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Abstract
The evolution of 3D human pose estimation techniques has seen substantial progress over the past few decades, with notable
advancements in accuracy and applications.While recent research primarily aims at enhancing estimated pose performance, it
is important to acknowledge the challenges encountered when evaluating these estimations against ground truth pose data. Our
findings emphasize the pivotal role of refining 2D pose data or integrating advanced 2D pose detectors in elevating the quality
of estimated pose data. For instance, refining the accuracy of 2D pose data positively correlates with the precision of the final
estimated 3D pose. To streamline computational complexity, techniques likeOctreeGrid filtering andVoxelGraph construction
are employed. OctreeGrid filtering involves organizing data in a hierarchical octree structure, facilitating the extraction of
essential joint points and voxel representations. VoxelGraphs focus on capturing spatiotemporal relationships within point
clouds and voxels, enhancing the model’s understanding of 3D spatial configurations. Our model, PVA-GCN, underwent
extensive evaluation on benchmark datasets including Human3.6M, HumanEva-I, and MPI-INF-3DHP, surpassing existing
state-of-the-art methods. These validations indicate the model’s robustness across diverse datasets and scenarios, contributing
significantly to advancing 3D human pose estimation. This research significantly contributes to the advancement of 3D human
pose estimation by leveraging ground truth data to enhance pose estimation quality, thereby laying a foundation for future
developments in the field.
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1 Introduction

Thepredictionof humanbodypose joints in three-dimensional
space, known as 3D human pose estimation (HPE) in
video content, serves various applications such as video
surveillance, human–robot interaction, and physiotherapy
[1]. Utilizing advanced motion sensors like motion cap-
ture systems, depth sensors, or stereoscopic cameras [2, 3]
enables the direct extraction of 3D human poses. This task
can be undertaken in eithermulti-view setups, involvingmul-
tiple cameras, or monocular settings, where a single camera
is used. Despite the generally superior performance, based
on specific criteria, of state-of-the-art multi-view methods
[4–7] compared to monocular ones, the cost-effectiveness
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and wide application of ordinary RGB monocular cameras
in real-world surveillance scenarios make 3D HPE from
monocular videos an essential and challenging task, attract-
ing increasing research interest, particularly in areas such as
feature extraction or real-time processing. Recent works in
the monocular view domain can be categorized into model-
based andmodel-free methods [8]. Model-based methods [9,
10] incorporate parametric body models such as kinematic
[11], planar [12], and volumetric models [13] for 3D HPE.
On the other hand,model-freemethods can be further divided
into single-stage and 2D to 3D lifting methods. Single-stage
methods directly estimate the 3Dpose from images in an end-
to-end manner [14–19]. 2D to 3D lifting methods introduce
an intermediate 2D pose estimation layer [20–23]. Notably,
2D to 3D lifting methods, particularly when implemented
with ground truth 2D poses, demonstrate improved perfor-
mance in terms of accuracy or robustness.

Advancements in the accuracy and efficiency of 2Dhuman
pose detection, achieved through detectors like Mask R-
CNN (MRCNN) [24], cascaded pyramid network (CPN)
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[25], stacked hourglass (SH) detector [26], and HR-Net [27],
are notable. The intermediate 2Dpose estimation stage, facil-
itated by these detectors, plays a pivotal role in significantly
reducing the data volume and complexity associated with the
3D HPE task.

Regarding temporal information, mainstream methods
[21–23, 28–30] have witnessed substantial improvements in
accuracy and efficiency by processing extended sequences of
2D pose frames, contributing to the advancement of 2D to 3D
lifting methods. Among them, [30] stands out for achieving
state-of-the-art performance using ground truth 2D poses.
Recent approaches [30, 31] have streamlined the process by
fine-tuning these 2D pose detectors on target datasets, result-
ing in notable enhancements in the accuracy and efficiency
of estimated 2D pose data. Despite these advancements, the
performance still falls short in certain aspects compared to
results obtained using ground truth 2D pose. This observa-
tion prompts a focused effort on enhancing specific aspects
of 3D HPE, such as accuracy or robustness, through the uti-
lization of ground truth 2D pose data, anticipating potential
improvements with future, higher-quality estimated 2D pose
data.

Motivated by the promising performance and advantages
of 2D to 3D lifting methods, our work adds to the existing
literature in this domain. Recent advanced models in various
2D to 3D lifting approaches, as categorized by [20]’s intro-
duction of the fully connected network (FCN), fall into three
main groups: temporal convolutional network (TCN)-based
[21, 22], graph convolutional network (GCN)-based [23, 28,
32], and transformer-based models [29, 30, 33]. It is note-
worthy that existing TCN- and transformer-based methods
exhibit the capability to handle large receptive fields, allow-
ing for the representation of extended 2D pose sequences,
through the utilization of strided convolutions, providing
enhanced context or spatial information. However, a sig-
nificant challenge arises in designing intuitive methods to
backtrace local joint features based on the pose structure,
especially given that the 2D pose sequence is flattened and
fed to the model, necessitating innovative solutions for effec-
tive feature extraction. Additionally, these methods rely on
the same fully connected layer for estimating different pose
joints, potentially neglecting the unique and independent
characteristics of distinct pose joints, which could impact the
accuracy of joint predictions. Conversely, GCN-based mod-
els explicitly preserve the structure of 2D and 3D human
poses during convolutional propagation. Yet, the potential
advantages ofGCN in this context remain underexplored, and
further exploration could unveil novel insights or improve-
ments in 2D to 3D lifting methods. Existing GCN-based
methods [23, 32] also employ a fully connected layer for
estimating different 3D pose joints, potentially overlooking
the structural features of GCN representations.

