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Abstract
In the past few years, underwater image enhancement has attracted an increasing amount of research work because it plays
an important role in computer vision related underwater tasks, such as aquatic robotics and marine engineering. However,
wavelength-dependent light absorption and scattering introduces unpleasant color distortion and reduces the visibility of
images in underwater scenes. In this paper, we propose a two-branch multi-scale (MSN) and multi-patch (MPN) synergy
network, called Multi-SPNet, which aims to improve the contrast, brightness, and eliminate color distortion of non-uniform
degraded underwater images. Specifically, the features extracted from multi-scale and multi-patch branches are interweaved
for progressive image enhancement, where the upper and the lower branches utilize efficient Transformer blocks for learning
multi-scale representation from low-to-high resolution and aggregating features via multiple image patches from fine to
coarse level, respectively. The complementary branches can construct a synergistic merge to employ their mutual benefits for
local and non-local pixel interactions. Extensive experiments on synthetic and real-world underwater image datasets clearly
prove the effectiveness and superiority of the proposed Multi-SPNet against the state-of-the-art models both qualitatively and
quantitatively.
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1 Introduction

Recently, underwater image enhancement has receivedmuch
attention in computer vision, because the clear underwater
images and videos are very important for the perception
and understanding of underwater scenes [1, 2]. However,
it is difficult to obtain good visual quality of underwater
images due to wavelength-dependent light absorption as well
as forward and backward scattering. Usually, these degraded
images have lower visibility, reduced contrast, and color dis-
tortion, which seriously limited their practical applications
for downstream vison tasks, such as target tracking, classifi-
cation, detection, etc. [3, 4].

In the past few years, various methods for underwater
image enhancement can be divided into three categories:
physical model-based methods, non-physical model-based
methods, and deep learning-based methods [5–7]. Physical
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model-based methods aim to perform defogging and visi-
bility recovery based on prior assumptions, mathematically
modeling the degradation process of underwater images, and
estimating the parameters of optical imaging models so as
to obtain corresponding clear images. For instance, Drews
et al. [17]. proposed UDCP, which is a physical model-
based restoration method restoring media transfer graphs
and scene depth. However, when there are white objects or
artificial light sources in the underwater environment, the
results recovered by the algorithm are not optimal. While
non-physical model-basedmethods improve the contrast and
brightness of images by adjusting the image pixel values,
and do not rely on underwater optical imaging models. For
example, Peng et al. [19] proposed an underwater image
recovery algorithm (IBLA) based on light absorption, which
is used to obtain transmission maps by estimating atmo-
spheric light values and depth maps of fuzzy images. This
algorithmgreatly improves image quality using the estimated
depth, but does not solve the problem of color deviation.
Although these methods can improve the image quality of
underwater scenes to some extent, neither of them can meet
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the requirements of real-world underwater image enhance-
ment. In contrast, existing deep learning-basedmethods have
achieved impressive performance in recent years [8, 9]. How-
ever, the mainstream of these methods generally adopted
convolutional neural networks (CNNs), which have inher-
ent shortcomings including limited receptive fields and static
weights at inference stage.

To address these problems above, we propose a scale-
patch synergy networks for underwater image enhancement,
employing a two-branchmulti-scale andmulti-patch network
with efficient Restormer to deal with color distortion and vis-
ibility degradation of underwater images. The multi-scale
branch tends to eliminate color distortion by aggregating
global features, while the multi-patch branch tends to learn
spatial variant degradations and thus recover local details
[10]. In a nutshell, our main contributions can be summa-
rized as follows:

1. We propose a two-branch multi-scale and multi-
patch transformer, where the multi-scale transformer fully
removes color distortion from underwater images by aggre-
gating global information, while the multi-patch transformer
restores local details by learning spatial variance degradation.

2. We provide a synthetic underwater image dataset con-
sisting of 400 synthetic underwater images classified into
eight categories based on different degrees of degradation.
Mimicking the real-world underwater images is beneficial
for future research in underwater image enhancement.

3. Our proposed network can generalize well on both
synthetic and real-world underwater images. Moreover, an
efficient interweaved network structure can achieve decent
results with only 5.19 M parameters.

