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Abstract
Images captured in low brightness environment have issues with low contrast and noise due to uneven lighting, which can
seriously affect the accuracy of high-level computer vision tasks. Currently, most enhancement methods still suffer from color
distortion and noise amplification. To overcome these issues, this paper proposes an illumination-aware two-stage network
(IATN) for low-light image enhancement. In the first stage, a tiny illumination estimation network based on Retinex theory
is constructed to generate a coarse enhanced image. In the second stage, an illumination-aware correction network (IACN)
is designed by building an illumination map to guide the reconstruction of features, which can reduce color distortion and
suppress noise in the results obtained in the first stage, thereby obtaining refined enhancement results. In IACN, considering
the exposure difference in different regions of the image caused by uneven lighting, multiple illumination-aware modules are
constructed to correct features at different scales by utilizing the long-range dependence of features. Numerous experiments
conducted on public benchmark datasets have shown that our IATN generates enhanced images that are more natural, colorful,
and superior to some state-of-the-art methods. The source code of this work will be available on GitHub.

Keywords Low-light image enhancement · Retinex theory · Two-stage network · Illumination aware · Multi-scale feature
enhancement

1 Introduction

Low-light image enhancement (LLIE)methods aim to restore
the brightness of images captured in low-light environments
and suppress noise caused by uneven lighting. Low-light
images are rather common phenomena in real-world scenar-
ios, and insufficient lighting leads to issues such as detail loss
and low contrast in captured images, which greatly reduces
the visual quality of the image. These degradations will not
only have negative effect on human visual perception, but
also will be not conducive to the subsequent computer vision
tasks designed for high-quality images, such as face recog-
nition [1], object detection [2] and semantic segmentation
[3]. In practical applications, we can improve the brightness
of images through digital image processing technology, as
shown in Fig. 1.
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In recent years, a large number of studies on LLIE have
been conducted. Traditional LLIE methods can be roughly
categorized into two types: histogram equalization (HE)-
based methods [4] and Retinex model-based methods [5, 6].
Although these methods can improve the brightness of the
image, the enhanced images obtained usually have serious
color deviation and edge blur issues.

Recently, due to the great success of deep learning tech-
nology in computer vision tasks, many deep learning-based
LLIE methods have proposed, which are mainly divided into
two categories: end-to-end frameworks [7–10] and Retinex-
based frameworks [11–13]. The end-to-end frameworks are
to learn the directmapping function froma low-light image to
the corresponding normal-light image. However, the results
of such methods often suffer from color distortion and noise,
and the constructed models lack interpretability, making it
difficult to adapt to images in real low brightness scenes.
Retinex-based frameworks typically decompose a low-light
image into illumination and reflection maps and generate a
normal-light images by adjusting the illumination and reflec-
tion components separately. However, the training process of
such frameworks is cumbersome and time-consuming, and
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Fig. 1 Visualization comparison of low-light image and enhancement images

the quality of enhancement images largely depends on the
accuracy of low-light image decomposition.

To tackle the above issues, we propose an illumination-
aware two-stage network (IATN) based on Retinex theory
for LLIE, which gradually achieves image enhancement by
constructing two stages: illumination estimation and feature
correction. In the first stage, to reduce the dependence on
image decomposition and the computational complexity of
the model, we construct a tiny network based on Retinex the-
ory, i.e., illumination estimation network (IEN), to generate
a coarse enhancement result. In the second stage, to address
the issues of noise and color distortion in the result from the
first stage, an illumination-aware correction network (IACN)
consisting of an illumination feature extraction branch and
a feature correction branch is constructed to obtain a refine
enhancement result. In IACN, considering the diversity of
lighting conditions, an initial illuminationmap is first directly
obtained from the input low-light image and is sent to the
illumination feature extraction branch to extract illumination
features at different scales. Then, the U-shape feature correc-
tion branch containing multiply illumination-aware modules
(IAMs) is designed to achieve correction and restoration of
features at different scales. IAM is the core module for fea-
ture restoration, which guides the network in achieving noise
removal and color correction by establishing the autocorre-
lation of image features in the channel dimension and the
correlation between image features and illumination guid-
ance features in the spatial dimension.