In pursuit of the stated objective, we introduce an innova-
tive and effective framework for 3D human pose estimation,
utilizing a dual absorbing graph representation strategy.
The initial step involves downsampling the input dense
event stream into a sparse event stream and dividing it
into non-overlapping voxel grids. Subsequently, distinct dual
absorbing graph models are crafted for the point and voxel
streams, each encompassing all sparse point/voxel nodes and
a dedicated absorbing node. The subsequent phase introduces
a novel absorbing graph convolutional network (AGCN)
designed for absorbing graph representation and learning in
the context of 3D human pose estimation. The AGCNmodel
provides three distinct advantages. Firstly, it adeptly captures
the importance of event nodes in learning the graph-level rep-
resentation through the introduced absorbingnode. Secondly,
the AGCN’s absorbing node dynamically aggregates infor-
mation from all event nodes, improving the summarization
of node representations compared to conventional pooling
layers. Thirdly, in AGCN, each node aggregates messages
from both its neighbors and the absorbing node, concurrently
preserving local and global structures to enhance the learn-
ing of graph representation. Finally, the outputs of the dual
AGCN branches are concatenated to extract complementary
information from both streams. This combined information
is then fed into a linear layer for accurate 3D human pose
estimation.

In summary, the primary innovations presented in this
work are as follows:

• Employing OctreeGrid filtering and voxel construction
streamlines computational complexity, extracting vital
joint points and voxel representations through downsam-
pling for effective 3D pose estimation.

• Introducing CPointGraph and VoxelGraph, our absorb-
ing graphs focus on specific spatiotemporal relationships
in point clouds and voxels. The innovative absorbing
graph convolutional network (AGCN) utilizes graph con-
volutional networks (GCNs) to learn feature descriptors
crucial for accurate 3D pose estimation.

• AGCN’s multilayer design with a residual connec-
tion facilitates seamless information flow, enhancing
the model’s understanding of intricate spatiotemporal
structures. Absorbing nodes play a pivotal role in con-
solidating information for improved graph-level repre-
sentations.

2 Related work

2.1 2D to 3D lifting

Early attempts to infer 3D positions from 2Dprojections, like
[34–36], often relied on manually chosen parameters based
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on assumptions about joint mobility. While methods such as
[10, 37] have made impressive strides in estimating 3D pose
from fewer frames, they sometimes neglect the considera-
tion of temporal information evolution over the sequence.
Recent advancements in 2D human pose estimation, exem-
plified by [25, 26, 38], have paved theway for 2D to 3D lifting
approaches, which have outperformed other methods. Build-
ing upon the principles of [20], more sophisticated learning
architectures have emerged, with a particular emphasis on
utilizing temporal information. These approaches, collec-
tively known as 2D to 3D lifting, can be categorized into
three directions: TCN-based, GCN-based, and transformer-
based architectures [21–23, 28–30, 32].

TCN-basedmethods, exemplified by [21, 22], have signif-
icantly advanced the field of 2D to 3D pose lifting, particu-
larly through their effective handling of temporal sequences
and dimensionality reduction. This design enables the fea-
tures to undergo a reduction in dimensionality, effectively
transforming a 2D pose sequence into a feature embedding
for 3D pose estimation through a final fully connected layer.
The fully connected layer typically has 1024 channels and is
used to predict the 3D positions of all pose joints. Research
has extensively explored various numbers of input 2D pose
frames, revealing that a reasonable number of frames bene-
fits the 3D pose reconstruction. The strided design efficiently
reduces the feature size by decreasing the number of temporal
frames during the propagation of several TCN blocks, con-
tributing to enhanced computational efficiency and improved
real-time processing. Building upon this strided structure,
transformer-based methods, particularly [30], have exhib-
ited promising performance. [30] capitalizes on weighted
and temporal loss functions, surpassingGCN-basedmethods
optimized with an additional motion loss [23, 32]. Notably,
the effectiveness of the motion loss was found to be limited
in [30]. These observations prompt the exploration of effec-
tive models in the realm of GCN-based models. The aim is to
incorporate the inspiring designs from the TCN-based meth-
ods without relying on novel loss functions. This research
direction seeks to strike a balance between innovation and
simplicity in architectural design, aiming for a model that is
both advanced and easily interpretable.

2.2 Graph convolutional network

Awidely used approach for representing pose data is the Spa-
tial Temporal GCN (ST-GCN), initially designed to model
large receptive fields for improved skeleton-based action
recognition. Building on this, more sophisticated GCNmod-
els like [23, 32, 39, 40] have emerged to further advance
3D human pose estimation (3D HPE). These models aim to
enhance the understanding and accuracy of 3D pose estima-
tion, leveraging the principles established by ST-GCN.

