. All the algorithms mentioned above, except HOSVD,
do not make full use of the inherent multi-dimensional struc-
ture of the matched filters, resulting in some performance
loss. The authors in [27, 28] make full use of the inher-
ent multi-dimensional structure and introduce the trilinear
decomposition to obtain the estimation of the loading matri-
ces and use those loading matrices to realize the separate
estimate of the receive and transmit parameters. At the same
time, the transmit and receive parameters are automatically
paired.

In this paper, we proposed an improved signal-subspace-
based approach for parameter estimation in the bistatic
multiple-input multiple-output radar system with an elec-
tromagnetic vector sensor (EMVS). The main contributions
of this paper are as follows: (1) To make full use of the vir-
tual array manifold of the MIMO radar and the entire signal
subspace, the polarization steering vector is recovered from
the joint transmit–receive spatial-polarization steering vec-
tor by exploiting the property of the Kronecker product. (2)
We proposed a position average process to recover the trans-
mit or receive polarization steering vector from the estimated
joint transmit–receive polarization steering vector. We also
proved that in the recovered transmit polarization vector,
the receive polarization parameters do not affect the esti-
mation of the transmit polarization parameters. The same
applies to the receive polarization steering vectors; (3) the
computational complexity of the proposed algorithm is ana-
lyzed. Numerical simulations are further used to verify the
effectiveness of the proposed algorithm. What needs special
emphasis is that although the proposed parameter estimation
approach combines the ESPRIT and ‘Vector Cross-Product’
ideas to estimate the parameters, the differences from the
existing algorithms are: (1) The transmit or receive elevation
angle is calculated by exploiting the rotation invariance of
the virtual array manifold of the MIMO radar, instead of the
transmit or receive array manifold. The joint diagonalization
technology is introduced to ensure the pairing estimation of
the receive and transmit elevation angle, and no additional
pairing process is required. (2) The transmit or receive polar-
ization steering vector is recovered from the 36NM rows of
the signal subspace instead of the 6M /6N rows. As men-
tioned above, all parameters are obtained from the whole
signal subspace instead of the 6M or 6N rows. Therefore,
when the improved approach is applied to the signal subspace
obtained in different ways, a certain degree of performance
improvement will be obtained compared with the original
parameter estimation method.
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Fig. 1 Illustration of the bistatic EMVS-MIMO radar

The rest of this paper is organized as follows: The sig-
nal model for bistatic EMVS-MIMO radar is introduced in
Sect. 2, and the improved signal-subspace-based parameter
estimation approach is introduced in Sect. 3. The perfor-
mance including complexity and CRB is derived in Sect. 4.
Several numerical results are provided to indicate the effec-
tiveness of the proposed algorithm in Sect. 5. Finally, a
conclusion is drawn in Sect. 6.
Notation In this paper, we use lowercase letters, like a, to
represent a variable; lowercase bold letters, like a, to rep-
resent a vector; and capital bold letters, like A, to represent
a matrix. We use symbols (•)T,(•)T, (•)∗, (•)−1 and (•)†

to represent transposition operator, conjugate operator, con-
jugate transposition operator, matrix inverse operator and
matrix pseudo-inverse operator, respectively. ‖ · ‖F repre-
sents the Frobenius norm.� and⊗ represent the Khatri–Rao
product andKronecker product, respectively. angle{a} stands
for the phase of a; The ‘Vector Cross-Product’ between
a1 = [a1, a2, a3]T and a2 = [a4, a5, a6]T is defined as

a1 � a2 =
⎡
⎣

0 −a3 a2
a3 0 −a1

−a2 a1 0

⎤
⎦
⎡
⎣
a4
a5
a6

⎤
⎦.

2 Signal model

Consider the same bistatic EMVS-MIMO radar system sce-
nario to that in Chintagunta and Palanisamy [23], which is
equipped with an M-element EMVS transmit arrays and an
N -element EMVS receive arrays. Both of them are uniform
linear array (ULA). Suppose there are K far-field point-like
targets. The 2D-DOD pair and 2D-DOA pair of the k-th tar-
get are (θt,k, φt,k) and (θr ,k, φr ,k), respectively, where θt,k ,
θr ,k are the elevation angles, and φt,k , φr ,k are the azimuth
angles. The transmit and the receive steering vector of the
k-th target can be expressed as [23]

bt,k = at,k ⊗ ct,k , (1a)