Overall, our contributions are summarized as follows:

(1) An IATN for low-light image enhancement is proposed
by constructing an IEN and an IACN, in order to grad-
ually obtain the enhanced results with better visual
effects.

(2) In the first stage, a tiny IEN based on Retinex theory is
constructed by learning an illumination map to obtain a
coarse enhancement result.

(3) In the second stage, an IACN is constructed to obtain
a refined enhancement result by constructing an illu-
mination feature extraction branch and a feature cor-
rection branch. In the feature correction branch, an
IAM is designed to achieve restoration of features by

establishing the correction between the illumination fea-
tures and image features.

(4) Extensive experiments on public low-light image
datasets show that the proposed network achieves better
performance both subjectively and objectively com-
pared to some state-of-the-art methods.

2 Related works

2.1 Traditional LLIE methods

The traditional LLIE methods are roughly divided into two
categories: histogram equalization (HE)-based methods and
Retinex model-based methods.

Histogram-based methods enhance the image by extend-
ing the dynamic range of pixel values. For example, Celik
et al. [14] enhanced the contrast of input image by mapping
the diagonal elements of the initial histogram to the diago-
nal elements of the target histogram. Lee et al. [15] applied
the layered difference representation of 2D histograms to
amplify the gray-level differences between adjacent pixels.
Although such methods can enhance the brightness of an
image, it often fails to achieve the enhancement effect due to
its simple use of mathematical methods without considering
the formation model of the image.

The Retinex-based models follow a common assumption
according to the Retinex theory, i.e., an image can be repre-
sented by the product of an illumination layer describing the
illumination distribution of the scene and a reflectance layer
describing the surface property of the object. The Retinex-
based method obtains enhancement results by separately
processing the decomposed reflectance and illumination
components. For example, Fu et al. [16] proposed a weighted
variational model to simultaneously estimate the illumina-
tion and the reflectance maps from an observed image. Hao
et al. [17] proposed a novel Retinex-based LLIE method per-
formed in a semi-decoupledway.However, this enhancement
problem is a “pathological” problem, and due to impre-
cise prior assumptions, there is often overexposure in the
enhancement results.
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2.2 Learning-based LLIE methods

Due to the powerful learning ability of deep networks, the
learning-basedLLIEmethod has gradually become themain-
stream method for LLIE. For example, Wei et al. [11] pro-
posed a two-stage Retinex-based method called RetinexNet.
The first stage decomposes the input image into reflectance
and illumination maps, and the second stage obtains the
enhanced result by adjusting the illumination map. Inspired
by RetinexNet, Zhang et al. proposed two refined meth-
ods, called KinD [18] and KinD++ [13], which includes
three sub-networks: decomposition-net, restoration-net and
adjustment-net. Guo et al. [19] proposed a LLIE frame-
work based on the divide-and-rule principle, which converts
the image from RGB space into a luminance-chrominance
space and designs an adjustable noise suppression network to
eliminate noise in the brightened luminance. These methods
have the problem of complex and time-consuming training,
so some researchers have further studied end-to-end meth-
ods. For example, Liang et al. [20] designed a DCP-guided
hierarchical dynamic mechanism for end-to-end LLIE. Yang
et al. [21] presented a U-shaped encoder–decoder network
based on multi-scale feature complementation. Fu et al.
[22] designed an unsupervised network based on Retinex
theory for learning adaptive priors from low-light image
pairs, which can generate clean images through consistent
constraints on reflectance. However, due to the inability to
establish long-range dependencies of features in CNN-based
methods, the issues of noise and color distortion have not
been effectively addressed.

Due to its superior performance in capturing long-range
features, Transformer is widely used in computer vision
tasks. The Transformer [23] was first proposed for the field
of natural language processing, and its superior performance
hasmotivatedmany researchers to introduce it to vision tasks
[24–26]. In image restoration, Zhang et al. [27] proposed a
Structure and Texture-AwareNetwork, inwhich the structure
sub-network is composed of stacked Transformer module,
while the texture sub-network is composed of stacked cen-
tral difference convolutionmodules. Xu et al. [9] proposed an
SNR-aware CNN-Transformer hybrid network, called SNR-
Net, which enhances areas with low signal-to-noise ratio
using Transformer and enhances areas with high signal-
to-noise ratio using convolution operations. However, these
methods are accompanied by a huge computational burden
and are difficult to apply high-resolution images.