In the realm of graph convolutional network (GCN)-based
models dedicated to 3D human pose estimation (3D HPE),
several innovative architectures have emerged in recent years.
Ci et al. [39] introduced the locally connected network
(LCN), which combines ideas from both fully connected
networks and GCNs. Specifically, LCN performs graph con-
volutions over a neighbor set defined by distance, similar
to the design in ST-GCN [41]. Zhao et al. [32] presented
SemGCN, a novel model that stacks GCN layers followed
by a flattening fully connected layer. By optimizing with
both joint positions and bone vectors, SemGCN achieves
strong performance on 3D HPE. Choi et al. [40] offered
a new perspective by utilizing GCN to lift 2D poses to
3D, demonstrating its effectiveness in recovering 3D human
poses andmeshes. Liu et al. [42] investigated differentweight
sharing schemes in GCNs for the pose lifting task and iden-
tified the superiority of the pre-aggregation scheme in terms
of performance. The architecture proposed in [42] shares
similarities with SemGCN. The aforementioned GCN-based
approaches have exhibited compelling results given single-
frame 2D poses as input. However, they did not fully take
advantage of the temporal information available in 2D pose
sequences. This reveals opportunities for future investigation
into modeling the temporal dynamics to further enhance the
performance of GCN-based 3D human pose estimation.

The U-shaped graph convolution networks (UGCN), as
seen in [23, 28], represent a significant advancement inGCN-
based methods for 3D human pose estimation (3D HPE).
UGCN excels by considering the temporal characteristics of
pose motion, specifically addressing the reconstruction of a
single 3D pose frame from multiple 2D pose frames. UGCN
leverages the spatial–temporalGCN [41] to predict a 3Dpose
sequence from a 2D pose sequence, regulating the temporal
trajectory of pose joints with a motion loss term based on
the prediction and the corresponding ground truth 3D pose
sequence. While prior works like SemGCN and UGCN have
made improvements by introducing novel loss terms, our
contribution to the literature of 2D-3D lifting focuses on the
application of a consistent loss term, inspired by the proven
effectiveness of [21, 22]. In our model design, we propose
to incorporate strided convolutions into a GCN-based model
to represent the global information of a 2D pose sequence.
Leveraging the structure of GCN representation, we explic-
itly employ the structured features of different pose joints to
locally predict their corresponding 3D pose locations. This
approach builds upon the existing literature while enhancing
the accuracy and robustness of 3D HPE.

3 Method

In this section, we first give an overview of our proposed
3D human pose estimation model and initial event repre-
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sentation. Then, we dive into details of the absorbing graph
representation learning method, focusing on graph construc-
tion and absorbing graph convolutional networks (AGCN).

3.1 Overview

For an input video stream containing hundreds of thou-
sands of events, we initially employ OctreeGrid filtering
[43] and Voxel construction. This process aims to derive
point cloud and voxel representations, respectively. Next,
we construct two absorbing graphs, namely CPointGraph
and VoxelGraph, to capture the spatiotemporal relationships
between the point clouds and voxels. Subsequently, we intro-
duce anovel absorbinggraph convolutional network (AGCN)
designed to learn feature descriptors from the information
captured by the two graphs. In the final step, we integrate
the information from the two graphical representations to
perform 3D human pose estimation. Figure1 outlines the
overall framework, with details of each module provided in
the following sections.

3.2 Initial event representation

Within the realm of 3Dpose estimation, where the challenges
of dealing with substantial data volumes and computational
complexity are evident, the use of downsampling techniques
is of utmost importance to effectively curtail the number
of events. In this paper, we employ two distinct sampling
methods to obtain concise event representations, seamlessly
integrating them with the 3D pose estimation process. The
first crucial step involves the extraction of representative joint
points, which are explicitly designated as center points.

For a more detailed elaboration, let us focus on the origi-
nal event stream, denoted as E , which encompasses N events.
Our initial phase involves the application of the OctreeGrid
filtering algorithm [43], a pivotal step in efficiently reducing
the data. This results in the extraction of a set of represen-
tative events, specifically designated as center points, which
we refer to as C = {c1, c2 . . . cM }. Each of these representa-
tive events, denoted as ci, is encapsulated within a 4D tuple,
presented as follows:

ci = (xi , yi , ti , pi ). (1)

The variables xi and yi are employed to represent spatial
coordinates, while ti corresponds to the event’s timestamp.
Furthermore, the variable pi denotes the event’s attribute or
polarity. In the context of our 3D pose estimation research,
our primary emphasis is placed on (xi , yi , ti ), which col-
lectively characterizes the spatiotemporal coordinates or
positions of an event. It is noteworthy that the sampled set C,

in contrast to the original events in set E , contains a substan-
tially reduced number of events, yet it effectively preserves
the fundamental spatiotemporal structure.