br ,k = ar ,k ⊗ cr ,k, , (1b)

where at,k = [1, e j2πdt sin(θt,k)/λ, . . . , e j2π(M−1)dt sin(θt,k )/λ]T
∈ C

M×1 andar ,k=
[
1,e j2πdr sin(θr ,k )/λ,. . .,e j2π(N−1)dr sin(θr ,k )/λ]T

∈ C
N×1 in which λ, dt , dr are the wavelength, the spacing of

adjacent transmit array, the spacing of adjacent receive array,
respectively; ct,k or cr ,k stands for the polarization steering
vector of transmitter or receiver. Moreover, ct,k and cr ,k can
be expressed in detail as

ct,k = Ft,kht,k =

⎡
⎢⎢⎢⎣ct1,k , ct2,k , ct3,k︸ ︷︷ ︸

cTt1,k

, ct4,k, ct5,k, ct6,k︸ ︷︷ ︸
cTt2,k

⎤
⎥⎥⎥⎦

T

, (2a)

cr ,k = Fr ,khr ,k =

⎡
⎢⎢⎢⎣cr1,k , cr2,k, cr3,k︸ ︷︷ ︸

cTr1,k

, cr4,k , cr5,k, cr6,k︸ ︷︷ ︸
cTr2,k

⎤
⎥⎥⎥⎦

T

,

(2b)

in which

Ft,k =

⎡
⎢⎢⎢⎢⎢⎢⎣

cos(φt,k)cos(θt,k) −sin(φt,k)

sin(φt,k)cos(θt,k) −cos(φt,k)

−sin(θt,k) 0
−sin(φt,k) −cos(φt,k)cos(θt,k)
cos(φt,k) −sin(φt,k)cos(θt,k)

0 sin(θt,k)

⎤
⎥⎥⎥⎥⎥⎥⎦

(3a)

Fr ,k =

⎡
⎢⎢⎢⎢⎢⎢⎣

cos(φr ,k)cos(θr ,k) −sin(φr ,k)

sin(φr ,k)cos(θr ,k) −cos(φr ,k)

−sin(θr ,k) 0
−sin(φr ,k) −cos(φr ,k)cos(θr ,k)
cos(φr ,k) −sin(φr ,k)cos(θr ,k)

0 sin(θr ,k)

⎤
⎥⎥⎥⎥⎥⎥⎦

(3b)

and

ht,k =
[
sin(γt,k)e jηt,k

cos(γt,k)

]
(4a)

hr ,k =
[
sin(γr ,k)e jηr ,k

cos(γr ,k)

]
, (4b)

where γt,k, γr ,k ∈ [0 π/2) are the polarization angles,
ηt,k, ηr ,k ∈ [−π π) are the polarization phase difference.
Besides,

∥∥ct1,k
∥∥
F = ∥∥ct2,k

∥∥
F = ∥∥cr1,k

∥∥
F = ∥∥cr2,k

∥∥
F = 1, (5)

and

vt = ct1,k∥∥ct1,k
∥∥
F

�
c∗
t2,k∥∥ct2,k
∥∥
F

=
⎡
⎣
sin(θt,k)cos(φt,k)

sin(θt,k)sin(φt,k)

cos(θt,k)

⎤
⎦ , (6a)
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vr = cr1,k∥∥cr1,k
∥∥
F

�
c∗
r2,k∥∥cr2,k
∥∥
F

=
⎡
⎣
sin(θr ,k)cos(φr ,k)

sin(θr ,k)sin(φr ,k)

cos(θr ,k)

⎤
⎦ .

(6b)

Then, the received signal in the l-th snapshot can be
expressed as [23]

Xl = Br�lBT
t S + Nl , (7)

where Br = [br ,1,br ,2, . . . ,br ,K ] = Ar � Cr ∈ C
6N×K ,

Bt = [bt,1,bt,2, . . ., bt,K ] = At � Ct ∈ C
6M×K

are the receive and transmit array manifold, respectively,
in which Ar = [ar ,1, ar ,2, . . . , ar ,K ] ∈ C

N×K , Cr =
[cr ,1, cr ,2, . . . , cr ,K ] ∈ C

6×K , At = [at,1, at,2, . . . , at,K ] ∈
C

M×K , and Ct = [ct,1, ct,2, . . . , ct,K ] ∈ C
6×K ; �l =

diag(s
′
l), in which s

′
l = [ρ1(l), ρ2(l), . . . , ρK (l)] ∈ C

K×1

andρk(l) stands for the reflection coefficient of the k-th target
during the l-th snapshot, S ∈ C

6M×Q are the orthogonal sig-
nal emitted by the transmit arrays, and Nl ∈ C

6N×Q stands
for the noise matrix. The output of matched filters can be
expressed as

Yl = XlSH
[
SSH

]−1 = Br�lBT
t + N

′
l , (8)

where N
′
l = NlSH(SSH)−1 is the noise matrix after matched

filters.