3 Proposedmethod

3.1 Motivation and overview

Based on the Retinex theory, an observation image can be
decomposed into two components: a reflection map and an
illumination map. The reflection map represents the reflec-
tion component of the inherent properties of the object itself,
which is not affected by light. The illuminance map reflects
the information of light intensity and also determines the
dynamic range size of the grayscale values of all pixels in
the observation image.Under low illumination, due to uneven
lighting, there may also be noise in the observation image.
Therefore, a low-light image is affected by the light inten-
sity and noise, and its degradation model can be defined as
follows:

Ilow � R � L + N (1)

where Ilow stands for the low-light image, R stands for reflec-
tion map, L is the illumination map, N represents the noise,
and � represents the element-wise multiplication.

According to formula (1), an IATN for low-light image
enhancement is proposed, as shown in Fig. 2. The first stage
network is constructed based on the first term to the right of
the equal sign in formula (1) and obtain a coarse enhance-
ment result by estimating the illumination map L . Due to the
uneven illumination intensity, there are often issues of noise
amplification and color distortion in the result R from the
first stage. Therefore, an IACN in the second stage network
is constructed to obtain a refined enhancement result I .

Below, we will provide a detailed introduction to the con-
struction of the two stages in the proposed IATN.

3.2 Illumination estimation network (IEN)

In the first stage, based on the Retinex theory, an IEN is con-
structed to learn an illuminationmap from the input low-light
image and obtain a coarse enhancement result by utilizing
the inverse formula R � I

/
L . Because the illuminationmap

reflects the light intensity information in the environment and
does not contain specific content, there is no high-frequency
component in an ideal illumination map. Therefore, instead
of learning complex features, the IEN requires a very small
architecture to learn an illumination map, as shown in Fig. 2.
In the IEN, three simple convolutional layers are adopted,
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Fig. 2 The overall framework of the proposed IATN

each of which contains a convolutional operation and an
activation function to extract features and increase the non-
linearity of the network. A sigmoid function in the final
convolutional layer is used to compress the values in the
illumination map to the range of [0,1].

To make the learned illumination map more accurate, a
dual-constraint loss function is defined, which includes two
loss terms to constrain the generated illumination map and
coarse enhancement image, respectively. The first loss term
is defined as the structure-aware TV loss [28] and can be
expressed as:

Lis � ∥∥∇L � exp
(−λg∇ IGT

)∥∥ (2)

where ∇ denotes the gradient operator, IGT denotes the
ground-truth (GT) image,λg denotes the coefficient balanc-
ing the strength of structure awareness, and exp(·) denotes
an exponential function. The second loss term is defined as
a mean squared error (MSE) loss, which is used to evaluate
the difference between the coarse enhancement image and
the corresponding GT image. It can be expressed as:

Lmse � ∥∥R − IGT
∥∥2
2 (3)

Based on Eqs. 2 and 3, the dual-constraint loss function
of IEN can be expressed as:

Lie � Lis + Lmse (4)

3.3 Illumination-aware correction network (IACN)

Although the coarse enhancement result already has good
visual effects, it is still affected by noise amplification and
color distortion due to uneven lighting. The degree of these

two degradation factors is affected by uneven illumination,
and noise and color distortion become more pronounced in
darker areas. Therefore, in the second stage shown in Fig. 2,
an IACN consisting of two branches, namely the illumina-
tion feature extraction branch and a feature correction branch,
is designed to remove noise and correct color in the coarse
enhancement result R, in order to obtain the refined enhance-
ment image with better visual effect.

In the illumination feature extraction branch, the illumi-
nation features at different scales are generated and guide
the restoration of features in the feature correction branch.
The specific operation is as follows. Firstly, considering the
illuminance differences of input low-light images, the ini-
tial illuminance map used to extract illumination features
is directly obtained from the maximum values of the three
channels in the input low-light image. Then, three convolu-
tional layers containing a 3 × 3 convolution and two 4 × 4
convolutions with a stride of 2 are used to obtain illumina-
tion feature maps Fi

l (i � 1, 2, 3) at different scales, where i
represents the scales. The number of channels at each scale
in the illumination feature extraction branch corresponds to
the number of channels in the feature correction branch at
the same scale. Finally, these feature maps are sent to the
corresponding layers of the feature correction branch.