Our approach not only involves identifying center points
as C but also incorporates voxelization to obtain voxel repre-
sentations. More specifically, when considering the original
event stream E within a spatial–temporal 3D space defined
by dimensions H , W , and T , we partition this space into
voxels, each having dimensions h′,w′, and t ′. Consequently,
each voxel typically encompasses multiple events, and the
resulting event voxels within this spatial–temporal space are
characterized by dimensions H/h′,W/w′, and T /t ′. In prac-
tice, the aforementioned voxelization process typically still
results in the generation of tens of thousands of voxels. To
further reduce the number of voxels and mitigate the impact
of noisy voxels in the context of human pose estimation, we
also implement a voxel selection procedure. This procedure
identifies the top K voxels based on the number of events
contained within each voxel. Let O = {o1, o2 · · · oK } rep-
resent the collection of the final selected voxels. Each event
voxel, denoted as oi , is associated with a feature descrip-
tor ai ∈ R

C that incorporates attributes, including polarity,
from the events it encompasses. Consequently, each oi ∈ O
is represented as:

oi = (xi , yi , ti , ai ), (2)

where xi ,yi ,ti represent the 3D coordinates of each voxel.

3.3 Absorbing graph representation learning

After obtaining the initial event representations from C and
O, we introduce an effective method to learn distinctive rep-
resentations tailored for 3D human pose estimation tasks.
These initial representations in C and O encapsulate cru-
cial spatiotemporal relationships among event units, whether
they are points or voxels. Recognizing the significance of
these relationships, we leverage graph models and a learn-
ing approach to represent the pre-processed event streams
associated with 3D human pose estimation.

In the upcoming sections, we delve into the specifics
of our graph construction techniques for the data from C
and O, focusing on their relevance to 3D human pose esti-
mation. Subsequently, we unveil a novel absorbing graph
convolutional network (AGCN) designed to adeptly learn
and generate effective representations for the event data orig-
inating from C and O. This integrated approach is pivotal in
improving the performance of our 3D human pose estimation
tasks by capturing the inherent spatiotemporal relationships
within the event data.
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Fig. 1 A comprehensive overview of our proposed absorbing graph
representation learning framework tailored for human pose estimation.
In this context, we initially convert the input representing human poses
into dual forms, namely the sparse pose cloud and voxelized representa-
tions. Subsequently, we establish dual graphs based on these two inputs,
with each point or voxel-grid serving as a graph node. It is noteworthy
that we incorporate absorbing nodes into the graph structure to capture

global information crucial for accurate pose estimation. The absorbing
graph convolutional network (AGCN) is meticulously crafted to spe-
cialize in structured feature learning and simultaneous global feature
aggregation, aligning with the unique demands of human pose esti-
mation. In the final stage, the predictions from the dual branches are
concatenated and fed through a linear layer to yield the ultimate human
pose estimation

3.3.1 Graph construction

The core innovation is the introduction of graph convo-
lutional networks (GCNs) to model relationships between
points and voxels in event streams.

Center points graph. For each center point event datum
ci in C with attributes (xi , yi , ti , pi ), we add a node vi to Gc.
Nodes vi and v j are adjacent if the spatial distance between
ci and c j is less than R. This geometric graph Gc with node
set V c and edge set Ec captures the relationships between
nearby events.

d(ci , c j ) < R (3)

where R is a preset parameter. In our experiments, d(ci , c j )
calculates the distance between events ci and c j .

d(ci , c j ) =
√

(xi − x j )2 + (yi − y j )2 + (ti − t j )2 (4)

An absorbing node v̄ is introduced and linked to every event
node vi in V c by adding edges. This augmented center point
graph is shown in Fig. 1.

Voxel graph. When addressing the topic of 3D pose
estimation, we apply a similar approach to handle voxel
event data, denoted as O. Here, we establish a geometric
neighborhood graph labeled as Gpose(V pose, Epose). In this
context, each node vi within V pose represents a pose instance
pi = (xi , yi , zi , p̂i ) from the dataset P , described by a fea-
ture vectorpi ∈ R

D .Wedefine an edge ei j∈Epose connecting
vi and v j if the Euclidean distance between their 3D coor-
dinates is less than a predefined threshold Dlim, as defined

in Eq. (4). Moreover, we introduce an absorbing node v∗,
which establishes connections with all pose nodes within
V pose. Its role is to aggregate and integrate information from
all pose instances, facilitating the extraction of a comprehen-
sive, global-level representation for the entire pose graph.
For a visual representation of this pose estimation process,
please refer to Fig. 1.

3.3.2 Absorbing GCN

Introducing the absorbing graph convolutional network
(AGCN)—an inventive model crafted for the autonomous
derivation of meaningful representations in the realm of 3D
pose estimation. The inspiration for this innovative approach
is rooted in the central point mentioned earlier and voxel
graphs incorporating absorbing nodes. AGCN is structured
with multiple learning layers, including a residual connec-
tion between the initial and final layers, as exemplified in
Fig. 1 (right). Each layer plays a pivotal role in facilitating
the seamless process of message passing across the graph.
To delve further into this concept, within every AGCN layer,
each event node vi adeptly aggregates features from its neigh-
boring nodes as

f ′
d(vi ) ← σ

( ∑
v∈{N (vi )

⋃
v̄}

ωd(vi , v) f (v)
)
, d = 1, 2 . . . D

(5)

The absorbing node, denoted as ṽ, collects and consoli-
dates messages from all the remaining nodes in the following
manner:
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f ′
d(v̄) ← σ

( ∑
v∈V

ωd(v̄, v) f (v)
)
, d = 1, 2 . . . D (6)

The activation function, typically ReLU, is applied. We
use ωd(vi , v) and ωd(ṽ, v) to represent the flexible convolu-
tion kernel weights. Following prior research [44], [45], we
define these weights as a Gaussian mixture model (GMM)
function [45] based on the pseudocoordinate. In a gen-
eral context, for any node pair (u, v), we calculate their
pseudocoordinate3, referred to as zu,v , and then proceed
to train the weight kernel ωd(vi , v).