3 Parameter estimation approach

3.1 Previous signal-subspace-based algorithms

As mentioned in the introduction, the ESPRIT algorithm in
[23], the HOSVD algorithm in [24], and the PM algorithm in
[25] are all selecting a part of the signal subspace to estimate
all parameters. The signal subspace obtained by EVD in [23],
HOSVD in [24], and PM in [25] are all marked as Us . When
estimating the receive parameters, the selected part of the
signal subspace can be expressed as

Er = JrUs ∈ C
6N×K , (9)

where Jr = [06N×6pN | I6N | 06N×(36NM−6(p+1)N )] with
p = 0, 1, . . . , 6M − 1. A diagonal matrix �r =
diag([e jπdr sin(θr ,1)/λ, e jπdr sin(θr ,2)/λ, . . . , e jπdr sin(θr ,K )/λ])
related to receive elevation angle is calculated using Er by
exploiting the rotation invariance of the receive array man-
ifold. Then, the receive spatial response vector cr ,k(k =
1, 2, . . . , K ) is recovered from Er using the estimated diag-
onal matrix�r . The receive elevation angle θr ,k and azimuth
angle φr ,k are estimated using ‘Vector Cross-Product’ in [23,
24], and receive polarization parameters γk and ηk are esti-
mated via LS principle. Different from the receive elevation

angle estimation in [23, 24], θr ,k is calculated using the esti-
mated diagonal matrix �r . When estimating the transmit
parameters, the selected part of the signal subspace can be
expressed as

Et = JtUs ∈ C
6M×K , (10)

where Jt = [I6M ⊗ eTq ], in which eq is a 6N × 1 vector with
q-th entry is one and others are zeros, and q = 1, 2, . . . , 6N .
Similarly, use Et to calculate the diagonal matrix �t =
diag([e jπdt sin(θt,1)/λ, e jπdt sin(θt,2)/λ, . . . , e jπdt sin(θt,K )/λ])
related to the transmit elevation angle by exploiting the rota-
tion invariance of the transmit array manifold. The transmit
spatial response vector ct,k(k = 1, 2, . . . , K ) is recovered
from Et using the estimated diagonal matrix �t . The trans-
mit elevation angle θt,k and azimuth angle φt,k are estimated
using ‘Vector Cross-Product’ in [23, 24], transmit polariza-
tion parameters γk and ηk are estimated via LS principle. θt,k
is also estimated using the estimated diagonal matrix�r , and
other parameters estimation is the same as that in [23, 24].

Different from the above three algorithms, the PM algo-
rithm in [26] uses the 36NM rows of signal subspace to
estimate the transmit and receive elevation angle by exploit-
ing the rotation invariance of the joint receive–transmit array
manifold, which will be introduced in the next section. But
after that, the PM algorithm in [26] also selects a part of sig-
nal subspace as Eq. (9) or Eq. (10) to estimate the receive
or transmit azimuth angle and polarization parameters by
adopting the ‘Vector Cross-Product’ and LS ideas in [23].

It can be seen from the above analysis that all methods
based on signal subspace only select 6N or 6M rows of
36NM rows in the signal subspace to estimate all transmit
or receive parameters, except for the PM algorithm in [26]
use the whole signal subspace to estimate the transmit and
receive elevation angle. They only selected a small part of the
signal subspace and wasted most of it. Besides, as shown in
[23], the transmit and receive parameter estimation accuracy
is also related to the value of p and q, and different values of
p and q will bring different estimation results.

3.2 Proposed signal-subspace-based approach

To make full use of the entire signal subspace, we propose
an improved parameters estimation approach applicable to all
signal-subspace-based algorithms where all parameters are
estimated by using the 36NM rows of the signal subspace
instead of 6N or 6M rows of the signal subspace.