2 Related work

2.1 Traditional methods

In order to enhance the visibility of underwater images, some
traditional underwater image enhancement methods were
proposed. Li et al. [11] proposed amethodbasedonminimum
information loss and histogram distribution prior to improve
the contrast and brightness of underwater images, but it is
prone to color bias and excessive local contrast. Song et al.
[12] proposed a fast and effective underwater scene depth
estimationmodel based on underwater light attenuation prior
(ULAP) to recover the true scene radiance underwater, but
its drawback is that it does not solve the color bias prob-
lem. Drews et al. [13] proposed an underwater dark channel
prior method (UDCP) based on physical model to recover
the medium transmission map and scene depth. However,
when there are white objects or artificial light sources in the
underwater environment, the results are not optimal.

2.2 Deep learning-basedmethods

In recent years, deep learning has made significant progress
on low-vision tasks. For example, a multi-scale dense GAN
network for underwater image enhancementwas proposed by
Li et al. [14]. The UWCNN proposed by Li et al. [15] syn-
thesizes underwater images based on a modified underwater
image formation model and the corresponding underwater
scene parameters, but the method is less robust and cannot
adapt to diverse underwater environments, and its perfor-
mance results are often unsatisfactory especially for real
underwater scenes. Meanwhile, Li et al. [16] proposed the
first comprehensive perceptual study and analysis of under-
water image enhancement using a large-scale real-world
image dataset UIEB. Li et al. [17] proposed aUcolor network
based on multi-color space, and the transmission image is
embedded as theweight of the image recovery area to prevent
over-enhancement of the underwater image. The network has
achieved great improvement in terms of visual quality and
quantitative metric. However, when it is faced with very lim-
ited illumination in an underwater environment, this method
cannot provide satisfied results. Shen et al. [18] presented
UDAformer, a dual attention transformer-based method for
underwater image enhancement. Although the UDAformer
is prone to better reconstruct resulting images, it brings over-
exposure and exhibits poor generalization.

2.3 Transformer-basedmethods

Asan emerging scheme,Transformer-basedmethods showed
remarkable performance in computer vision. Liu et al.
[19] proposed the Shift Window Transformer (Swin Trans-
former), where shift windows bring higher efficiency by
specifying self-attentive computations in non-overlapping
local windows while allowing cross-window connections.
Wang et al. [20] proposed Uformer, which introduces a new
locally enhanced window Transformer block for denoising
and deblurring, which largely reduces the computational
complexity of feature maps. Zamir et al. [21] proposed
Restormer, building two key modules: a multi-headed atten-
tion mechanism and a gated feedforward neural network.
Restormer was designed as an efficient Transformer model
and thus suitable for high-resolution images. Peng et al.
[22] proposed a U-type Transformer based on an integrated
channel-based multi-scale feature fusion converter module
and a global feature modeling Transformer for underwater
image enhancement. However, these methods cannot take
full advantage of modeling image and patch relations in local
and global scopes, thus ignore local and non-local pixel inter-
actions.

Therefore, in order to solve the shortcomings, we propose
a two-branch synergy network based on efficient Restormer
for underwater images enhancement.
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3 Proposedmethod

The overall framework of our proposed method and the
detailed architecture of Restormer are shown in Figs. 1 and
2, respectively. Themulti-scale network eliminates color dis-
tortion in different underwater scenes by aggregating global
features, while the multi-patch network learns spatial degra-
dation so as to recover local detail features.

3.1 Multi-scale branch

The upper multi-scale branch has three-stage architecture.
Each level is composed of multiple Transformer blocks con-
nected to learn at different scales. Specifically, the input
image I is down sampled by 2 and 4 to forman image pyramid
and the images are labeled as I H0.5 and I H0.25, respectively.

F1 � Enc − Dec(I H0.25) (1)

Skip1 � up4(F1) (2)

where Enc−Dec indicates thewhole process from encoder to
decoder, up4(·) indicates an upsampling operation multiplier
of 4. This is represented by the first green line in Fig. 1.

In the second stage, the feature map F1 is enlarged by a
factor of 2, with Skip2 as part of the second level of input.
Then, the feature maps F2 are obtained by encoder–decoder
with adding input I H0.5.