ωd(u, v) =
K∑

k=1

αk exp(−1

2
(zuv − μk)

T�k
−�(zuv − μk))

(7)

the parametersμk and�k are adaptable and undergo a learn-
ing process, while αk characterizes the importance assigned
to the k-th Gaussian kernel. The total number of Gaussian
kernels used is represented by K .

By implementing the layer-wise message passing method
explained earlier, we can construct amultilayer AGCN archi-
tecture that integrates a residual connection, bridging the
initial and final layers. This architectural design is illustrated
in Fig. 1 (right).

To represent the results obtained from the two branches
following the application of the AGCN module, we employ
Y c to denote the output of the first branch, with dimensions
of Md, and Yo for the second branch, which is of size Ld.

Y c = AGCN(Gc,�c),Yo = AGCN(Go,�o) (8)

In the realm of 3D pose estimation, we refer to�c and�o

as encompassing all the parameters associated with the two
branches.

3.4 Classification head and network training

We employ Y c
ṽ
and Yo

ṽ
to denote the representations asso-

ciated with the absorbing nodes in both the center point
and voxel graphs. As detailed in 3.3.2, the absorbing node’s
remarkable ability to consolidate information from all event
nodes positions it as an excellent representation of the overall
graph-level information. Consequently, we combine Y c

ṽ
and

Yo
ṽ
and employ a MLP for the final classification, ultimately

predicting the class label for 3D pose estimation.

Y = MLP(Y c
v̄ ‖Yo

v̄ ) (9)

The || symbol signifies the concatenation operation
in our approach. We also introduce dropout and batch-
normalization layers between the layers of the MLP to

mitigate possible challenges related to overfitting and gra-
dient issues. The entire network is trained in a holistic
end-to-end fashion. For the optimization of the complete net-
work, we employ the negative log likelihood loss [46] as our
chosen loss function in the context of 3D pose estimation.

4 Experiments

4.1 Datasets and evaluation

Our experiments are conducted on three widely used datasets
in the field of 3D human pose estimation: Human3.6M,
HumanEva-I, and MPI-INF-3DHP.

For Human3.6M, we utilize data from human subjects
labeled as S1, S5, S6, S7, and S8 for training, aligning with
established practices in the field [21–23, 32]. Data from sub-
jects S9 and S11 are reserved for testing.

In the case of HumanEva-I, following the approach taken
in [20] and [22], we use data for the "walk" and "jog" actions
from subjects S1, S2, and S3 for both training and testing.

RegardingMPI-INF-3DHP,we adhere to the experimental
settings outlined in the recent state-of-the-art work [54] to
ensure a fair and rigorous comparison.

We employ standard evaluation protocols for our exper-
iments, including Mean Per Joint Position Error (MPJPE)
and pose-aligned MPJPE (P-MPJPE). MPJPE is calculated
as the mean Euclidean distance between the predicted 3D
pose joints and the ground truth 3D pose joints, aligned
to the root joint. P-MPJPE incorporates additional post-
processing steps, such as scale, rotation, and translation, to
align the predicted 3D pose more rigidly with the ground
truth. These evaluation metrics are consistent with previous
studies [58–60]. This ensures that our results are comparable
and meaningful within the field of 3D human pose estima-
tion.

4.2 Implementation details

We provide a comprehensive overview of the implementa-
tion details for our PVA-GCNmodel, covering three primary
aspects: 2D pose detections, model configuration, and train-
ing hyperparameters. For a fair and consistent comparison
with prior works such as [21, 22], we adopt the 2D pose
detections from Human3.6M and HumanEva-I. CPN’s 2D
pose detection involves 17 joints, and MRCNN’s detection
involves 15 joints, influencing the granularity of the pose
information used in our experiments.

Our model’s tunability provides flexibility for optimiza-
tion, allowing us to explore and adjust various parameters
for improved performance. Ablation studies on Human3.6M
were conducted to systematically vary channels and pose
frames (Cout , T ) and assess their impact on the model’s per-
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Fig. 2 Loss on the training set
and MPJPE on the test set

formance. Experiments, conducted on four GeForce GTX
4060 GPUs, utilized batch sizes of 512, 256, and 256 for
Human3.6M, HumanEva-I, and MPI-INF-3DHP, respec-
tively. Leveraging sparse 3D supervision, our approach
achieved state-of-the-art performance in lifting 2D to 3D
poses, surpassing previous methods while requiring signifi-
cantly fewer 3D labels.