No matter which method is used to obtain the signal
subspace, all of them are uniformly denoted as Ûs for the
convenience of the following expressions. From the anal-
ysis in [26], we know that Ûs spans the same space as the
joint transmit–receive spatial-polarizationmanifoldBr t ,with
Br ,t = Br � Bt . Therefore, there excite a full-rank matrix
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satisfying

Br ,t = Ûs� . (11)

Define four selection matrices as

{
J1 =[IN−1 0(N−1)×1] ⊗ I36M
J2 =[0(N−1)×1 IN−1] ⊗ I36M

, (12a)

{
J3 =I36N ⊗ [IM−1 0(M−1)×1]
J4 =I36N ⊗ [0(M−1)×1 IM−1] . (12b)

Then, we can find that

J2Br ,t = J1Br ,t�r , (13a)

J4Br ,t = J3Br ,t�t , (13b)

where �r and �t have been given above. Insert (11) into
(13), we have

J2Ûs� = J1Ûs��r , (14a)

J4Ûs� = J3Ûs��t . (14b)

Then, we calculate

�r = (J1Ûs)
†J2Ûs = ��r�

−1, (15a)

� t = (J3Ûs)
†J4Ûs = ��t�

−1. (15b)

Perform eigenvalue decomposition on�r and� t , respec-
tively. Mark their eigenvalues as �̂r and �̂t , respectively,
and mark the corresponding eigenvectors as �̂1 and �̂2. It is
easy to see that �̂r , �̂t , �̂1 and �̂2 are the estimates of �r ,
�t , �, respectively. Due to the non-uniqueness of eigenvalue
decomposition, the position of diagonal elements of �̂r and
�r may be different, so do �̂t and �t are. To ensure the
paired estimation of the transmit and the receive elevation
angle, we adopt the joint diagonalization of �r and � t . A
common approach is to perform EVD on one of the matri-
ces and use its eigenvectors matrix to diagonalize the other
matrix, i.e.,

�r = �̂�̂r �̂
−1

, (16a)

�̂r = �̂
−1

�r �̂. (16b)

where �̂r = diag(λ̂r ,1, λ̂r ,2, . . . , λ̂r ,K ) and �̂t =
diag(λ̂t,1, λ̂t,2, . . . , λ̂t,K ). The transmit and receive elevation
angles can be obtained via

θ̂r ,k = arcsin{angle(λ̂r ,k)λ/(2dr )} , (17a)

θ̂t,k = arcsin{angle(λ̂t,k)λ/(2dt )} . (17b)

The elevation angle estimation process introduced above
is all almost the same as that in [26], except the joint diago-
nalization process. After obtaining elevation angle estimates,
we start to recover transmit and receive polarization steering
vectors cr ,k and ct,k from the 36NM rows of the signal sub-
space to estimate other parameters, instead of from the 6N
or 6M rows of the signal subspace. This approach is entirely
different fromall previousmethods based on signal subspace.

The joint transmit–receive spatial-polarization manifold
can be recovered via

B̂r t = Us�̂ . (18)

In fact, by using the property of Kronecker product,
the joint transmit–receive spatial-polarization steering vector
can be rewritten as

ar t,k = (ar ,k ⊗ cr ,k
)⊗ (

at,k ⊗ ct,k
)

= [(ar ,k ⊗ I6
)
cr ,k

]⊗ [(
at,k ⊗ I6

)
ct,k

]

= [(ar ,k ⊗ I6
)⊗ (

at,k ⊗ I6
)] (

cr ,k ⊗ ct,k
) . (19)

Let cr t,k = cr ,k ⊗ ct,k denote the joint receive–transmit
polarization steering vector of the k-th target. Since the
elevation angle estimation (θ̂r ,k, θ̂t,k) and the joint receive–
transmit array manifold estimation use the same matrix �̂,
thus the elevation angle estimation of the k-th target and
the joint receive–transmit spatial-polarization steering vec-
tor B̂r t (:, k) are paired, in which B̂r t (:, k) is the k-th column
of matrix B̂r t . By utilizing (19), cr t,k can be estimated by
last-squares (LS) principle via

min
cr t,k

∥∥∥[(âr ,k ⊗ I6
)⊗ (

ât,k ⊗ I6
)]
cr t,k − B̂r t (:, k)

∥∥∥2
F
, (20)

where âr ,k = [1, λ̂r ,k, . . . , λ̂
N−1
r ,k ]T and ât,k =

[1, λ̂t,k, . . . , λ̂
M−1
t,k ]T. The LS solution for cr t,k is

ĉr t,k = ([(
âr ,k ⊗ I6

)⊗ (
ât,k ⊗ I6

)])† B̂r t (:, k). (21)