In the feature correction branch, a U-shaped network con-
taining three feature correction layers is designed, which
corrects features of different scales through the guidance
of illumination features. In each feature correction layer,
multiple IAM are used to achieve feature enhancement by
establishing the correlation between illuminance guidance
features and features extracted from R. The 4×4 convolution
or deconvolutionwith a stride of 2 is used to downsampling or
upsampling the feature maps while expanding or compress-
ing the channel dimension. The structure of IAM shown in
Fig. 3 will be described in detail below.
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Fig. 3 The structure of IAM

IAM receives the feature maps Fi
r from R and guidance

feature maps Fi
l to achieve the enhancement of image fea-

tures by constructing correlations between the two features.
The execution process of IAM is as follows. First, the feature
maps Fi

r undergo a layer normalization and convolutional
layer to generate query (Q), key (K ), value (V ) projections.
This process can be defined as:

W � WQ
(
LN

(
Fi
r

))
, K � WK

(
LN

(
Fi
r

))
,

V � WV
(
LN

(
Fi
r

))
(5)

where WQ, WK , WV represent the convolution layers, and
LN is the layer normalization.

Then, to reduce the computational complexity of the net-
work and capture global contextual relationships between
pixels, Q and K projections are reshaped to generate a
transposed-attention map across feature dimensions through
dot-product interaction. In addition, to perceive the impact of
illumination on different regions, the guidance feature maps
are reshaped and multiplied pixel by pixel with the reshaped
V projection to generate an illumination-aware attentionmap
on the spatial dimension. The specific operations are defined
as follows:

A � softmax
(
Q̂ × K̂

/
α
)

I A � F̂ i
l � V̂ (6)

where A ∈ RC×C represents the transposed-attention map,
Q̂, K̂ , V̂ represents reshaped feature maps from Q, K ,V
separately, α represents a learnable parameter that adaptively

scales the matrix multiplication, F̂ i
l represents the reshaped

illumination feature maps from Fi
l and I A ∈ RHW×C rep-

resents the illumination-aware attention map.
Next, the two attention maps are multiplied to achieve

interaction of local and nonlocal features, and the generated

feature maps are aggregated with the input feature map Fi
r

through a residual operation. Finally, the generated feature
maps undergo a gated-convolutional feed-forward network
[29] to obtain the output of the IAM, which is the enhanced
features. This process is defined as follows:

Fi
o � FN

(
A × I A + Fi

r

)
(7)

where FN denotes gated-convolutional feed-forward net-
work, and Fi

o is the output of IAM.
For the training of IACN, we define a loss function that

includes two loss terms: the Charbonnier loss [30] and struc-
tural similarity loss [31], as shown below:

Liac � λ

√∥∥I − IGT
∥∥2
F + ε2 + (1 − λ)LSSI M

(
I , IGT

)
(8)

where LSSI M represents the structural similarity loss, the
weighting parameter λ is set to 0.8, and the constant ε is set
to 0.001.

4 Experiments and analysis

4.1 Implementation details

We implemented our model using PyTorch on a single
NVIDIA RTX 3080 GPU. In the first stage of IATN, the
batch size is set to 32, and the number of epochs is 10. In
the second stage of IATN, the number of IAMs in the IACN
is 1, 2, 2, 2 and 2 from the first to the fifth layer, respec-
tively. The batch size is set to 8, and the number of epochs is
2000. In both stages, we augment the data using rotation and
horizontal flipping and optimize the networks by the ADAM
optimizer. The initial learning rate is set to 0.0001 in both
stages, and the learning rate steadily decreases to 0.000001
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Table 1 Quantitative results of
all comparison methods on LOL
and LOL-v2 datasets