4.3 Comparison with state-of-the-art

Table 1 and Fig. 3 present a detailed comparison between
our PVA-GCN approach and state-of-the-art methods. These
tables showcase results obtained on the Human3.6M and
HumanEva-I datasets using Protocol #1 and Protocol
#2, respectively. The optimization of our implementation,
whether based on ground truth (GT) 2D pose with or with-
out the loss for reconstructing the intermediate 3D pose
sequence, significantly impacts the obtained results. This
optimization strategy is crucial for understanding the trade-
offs between model accuracy and computational efficiency,
offering valuable insights into the robustness and generaliz-
ability of our approach across diverse datasets and scenarios.

Figure2 provides insights into the training process of our
PVA-GCN on the Human3.6M dataset, illustrating conver-
gence dynamics and visually representing the evolution of
the model’s loss function over training epochs.

Results in Table 2 on the HumanEva-I dataset under
Protocol#2 confirm the superiority of ourmethod over state-
of-the-art alternatives, particularly in reducing the MPJPE.
Notably, this improvement is achieved solely through utiliz-
ing the MPJPE loss, highlighting the efficacy of our model
in enhancing the accuracy of 3D human pose estimation.

To further evaluate our approach, we qualitatively com-
pare it with a state-of-the-art method lacking a 3D pose
sequence reconstruction module [22]. This comparison aims
to highlight the nuanced improvements achieved by our
model in capturing the intricacies of 3D human pose. Our
visual analysis, focusing on specific instances like the "S11
WalkT." action, reveals that our method produces more
accurate and coherent representations of joint movements
compared to the alternativemethod. The absence of a 3Dpose
sequence reconstruction module in the compared approach
becomes apparent in scenarios where capturing temporal
dynamics is crucial for accurate pose estimation. This quali-
tative evaluation further substantiates the advantage of our
model in effectively leveraging temporal information for
superior 3D human pose estimation.

Previous research predominantly focuses on performance
evaluation using estimated 2D pose data, such as CPN or
HR-Net pose data. This emphasis has implications for bench-
marking, where evaluation criteria may favor methods adept
at handling lower-quality 2D pose data, potentially influenc-
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MixsteGround  Truth U-CondDGConv Ours

S9 WalkT.

S9 Eat.

Input

S11 Eat.

S11 WalkT.

MGCN

Fig. 3 A qualitative comparison is conducted with MGCN, Mixste and U-CondDGConv for subjects S9 and S11 on two actions within the
Human3.6M dataset. Noticeable improvements are emphasized and magnified

ing the perceived efficacy of different approaches (Tables 3,
4).

Acknowledging a limitation, our method exhibits sub-
par performance compared to recent approaches [33], [54],
[30] in scenarios with relatively low-quality estimated 2D
pose data. This highlights a specific challenge and prompts a
deeper exploration of methodologies to enhance the robust-
ness of 3D human pose estimation models under varied 2D
pose data quality conditions. Addressing this challenge is
crucial for advancing the applicability of suchmodels in real-
world scenarios with diverse data sources (Table 5).

Discussion: the Effect of 2D Pose Quality. Going back
to the inception of 3D pose lifting research, Martinez et al.
[20] employed the SH 2D pose detector, fine-tuned on the
Human3.6M dataset, to enhance 3D human pose estima-
tion (HPE). This refinement led to a significant reduction
in the average Mean Per Joint Position Error (MPJPE), from
67.5mm to 62.9mm, underscoring the pivotal role of high-
quality 2D pose data in 3D HPE. Recent works, including
[23, 30, 33], leveraged the advanced 2D pose detector HR-
Net, achieving even better performance, with an average
MPJPE of 39.8mm. Furthermore, Zhu et al. [31] achieved

notable progress by fine-tuning the SH network [26] on
the Human3.6M dataset, resulting in an average MPJPE of
37.5mm. However, it is important to note that these advance-
ments still fall short of the results achieved when using
ground truth (GT) 2D pose data.

The same pattern holds true when considering the
HumanEva-I and MPI-INF-3DHP datasets. As depicted in
Table 2, ourmethod demonstrates a substantial 41%decrease
in P-MPJPE on the HumanEva-I dataset. Notably, with
ground truth (GT) 2D pose data, the P-MPJPE reduces from
15.3mm to 9.3mm when compared to the best-performing
state-of-the-art algorithm. Meanwhile, on the MPI-INF-
3DHP dataset, the MPJPE decreases from 32.2mm to
26.76mm.

As a result, the performance improvement of estimated
poses predominantly hinges on the quality of 2D pose data.
This quality can be achieved either by employing advanced
2D pose detectors capable of generating pose data closely
resembling ground truth (GT) 2D pose or by fine-tuning
existing pose detectors as necessary. In contrast, the util-
ity of reconstructed 3D pose data generated by advanced
pose detectors remains uncertain in certain scenarios. One
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Table 2 Results from Protocol
#2 for HumanEva-I are
presented