Combine cr t,k = cr ,k ⊗ ct,k , so ĉr t,k can be rewritten as
ĉr t,k = ĉr ,k ⊗ ĉt,k , in which ĉr ,k ∈ C

6×1 and ĉt,k ∈ C
6×1

are the estimates of cr ,k and ct,k , respectively. Let c
′
r ,k and

c
′
t,k be the rough estimates of ĉr ,k and ĉt,k , respectively, and
they can be calculated via

ĉ
′
r ,k( j, 1) =1

6

6∑
j=1

ĉr t,k(6 j − 5 : 6 j, 1)( j = 1, 2, . . . , 6)

=1

6

6∑
j=1

ĉt,k( j, 1)ĉr ,k = ĉst,k ĉr ,k

,

(22a)
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ĉ
′
t,k( j, 1) =1

6

6∑
i=1

ĉr t,k(6(i − 1) + j, 1)( j = 1, 2, . . . , 6)

=1

6

6∑
i=1

ĉr ,k( j, 1)ĉt,k = ĉsr ,k ĉt,k

,

(22b)

where ĉst,k = 1
6

∑6
j=1 ĉt,k( j, 1) and ĉ

s
r ,k = 1

6

∑6
j=1 ĉr ,k( j, 1).

It should be emphasized that ĉ
′
r ,k is the product of the vector

ĉr ,k and the complex number ĉst,k , and ĉ
′
t,k is the product of the

vector ĉt,k and the complex number ĉsr ,k . After obtaining the
estimated ĉr ,k and ĉt,k , the azimuth angle and the polarization
parameters can be estimated through ‘Vector Cross-Product’
method in [23]. Let ĉ

′
r1,k

∈ C
3×1 and ĉ

′
r2,k

∈ C
3×1 be the

first and last three elements of ĉ
′
r ,k , respectively. And let

ĉ
′
t1,k

∈ C
3×1 and ĉ

′
t2,k

∈ C
3×1 be the first and last three

elements of ĉ
′
t,k , respectively. Utilize (6), we can estimate

vr ,k and vt,k via

v̂r ,k = ĉ
′
r1,k∥∥∥ĉ′
r1,k

∥∥∥
F

�
ĉ

′∗
r2,k∥∥∥ĉ′
r2,k

∥∥∥
F

= ĉst,k ĉr1,k∥∥∥ĉst,k ĉr1,k
∥∥∥
F

�
ĉs∗t,k ĉ∗

r2,k∥∥∥ĉst,k ĉr2,k
∥∥∥
F

= ĉr1,k∥∥ĉr1,k
∥∥
F

�
ĉ∗
r2,k∥∥ĉr2,k
∥∥
F

=
⎡
⎣
sin(θ̂r ,k)cos(φ̂r ,k)

sin(θ̂r ,k)sin(φ̂r ,k)

cos(θ̂r ,k)

⎤
⎦ , (23)

v̂t,k = ĉ
′
t1,k∥∥∥ĉ′
t1,k

∥∥∥
F

�
ĉ

′∗
t2,k∥∥∥ĉ′
t2,k

∥∥∥
F

= ĉsr ,k ĉt1,k∥∥∥ĉsr ,k ĉt1,k
∥∥∥
F

�
ĉs∗r ,k ĉ∗

t2,k∥∥∥ĉsr ,k ĉt2,k
∥∥∥
F

= ĉt1,k∥∥ĉt1,k
∥∥
F

�
ĉ∗
t2,k∥∥ĉt2,k
∥∥
F

=
⎡
⎣
sin(θ̂t,k)cos(φ̂t,k)

sin(θ̂t,k)sin(φ̂t,k)

cos(θ̂t,k)

⎤
⎦ , (24)

where ĉr1,k and ĉr2,k are the first and last three elements of
ĉr ,k , respectively. ĉt1,k and ĉt2,k are the first and last three ele-
ments of ĉt,k , respectively. As we can see from Eq. (23), ĉst,k
in ĉ

′
r ,k and ĉsr ,k in ĉ

′
t,k can be eliminated by ‘Vector Cross-

Product.’ The following receive (transmit) azimuth angle
estimation will not be affected by ĉst,k (ĉ

s
r ,k).