P1 � up2(F1) (3)

F2 � Enc − Dec(P1 + Skip2 + I H0.5) (4)

where up2(·) indicates an up-sampling operation multiplier
of 2.

In the third stage, Skip3 is obtained by magnifying the
feature map F2 by a factor of 2, as input to the third stage
part of the second branch, which is represented by the second
green line in Fig. 1. magnifying the feature map F2 of the
second stage by a factor of 2, adding it to the original image I
and feeding it together to the codec to obtain the feature map
F3:

Skip3 � up2(F2) (5)

Fig. 1 Overview architecture of Multi-SPNet (Color figure online)

Fig. 2 The overall architecture of Restormer
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P2 � up2(F2) (6)

F3 � Enc − Dec(P2 + Skip4 + I ) (7)

3.2 Multi-patch branch

The lower multi-patch branch is also a three-stage struc-
ture, with each stage working on different patches. Firstly,
the input images are pre-processed: at the first level only
one patch per image is considered. Secondly, the images are
divided horizontally into two patches, denoted as I H2, 1 and

I H2, 2. Finally, at the third level, it is further divided vertically
into four patches based on the previous level, denoted as
I H3, 1, I

H
3, 2, I

H
3, 3, I

H
3, 4 respectively. Thus, the network follows

a bottom-up learning process of information flow. The patch
from the third level is fed into the codec network to obtain
the corresponding feature map F4.

F4, j � Enc − Dec(I H3, j ), j � 1, 2, 3, 4 (8)

We concatenate the horizontal feature mappings to obtain
a new feature representation.

P4, j � [F4, 2 j−1, F4, 2 j ], j � 1, 2 (9)

The pair is down-sampled as partial input to the second
stage of the first branch, which is represented by the first red
line in Fig. 1:

Skip2 � down(P4) (10)

In the second stage, the output P4, j of the first layer, Skip1
of the first branch network and the input image I H2, i , i � 1, 2
are fed separately to the codec, and the output features are
summed to obtain the feature map F5.

F∗
4, 1 � Enc − Dec(P4, 1 + I H2, 1) (11)

F∗
4, 2 � Enc − Dec(P4, 2 + I H2, 2) (12)

F∗
4, 3 � Enc − Dec(Skip1) (13)

F5 � [F∗
4, 1, F

∗
4, 2] + F∗

4, 3 (14)

At the first stage, a skip connection Skip4 is represented by
the second red line in Fig. 1. which is used as part of the input
to the third stage of the first branch, while the previous stage
feature output, F5 the skip connection Skip3 and the image I

are summed and sent to the codec to obtain the feature map
F6.

Skip4 � up(F5) (15)

F6 � Enc − Dec(F5 + Skip3 + I ) (16)

3.3 Fusion block

The final step of fusion for the above two branches is to
cascade the feature maps F3 and F6 from the two-branch
output to obtain feature map F7, which is fed into the codec
to obtain the final output image Î .

F7 � F3 + F6 (17)

Î � Enc − Dec(F7) (18)

3.4 Restormer structure

The model starts with a 3 × 3 convolution-based overlap-
ping image patch embedding to obtain low level features,
and these shallow features are converted to deep features by
a 4-stage symmetric encoder-decoder. Starting with a high-
resolution input, the encoder is applied to reduce the spatial
sizewhile expand the channel capacity, taking low-resolution
features as input and progressively recovering the high reso-
lution. Each level of the codec includesmultiple Transformer
blocks, which consists of two modules, i.e., multi-head sep-
arable convolutional transposition self-attention mechanism
(MDTA) and the gated feedforward neural network (GDFN),
and the increasing number of heads for multi-headed atten-
tion is [1, 2, 4, 8]. Finally, the refined image is concatenated
with the original image as the output of the whole module.

3.5 Loss function

To obtain better visual quality and perceptual scores, we used
a linear combination of three loss functions, including MSE
loss, TV loss, and Charbonnier loss.