Method Walk Jog Avg

S1 S2 S3 S1 S2 S3

Martinez et al. [20] (ICCV’17) 19.7 17.4 46.8 26.9 18.2 18.6 24.6

Fang et al. [47] (AAAI’18) 19.4 16.8 37.4 30.4 17.6 16.3 23.0

Pavlakos et al. [48] (CVPR’18) 18.8 12.7 29.2 23.5 15.4 14.5 19.0

Lee et al. [49] (ECCV’18)† 18.6 19.9 30.5 25.7 16.8 17.7 21.5

Pavllo et al. [21] (CVPR’19)† 13.9 10.2 46.6 20.9 13.1 13.8 19.8

Liu et al. [22] (CVPR’20)† 13.1 9.8 26.8 16.9 12.8 13.3 15.5

Zheng et al. [53] (ICCV’21)† 14.4 10.2 46.6 22.7 13.4 13.4 20.1

Li et al. [29] (TMM’22)†* 14.0 10.0 32.8 19.5 13.6 14.2 17.4

Zhang et al. [30] (CVPR’22)†* 12.7 10.9 17.6 22.6 15.8 17.0 16.1

Ours (T=27, MRCNN)† 12.3 9.4 26.5 18.2 12.3 12.5 15.3

Li et al. [29] (TMM’22)†* 9.7 7.6 15.8 12.3 9.4 11.2 11.1

Ours (T=27, GT)† 8.9 6.5 11.3 9.9 8.5 10.2 9.3

The symbol† denotes the utilization of temporal information. Optimal performance is highlighted in bold, the
second-best is underlined, and * signifies the reconstruction of an intermediate 3D pose sequence

Table 3 Outcomes from
Protocol #1 for MPI-INF-3DHP
are provided

Method PCK↑ AUC↑ MPJPE↓
Mehta et al. [55] (3DV’17, T=1) 75.7 39.3 117.6

Pavllo et al. [21] (CVPR’19, T=81) † 86.0 51.9 84.0

Lin et al. [56] (BMVC’19, T=25) † 83.6 51.4 79.8

Wang et al. [23] (ECCV’20, T=96) †* 86.9 62.1 68.1

Zheng et al. [53] (ICCV’21, T=9) † 88.6 56.4 77.1

Chen et al. [57] (TCSVT’21, T=81) † 87.9 54.0 78.8

Hu et al. [28] (MM’22, T=96) †* 97.9 69.5 42.5

Shan et al. [54] (ECCV’22, T=81) † 97.9 75.8 32.2

Our PVA-GCN (T=27) † 97.19 77.53 31.54

Our PVA-GCN (T=81) † 96.53 77.12 26.76

The symbol † indicates the incorporation of temporal information. The optimal result is presented in bold,
the second-best is underlined, and * denotes the reconstruction of an intermediate 3D pose sequence

such scenario is 3D human pose estimation in real-world
conditions, typically evaluated through qualitative visualiza-
tion [29]. Nevertheless, the question of whether 3D pose
reconstructed from estimated 2D pose data can effectively
contribute to pose-based tasks remains an area that has not
been thoroughly explored. Given the straightforward nature
of improving the performance of estimated 2D pose and the
absence of clearly defined practical use cases, we argue that
comparisons based on GT 2D pose data offer a more accu-
rate representation of a model’s 3D human pose estimation
(HPE) capability than comparisons based on estimated 2D
pose data.

4.4 Ablation studies

In our analysis, we eliminate gradients from our model
design, which comprises Voxel, Points, and Proxy-Node lay-
ers. The appropriateness of AGCN layers is assessed by

comparing our model with a version implemented using
ST-GCN [41] blocks, resulting in the ablation of AGCN.
The results for Protocol #2 across datasets Human3.6M and
HumanEva-I consistently indicate superior performancewith
the use of AGCN blocks, as shown in Table 6. To ablate
the strided design, we apply average pooling to the second
dimension (i.e., temporal) of the feature map, as an alter-
native approach. The absence of the strided design not only
results in a larger featuremap representation, increasing from
F(Cout , 1, N ) to F(Cout , T , N ), but also adversely affects
the accuracy of 3D human pose estimation (3D HPE).

In order to validate the effectiveness of our Proxy-Node
layer design, we compare it with a fully connected layer
that uses the expanded feature map as its input. The results,
as presented in Table 6, demonstrate a significant enhance-
ment in performance achieved by our individual connected
layer in effectively leveraging the structured representation
of GCN. Visualizations of feature distinctions before the pre-
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Table 5 Comparison with
state-of-the-art methods on
Human3.6M is conducted,
implementing various receptive
fields for ground truth 2D pose
in the evaluation of Protocol #1

Method Frames T Parameters P1(mm)

Pavllo et al. [21] (CVPR’19) † 27 8.56M 40.6

Liu et al. [22] (CVPR’20) † 27 5.69M 38.9

Li et al. [29] (TMM’22) †* 27 18.92M 34.3

Our PVA-GCN † 27 2.84M 34.5

Pavllo et al. [21] (CVPR’19) † 81 12.75M 38.7

Liu et al. [22] (CVPR’20) † 81 8.46M 36.2

Li et al. [29] (TMM’22) †* 81 ≥18.92M 32.7

Our PVA-GCN † 81 3.61M 31.8

Pavllo et al. [21] (CVPR’19) † 243 16.95M 37.8

Liu et al. [22] (CVPR’20) † 243 11.25M 34.7

Our PVA-GCN † 243 4.56M 27.3

Wang et al. [23] (ECCV’20, T=96) †* 96 1.69M 25.6

Hu et al. [28] (MM’22, T=96) †* 96 3.42M 22.7

Our PVA-GCN(Cout=96) † 243 4.73M 23.3

Li et al. [29] (TMM’22) †* 351 ≥18.92M 30.5

Zhang et al. [30] (CVPR’22) †* 243 33.70M 21.6

Our PVA-GCN(Cout=512) † 243 43.61M 20.8

The reported results include the reconstruction of an intermediate 3D pose sequence, marked by *
† indicates the introduction of time information