Then, φr ,k and φt,k can be estimated by

φ̂r ,k = arctan

(
v̂r ,k(2)
v̂r ,k(1)

)
, (25a)

φ̂t,k = arctan

(
v̂t,k(2)
v̂t,k(1)

)
, (25b)

Once (θ̂r ,k, φ̂r ,k) and (θ̂t,k, φ̂t,k) are obtained, we can con-
struct the transmit and receive polarization steering vector
F̂r ,k and F̂t,k according to (3), respectively. Then, hr ,k and
ht,k can be estimated via

ĥr ,k = F̂†
r ,k ĉ

′
r ,k = ĉst,k

[
sin
(
γ̂r ,k

)
e j η̂r ,k

cos
(
γ̂r ,k

)
]

, (26a)

Algorithm 1 The main steps of the proposed algorithm.

(1) Estimate Ûs by [26] or [23] or [24].
(2) Calculate θ̂r ,k and θ̂t,k by Eq. 17.
(3) Calculate ĉr t,k by Eq. 21.
(4) Calculate c

′
r ,k and c

′
t,k by Eq. 22.

(5) Calculate vr ,k and vt,k by Eq. 23.
(6) Calculate φ̂r ,k and φ̂t,k by Eq. 25.
(7) Calculate γ̂r ,k , η̂r ,k γ̂t,k , and η̂t,k by Eq. 27.

ĥt,k = F̂†
t,k ĉ

′
t,k = ĉsr ,k

[
sin
(
γ̂t,k

)
e j η̂t,k

cos
(
γ̂t,k

)
]

, (26b)

Finally, (γr ,k, ηr ,k) and (γt,k, ηt,k) can be estimated via

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ̂r ,k = arctan

(∣∣∣∣∣
ĥr ,k(2)

ĥr ,k(1)

∣∣∣∣∣

)

η̂r ,k = angle

(
ĥr ,k(2)

ĥr ,k(1)

) , (27a)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ̂t,k = arctan

(∣∣∣∣∣
ĥt,k(2)

ĥt,k(1)

∣∣∣∣∣

)

η̂t,k = angle

(
ĥt,k(2)

ĥt,k(1)

) , (27b)

From Eq. (27), we can know that when calculating γ̂r ,k
and η̂r ,k , ĉst,k in ĥr ,k can be eliminated by division, and

the ĉsr ,k in ĥt,k also can be eliminated by division when
calculating γ̂t,k and η̂t,k . The receive elevation angle esti-
mate θ̂t,k(k = 1, 2, . . . , K ) and the transmit elevation angle
estimate θ̂t,k are automatically paired by using joint diago-
nalization. Other receive and transmit parameters correspond
one to one with the receive and transmit elevation angles, so
the above algorithm can ensure automatic matching of all
parameters. Although the azimuth angle and the polarization
parameters are estimated by the ‘Vector Cross-Product’ and
LS ideas like that in [23], respectively, we proved that the
transmit or receive parameters does not affect the receive
or transmit parameters estimation in the proposed approach,
which is also not reflected in previous subspace-based algo-
rithms. The main steps of the proposed algorithm are listed
in Algorithm 1.

4 Performance analysis

4.1 Computational complexity

Here, the proposedparameters estimation approach is applied
to the signal subspace obtained by the PM [26], the EVD,
and the HOSVD [24]. After that, we marked them as Im PM,
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Table 1 Computational
complexity

Algorithm Complexity

ImESPRIT O{363N 3M3 + 362N 2M2L + 362MNK }

ImHOSVD O{4 ∗ 363N 3M3 + 362M2N 2L + 362MNK }
ImPM O{362N 2M2L + 362MNK }
PM in [26] O{362N 2M2L }

ESPRIT in [23] O{363N 3M3 + 362N 2M2L}
HOSVD in [24] O{4 ∗ 363N 3M3 + 362N 2M2L}

ImESPRIT, and ImHOSVD, respectively. The computation
complexity of those three methods is mainly concentrated in
the signal-subspace acquisition process, as analyzed in [26].
Besides, in the proposed parameters estimation approach, the
main complexity of the joint receive–transmit polarization
steering vector recovery process is K [(36)2NM]. Table 1
lists the main computational loads of the proposed ImPM
algorithm, the proposed ImESPRIT algorithm, the proposed
ImHOSVDalgorithm, the PM in [26], theHOSVDalgorithm
in [24], and the ESPRIT algorithm in [23]. It can be seen from
Table 4 that the proposed parameter estimation method will
not bring excessive calculation amount.