MSE loss: Mean Square Error (MSE) loss is commonly
used for regression loss function. The smaller the MSE, the
better the quality of the model, given an original image I of
size m ∗ n and a noisy image K after adding noise to it. The
formula is shown below:

MSE � 1

mn

m−1∑

i�0

n−1∑

j�0

[I (i , j) − K (i , j)]2 (19)
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TV loss: Differences in adjacent pixel values in an image
can be resolved to some extent by reducing the TV loss, thus
maintaining the smoothness of the output image. The TV loss
can be expressed as:

L tv � ||∇x Î ||2+||∇y Î ||2 (20)

Charbonnier loss: The advantage ofCharbonnier loss over
L1 loss is that the curve is smoother and the gradient near
the zero value is not too small, which avoids the gradient
explosion. The loss can be expressed as:

�(I ′, Î ) �
√

||I ′ − Î ||2+ε2 (21)

where Î denotes the GT image, I ′ is the enhanced image, as
ε � 10−3 is usually the case.

We calculate the total loss of the enhanced image Î with
each of the four branches, and the expressions are:

Loss[i] � c1MSE[i] + c2TV[i] + c3Cha[i] i � 1, 2, 3, 4
(22)

where c1 � 0.006, c2 � 2e − 8, c3 � 1. When i is 1, it
represents the weighted loss with F3 and GT, and when i is
2, it represents the weighted loss with F6 and GT. When i is
3, it represents the weighted loss with F7 and GT, and when
i is 4, it represents the weighted loss with Î and GT.

In this network, the total loss function is a linear com-
bination of the loss functions of four branches, and the
loss function of each branch can be expressed as a linear
weighting of the above three loss functions. The formula is
expressed as follows:

Loss � loss1 + loss2 + loss3 + loss4 (23)

4 Experiments

All experiments are conducted using Pytorch and NVIDIA
GeForce RTX 2080 GPU. To increase the training data, we
cropped the images into blocks with a resolution of 256 ×
256, and set the batch size to 2, the learning rate to 0.0003.
The optimizerwas performedusingAdam, and the total train-
ing epochs is 100.

4.1 Datasets

Inspired by Li et al. [15], we synthesize 400 pairs with eight
types of underwater images according to the atmospheric
light scattering model, simulating the real-world underwater
images. As shown in Fig. 3, I is light blue, IA is medium

Fig. 3 Eight types of synthesized underwater images (Color figure
online)

blue, IB is dark blue, II is light green, III is medium green,
1 is dark green, 3 is light yellow, and 5 is dark black. It is
necessary to estimate the global atmospheric light value, and
then modify the depth to 50 m to adapt to different types of
underwater images by changing the values of R, G, and B
channels. As shown in Table 1.

Tλ(x) � 10−A·d(x) � Eλ(x , d(x))

Eλ(x , 0)
� Nλ(d(x)) (24)

Where Tλ(x) is a function of thewavelength and distance d(x)
of the λ light from the scene point x to the camera. Nλ(d(x))
denotes the ratio of the energy after the d(x) distance traveled
by the light to the energy when it initially enters the dust
particles.

For training, we selected 1200 pairs of images, includ-
ing 774 pairs of randomly selected images from the UIEB
datasets and 426 pairs of synthetic images. As for synthetic
images, 400 pairs were synthesized by our method and the
remaining 26 pairs were randomly selected in [15]. Then, we
used three publicly available datasets for testing, including
UIEB-890, Challenging-60, Test-R90, and Color Checker
datasets.

4.2 Comparison with state-of-the-art methods

We compare our proposed model with eight state-of-the-art
methods, both subjectively and objectively, including three
traditional methods (UDCP [13], Two-Step [6], L2UWE
[23]), and five deep learning-basedmethods (Water-Net [16],
UWCNN [15], FUnIE-GAN [24], USLN [25], MTUR-Net
[26]).