diction layers (i.e., individually and fully connected layers)
are depicted in the upper and lower rows of Fig. 4. These
visualizations in Fig. 4 really drive home the point about the
power of our individual connected layer in making predic-
tions. It is like having a detailedmap of interpretable features,
which a regular fully connected layer just cannot match. The
independence of arm and leg joints in actions like "eating"
and "walking" speaks volumes about the effectiveness of our
approach in maintaining predictive accuracy. It is like having
a sharper lens to capture the nuances of each movement.

Discussion: Limitation on Model. Similar to state-of-
the-art methodologies, our approach confronts the challenge
of heightened computational overhead. Notably, the data pre-
sented in the lower section of Table 5 underscores that our
model surpasses the performance of state-of-the-art meth-
ods while requiring slightly more model parameters. This
accentuates the dual limitation of increased computational
demands and a marginal rise in model complexity. Address-
ing these challenges constitutes a central focus for our future
work, where advanced techniques like model pruning will be
explored to optimize efficiency without compromising per-
formance.

Furthermore, echoing the constraints of existing method-
ologies [28, 30, 33], our approach exhibits a reliance on
extensive training data. Despite achieving superior perfor-
mance compared to state-of-the-art methods [23, 30], our
model shows a dependency on a larger volume of training
data. Subsequent endeavors will be dedicated to refining
the model’s generalization capabilities and diminishing its

Table 6 An ablation study is performed to analyze the key designs of
our PVA-GCN

No. Method Human3.6M HumanEva-I

CPN GT MRCNN GT

1 Point 38.9 27.9 18.1 11.6

2 Voxel 41.1 30.5 22.5 12.6

3 Point-AGCN 38.9 27.6 17.5 12.3

4 Voxel-AGCN 38.2 28.0 16.3 12.2

5 PVA-GCN(T=27) † 37.9 25.9 15.3 9.3

The results are derived from the average values obtained in Protocol
#2, implemented with 27 receptive fields, considering various 2D pose
detections across the Human3.6M and HumanEva-I datasets
† indicates the introduction of time information

dependence on extensive datasets, thereby enhancing overall
efficiency and applicability.

5 Conclusion

In this paper, we propose a novel point-voxel absorbing graph
convolutional network (PVA-GCN) method for addressing
the problem of 3D human pose estimation. Our approach
involves transforming the event stream into a sparse event
cloud and voxel grids, creating a joint representation that
strikes a balance between performance and efficiency. The
dual representations facilitate improved performance by
addressing the challenges of fragmented node feature learn-
ing and global classification feature aggregation encountered
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Right Leg Right Arm Left Leg Left Arm Torso

Arm Joints
Leg Joints

150-th Frame of Walking Ac�on from S11

150-th Frame of Walking Ac�on from S11

160-th Frame of Walking Ac�on from S11 170-th Frame of Walking Ac�on from S11

160-th Frame of Walking Ac�on from S11 170-th Frame of Walking Ac�on from S11

150-th Frame of Ea�ng Ac�on from S9

150-th Frame of Ea�ng Ac�on from S9

160-th Frame of Ea�ng Ac�on from S9 170-th Frame of Ea�ng Ac�on from S9

160-th Frame of Ea�ng Ac�on from S9 170-th Frame of Ea�ng Ac�on from S9

Fig. 4 Visualizations of inter-joint feature cosine similarity are presented for actions "Walking" (first three columns) and "Eating" (last columns)
in the Human3.6M dataset

in previous event-based classification models. To achieve
this, we introduce absorbing nodes into the dual graphs for
global information aggregation, and employ absorbing graph
convolution networks (AGCN) for structured feature learn-
ing and global feature aggregation simultaneously.

Our PVA-GCN framework’s efficacy has been thoroughly
validated through extensive experiments on multiple bench-
mark datasets for event-based classification. The results
of these experiments showcase the superior performance
of PVA-GCN when compared to state-of-the-art meth-
ods, utilizing ground truth (GT) 2D poses across datasets
like Human3.6M, HumanEva-I, and MPI-INF-3DHP. We
have substantiated the appropriateness of our model design
through comprehensive ablation studies and visualizations.
Additionally, studies such as [61, 62] offer valuable insights
into leveraging graph-based methodologies for point cloud
registration and innovating image quality assessment. These
insights contribute significantly to discussions on 3D human
pose estimation. In our future work, we plan to address
the challenge of parameter efficiency by incorporating tun-
ing techniques [63]. Furthermore, we intend to explore the
impact of our model in diverse application scenarios, such as
human behavior understanding. Additionally, we will delve
into the examination of other loss terms, including those
based on bone features [57] and motion trajectory [23], to
further refine our approach.
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publicly available datasets and will be made accessible for research
purposes. The researchers acknowledge the importance of data sharing
to promote reproducibility and further advancements in the field of 3D
human pose estimation.
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