4.2 Cramer–Rao bound (CRB)

Let 	 = [θr ,1, . . . , θr ,K , θt,1, . . . , ηt,K ] ∈ C
8K×1 be the

parameters needed to be estimated. According to [27], the
CRB on 	 is given by

CRB = σ 2

2L

{
Re
[(

BH
r t,��⊥

Br t
Br t,�

)
⊕
(
RT
S′ ⊗ I8

)]}−1
,

(28)

where �⊥
Br t

= I36NM − Br t (BH
r tBr t )

−1BH
r t , in which Br t is

the joint receive–transmit array manifold; RS′ = S
′
S

′H/L ,
in which L is the number of pulses; σ 2 is the noise power;

Br t,� =
[

∂Br t
∂θr ,1

, . . . , ∂Br t
∂θr ,K

, ∂Br t
∂θt,1

, . . . , ∂Br t
∂ηt,K

]
. The detailed

derivation process of CRB can be referred to [27].

5 Simulation

In this section, 200 Monte Carlo trials are taken to evalu-
ate the performance of the proposed parameter estimation
approach. The PM algorithm in [26], the ESPRIT algo-
rithm in [23], the HOSVD algorithm in [24], and the CRB
are introduced as comparisons. Except for special instruc-
tion, the bistatic EMVS-MIMO radar is equipped with
M = 6 transmit antennas and N = 8 receive antennas.
Both the transmit and receive arrays are ULAs arranged
in half-wavelength. The transmit baseband code matrix is
S = (1 + j)/

√
2H6M , where H6M is composed of the

first 6M rows of the Q × Q Hadamard matrix. Here, Q
is set to 512. Suppose there are three uncorrelated far-field
point-like targets. The angle information of these targets
is θ t = [40◦, 20◦, 30◦], φt = [15◦, 25◦, 35◦], γ t =
[10◦, 22◦, 35◦], ηt = (36◦, 48◦, 56◦), θr = [24◦, 38◦, 16◦],
φr = [21◦, 32◦, 55◦], γ r = [42◦, 33◦, 60◦], ηr =
[17◦, 27◦, 39◦]. The reflection coefficient of targets obeys
the Gaussian distribution. The additive noise is assumed to
be a spatial white complex Gaussian noise. The performance
of the algorithm is evaluated by root-mean-square errors
(RMSE), which is defined as

RMSE = 1

K

K∑
k=1

√√√√ 1

Mc

Mc∑
mc=1

(
ζ̂k,mc − ζk

)2
, (29a)

where K is the number of targets, Mc is the number ofMonte
Carlo trials, and ζk,mc is the estimate of ζk in themc-thMonte
Carlo trial. As in [24], to simplify the RMSE results, we only
display the average RMSE of the direction angle estimation,
namely 2D-DOA and 2D-DOD, and the average RMSE of
the polarization parameters estimation, namely 2D-TPA and
2D-RPA.

In the following simulations, the proposed ImPM algo-
rithm, the proposed ImESPRIT algorithm, the proposed
ImHOSVD algorithm, the PM algorithm in [26], the ESPRIT
algorithm in [23], and the HOSVD algorithm in [24] are
tested from three aspects: the RMSE performance, the com-
putational complexity, the probability of successful detec-
tion, thus to show that the proposed parameter estimation
approach can improve the accuracy of parameter estimation
when it is applied to the signal subspace obtained by different
methods. Suppose the target can be successfully detected as
long as the absolute error of the estimated angle is under ρe.

Figure2 depicts the performance of different algorithms
versus SNR,where L = 100 and ρe = 1◦. Figure2a, b shows
that theRMSEperformance of different algorithms gradually
improves as the SNR increases. The probability of successful
detection of different methods increase with the increase of
SN R.When the proposedparametermethod is applied to sig-
nal subspaces obtained differently, the parameter estimation
accuracy is improved comparedwith the original correspond-
ing method, as we can see from Fig. 2a–c. The reason may
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Fig. 2 The performance of differentmethods versus SNR. a TheRMSE
of direction angle estimation of different methods versus SNR. b The
RMSE of polarization parameters estimation of different methods ver-

sus SNR. c The probability of successful detection of different methods
versus SNR. d The computational complexity of different methods ver-
sus SNR

be that the proposed parameter estimation method uses the
entire signal subspace to estimate all parameters rather than
a part of the signal subspace. Furthermore, it can be seen
from Fig. 2d that the proposed method does not bring addi-
tional computational effort when applied to signal subspaces
obtained in different ways.