Methods LOL LOL-v2

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

RetinexNet [11] 16.77 0.425 0.474 16.10 0.407 0.543

GLAD [34] 19.25 0.682 0.321 19.82 0.685 0.315

Zero-DCE [35] 14.86 0.589 0.335 18.06 0.580 0.313

EnlightenGAN [37] 17.48 0.677 0.322 18.64 0.677 0.309

RUAS [36] 18.23 0.717 0.354 15.33 0.493 0.310

URetinex [39] 21.33 0.834 0.121 21.22 0.859 0.099

Night-enhancement [38] 21.52 0.763 0.241 25.51 0.783 0.253

PairLIE [22] 18.47 0.743 0.243 19.88 0.733 0.234

Bread [19] 20.62 0.831 0.164 23.69 0.869 0.156

Ours 23.41 0.846 0.129 28.81 0.901 0.095

The best and second-best results are bolded and underlined, respectively

by the cosine annealing scheme [32] during the training of
IACN.

4.2 Dataset and evaluationmetrics

We train our model on the LOL dataset [11], which contains
485 pairs of low-/normal-light images for training and 15
pairs for testing. To verify the generalization of themodel, we
test the trained model on another dataset LOL-v2. The LOL-
v2 dataset is the real part of LOL-v2 [12], which is larger and
more diverse than LOL, including 689 pairs of low-/normal-
light images for training and 100 pairs for testing.

To evaluate the performance of different LLIE methods,
we adopt three well-known objective evaluation metrics:
Peak Signal-to-Noise Ratio (PSNR), Structural Similarity
(SSIM) [31] and Learned Perceptual Image Patch Similar-
ity (LPIPS) [33]. The higher the value of PSNR and SSIM,
the better the quality of the image. On the contrary, the lower
the value of LPIPS, the better the quality of the image.

4.3 Quantitative and qualitative results

To verify the effectiveness of the proposed method, we
compare it with some state-of-the-art (SOTA) methods for
low-light enhancement, including RetinexNet [11], GLAD
[34], Zero-DCE [35], RUAS [36], EnlightenGAN [37],
Night-enhancement [38], URetinex [39], PairLIE [22] and
Bread [19]. Note that the results of all comparison methods
are reproduced by using the official codeswith recommended
parameters.

Table 1 shows the quantitative results of all compared
methods on the LOL and LOL-v2 datasets, respectively. It
is obvious that our method achieves better results on both
datasets. On the LOL dataset, the PSNR and SSIM values of

the propose method are higher than those of other compar-
ison methods, while the LPIPS value is only slightly worse
than those of URetinex. On the LOL-v2 dataset, our method
obtained the best values for all three indicators compared to
other methods.

The qualitative results on LOL and LOL-v2 datasets are
shown in Figs. 4 and 5, respectively. For ease of observa-
tion, we selected and enlarged a small area from the images.
As can be seen from the figures, the results of RetinexNet
have serious color distortion and noise issues. Zero-DCE,
EnlightenGAN and RUAS are unable to effectively restore
the brightness of darker areas. The results obtained by
Night-enhancement, URetinex and Bread suffer from color
distortions compared to the GT. In addition, there is also
severe noise in the GLAD results, and the results of Night-
enhancement and PairLIE show varying degrees of edge blur.
Compared with other methods, our method achieved results
with higher visual quality, which are closest to GT.

4.4 Complexity analysis

In this section, we compared the parameters and floating-
point operations per second (FLOPs) of all methods. The
comparison results are shown in Table 2, from which we can
find that the RUAS has the fewest parameters and FLOPs,
while the Night-enhancement has the largest parameters and
FLOPs. In contrast, our method achieves the optimal balance
between the enhancement performance and the computa-
tional complexity of parameters and FLOPs.

4.5 Ablation study

To validate the effectiveness of the proposed network, we
perform ablation experiments about the network structure on
the LOL dataset.
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Fig. 4 Visual comparison of all comparison methods on LOL dataset

Fig. 5 Visual comparison of all comparison methods on LOL-v2 dataset
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Table 2 Complexity comparison of parameters and FLOPs

Methods Parameters (M) FLOPs (G)