Figure3 depicts the performance of different algorithms
versus L , where SNR=10dB and ρe = 0.15◦. Figure3a,
b shows that the RMSE of different algorithms gradually
decrease as the L increases. The probability of the ImPM,
the ImESPRIT, the ImHOSVD, the PM, and the HOSVD
gradually decrease with the increase of L . The same conclu-
sion as the first test can be drawn from Fig. 3a–c that when
the proposed parameters estimation approach is applied to the
signal subspace obtained by different methods, the parame-
ters estimation performance is better than the previous old
one. The computational complexity gradually increases with
the increase in the number of L; still, when the proposed algo-
rithm acts on different signal subspaces, it does not bring too

much calculation compared to the original algorithm, as we
can see from Fig. 3d.

Figure4 depicts the performance of different algorithms
versus the number of the receive antenna N , where SNR=
10dB, L = 100, and ρe = 0.15◦. The RMSE of differ-
ent algorithms degrade gradually as N increases, as shown
in Fig. 1a, b. The computational complexity of different
algorithms gradually increases as the increase of N . Simi-
larly, when the proposed parameter estimation approach is
applied to the signal subspace obtained by different meth-
ods, the RMSE of the improved methods is less than the
corresponding old method. In the signal subspace obtained
by the HOSVD, the probability of successful detection of the
proposed approach is also better than that in [24].

Figure5 displays the performance of different algorithms
versus K , where SNR=10dB, L = 100, and ρe = 0.15◦.
The targets are selected from the front K targets from
the following targets: θ t = (10◦, 15◦, 25◦, 30◦, 35◦, 50◦,
58◦, 67◦), φt = (30◦, 56◦, 15◦, 36◦, 65◦, 22◦, 40◦, 48◦),
γ t = (14◦, 30◦, 54◦, 62◦, 38◦ , 46◦, 22◦, 70◦), ηt =
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Fig. 3 The parameters estimation performance of different methods
versus L . a The RMSE of direction angle estimation of different meth-
ods versus L . b The RMSE of polarization angle estimation of different

methods versus L . c The probability of successful detection of differ-
ent methods versus L . d The computational complexity of different
methods versus L

Fig. 4 The parameters
estimation performance of
different methods versus N . a
The RMSE of direction angle
estimation of different methods
versus N . b The RMSE of
polarization angle estimation of
different methods versus N . c
The probability of successful
detection of different methods
versus N . d The computational
complexity of different methods
versus N
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Fig. 5 The parameters estimation performance of different methods
versus K . a The RMSE of direction angle estimation of different meth-
ods versus K . b The RMSE of polarization angle estimation of different

methods versus K . c The probability of successful detection of differ-
ent methods versus K . d The computational complexity of different
methods versus K

(18◦, 64◦, 34◦, 56◦, 48◦, 72◦, 30◦, 40◦), θr = (12◦,52◦,27◦,
37◦, 20◦, 40◦, 46◦,40◦),φr = (62◦, 13◦, 54◦, 28◦, 38◦, 34◦,
46◦, 21◦), γ r = (35◦, 15◦ , 25◦, 65◦, 45◦, 55◦ , 5◦, 75◦),
ηr = (81◦, 31◦, 51◦, 61◦, 45◦, 55◦, 5◦, 75◦). As shown in
Fig. 5d, the computational complexity of different algorithms
hardly increases with the increase in K . Similar to the previ-
ous result, the proposed parameter estimation approach has
better performance than the previous signal-subspace-based
methods when the proposed approach is adopted to the cor-
responding signal subspace, as we can see from Fig. 5a–c.

6 Conclusion

This paper proposed a more accurate signal-subspace-based
parameters estimation approach for joint 2D-DOD, 2D-
DOA, and polarization parameters estimation in bistatic
EMVS-MIMO radar. When the proposed parameter estima-
tion approach is applied to the signal subspace obtained by
performing EVDorHOSVDon the covariancematrix or ten-
sor or by the PM algorithm, the estimation performance can

be improved compared with the existing estimation methods
since the proposed approach used the whole signal subspace
to estimate the parameters. Simulation experiments verified
the effectiveness of the proposed algorithm.
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