RetinexNet [11] 0.84 136.02

GLAD [34] 1.13 252.14

Zero-DCE [35] 0.08 19.01

EnlightenGAN [37] 8.64 61.03

RUAS [36] 0.003 0.78

URetinex [39] 0.34 208.50

Night-enhancement [38] 71.73 292.61

PairLIE [22] 0.34 81.84

Bread [19] 2.12 107.07

Ours 2.63 120.66

Table 3 The ablation results of the network structure and the number
of IAMs

PSNR↑ SSIM↑ LPIPS↓

(a). Ablation on the network structure

w/o IAM 18.03 0.755 0.271

w/o Fi
l 22.57 0.835 0.132

w/L 23.26 0.840 0.132

w/o IEN 22.97 0.843 0.130

Ours 23.41 0.846 0.129

(b). Ablation on the number of IAMs

1-1-1-1-1 22.39 0.833 0.139

1-2-3-2-1 22.81 0.839 0.132

2-2-2-2-2 23.22 0.842 0.139

1-2-2-2-1 22.92 0.843 0.132

1-2-2-2-2 (ours) 23.41 0.846 0.129

4.5.1 Components in network structure

To verify the role of each component in the network, four
ablation experiments are designed by individually remov-
ing or replacing different components in the framework. The
results are shown in Table 3a. The introduction of the four
ablation experiments is as follows:

(1) “w/o IAM” represents IACN without IAMs, denoting
the IAMs are replaced by ordinary convolutional layers.

(2) “w/o Fi
l ” represents IACNwithout the illumination fea-

ture maps Fi
l .

(3) “w/ L” represents replacing L0 with the output L of
IEN.

(4) “w/o IEN” means that the low-light image is used
directly as the input of the IACN.

From Table 3a, it can be observed that due to IAM being
the core module in the network, its replacement by convo-
lutional layers results in a significant decrease in the metric
values obtained by the network. After removing or replac-
ing other components, the performance of the network has
decreased to varying degrees. Therefore, the constructed
components in our network are effective, which further
proves that the two-stage network constructed can achieve
good enhancement results.

4.5.2 Number of IAMs

To verify the impact of the number of IAMs on network
performance, we test the proposed network by changing the
number of IAMs in each scale layer. The results are shown
in Table 3b. From the table, it can be seen that increasing the
number of IAMs in layers with smaller-scale feature maps
does not improve the performance of the model (such as
results in the second row). The selection in this article is the
optimal among different quantity combinations.

4.6 Evaluation via downstream vision tasks

To evaluate the effectiveness of the proposed method in
improving the performance of subsequent visual tasks, an
object detection experiment is conducted on the enhanced
results of all comparison methods, as shown in Fig. 6. The
figure shows the pedestrian detection results using pretrained
YOLOv3 on all enhanced images obtained by comparison
methods. We can clearly see that more pedestrians can be
accurately detected in the result of ourmethod. Therefore, the
proposed network achieved enhancement results with higher
contrast, which is helpful for improving the performance of
subsequent tasks.

4.7 Limitations

Although our method can obtain promising results in most
cases, it still has a few limitations. First, as shown in Fig. 7b,
our method results in overexposure when the image has
nonuniform lighting conditions, as shown in Fig. 7a. Another
limitation of our method is that when the input image is cap-
tured in an extremely low-light environment (as shown in
Fig. 7c), there are noises in our result, as shown in Fig. 7d. In
the future, wewill designmore effective networks to enhance
the generalization ability of the models for images under dif-
ferent light distributions.
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Fig. 6 Visual comparison of object detection results on the enhancement images

Fig. 7 Failure cases. Input image a has nonuniform lighting conditions and c is an extremely low-light image. b and d are the results obtained by
the proposed method for images a and c, respectively

5 Conclusion

In this paper, we propose an IATN based on Retinex the-
ory consisting of two networks: IEN and IACN. The IEN in
the first stage is constructed to obtain a preliminary coarse
enhancement result by estimating the illumination of the
input low-light image. To reduce color distortion and sup-
press noise in the results obtained by the first stage, IACN in
the second stage is constructed as a U-shaped network con-
taining multiply core module IAMs. The IAM is designed
to restore image features by establishing long-range depen-
dences of features and the correlation between the image
features and illumination features. Extensive experiments on
pubic benchmarks datasets show that our method outper-
forms some SOTA methods significantly. In future, we will
investigate more efficient networks to improve the natural-
ness and color consistency of LLIE.
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