4.2.1 Visual comparisons

To verify the superiority of the proposed method, subjective
visual effects were used to evaluate our method. As shown
in Fig. 4a, the input images were selected from the Test-R90,
UIEB-890, and Challenging-60 datasets, all the input images
have very low visibility, contrast and severe color distortion.
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Table 1 Eight kinds of
synthesized images
corresponding to different Nλ

Types I IA IB II III 1 3 5

Red 0.890 0.780 0.710 0.800 0.820 0.700 0.710 0.850

Green 0.921 0.875 0.880 0.925 0.850 0.780 0.820 0.930

Blue 0.922 0.835 0.750 0.940 0.710 0.880 0.800 0.880

Fig. 4 Subjective comparisons on Test-R90, UIEB-890, and Challenging-60 datasets

The effectiveness of the proposed Multi-SPNet is verified by
comparing it with the other eight state-of-the-art methods,
which are shown from Fig. 4b–j.

As for traditional methods, UDCP [13] and two-step [6]
cannot remove the color distortion of the underwater images,
and the results even brings additional over-enhanced arti-
facts, as shown in Fig. 4b and c, while L2UWE [23] is mainly
appropriate for low light scenes of underwater images, it is
not effective in recovering those degraded imageswith severe
color distortion and very hazy scenes, as shown in Fig. 4d.

As to deep learning-based methods, the results of Water-
Net [16] show improvement in terms of color balance, but the
enhanced images have low contrast issues. The other com-
peting methods introduce additional artifacts, unexpected
colors, and low brightness (e.g., UWCNN [15] and FUnIE-
GAN [24], USLN [25], and MTUR-Net [26]), while our
method can effectively remit color casts and remove the haze
on the underwater images as shown in Fig. 4j.

To further demonstrate the ability of color casts removal of
ourmethod,we usedColorChecker dataset, containing seven
underwater color images taken by different cameras, and
compared with the other five deep learning-based methods
for fairness. As can be seen from Fig. 5, all visual compar-
isons show that ourmethodprovides a visually pleasing effect
with natural appearance, genuine color and more details than
other five competing methods.

4.2.2 Quantitative comparisons

As for quantitative comparisons, we employ full-reference
and non-reference evaluations, as well as inference speed
and parameters of the models to compare and discuss the
performance of different methods.

PSNR and SSIM metrics are usually adopted as full-
reference evaluation, a higher score of PSNR and SSIM
means a better result. In addition, we also use UCIQE and
entropy metrics as non-reference evaluations. It is worth not-
ing that the higher the UCIQE score, the better the balance
between the standard deviation of chromaticity, contrast and
saturation averages. While the higher the entropy value, the
more information the image contains.

In Table 2, we provide the results of eight different meth-
ods on Test-R90 dataset, and it can be found that our method
achieves the highest PSNR and SSIM scores.Meanwhile, we
also test the proposed model on UIEB-890 dataset, as shown
in Table 3, the best scoreswith PSNRand SSIMare achieved.
This indicates that our model has a significant improvement
on performance compared to the state-of-the-art methods. In
the next step, our proposed model obtains the best scores
in terms of UCIQE and Entropy on Challenging-60 dataset,
which is shown in Table 4.

Moreover,we compare ourmethodwith the deep learning-
based methods in terms of the model parameters as well as
the inference time as shown in Table 5. Although UWCNN
has an advantage in terms of parameters, both performance
and generalization ability ofUWCNN is poor. In contrast, the
proposed Multi-SPNet ranks the second in terms of model
parameters and inference time is less than 1 s, which demon-
strates the balance performance of Multi-SPNet.

4.2.3 Ablation study

To verify the effectiveness of each branch, an ablation study
is performed on Test-R90 datasets by removing multi-scale
branch. The results are shown in Table 6 and Fig. 6, where
we can observe that the resulting images without (w/o) MPN
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Fig. 5 Subjective comparisons on Color Checker dataset (Color figure online)

Table 2 Quantitative
comparisons using full-reference
and non-reference metrics on
Test-R90 dataset

Methods Test-R90 dataset

PSNR↑ SSIM↑ UCIQE↑ Entropy

UDCP 10.96 0.5148 0.5803 6.3558

Tow-step 19.98 0.8569 0.5706 7.2625

L2UWE 13.83 0.7241 0.5484 7.2628

Water-Net 19.61 0.8290 0.6032 7.3116

UWCNN 16.73 0.7620 0.5143 6.8051

FUnIE-GAN 16.66 0.7617 0.5841 7.2589

USLN 21.00 0.8666 0.5800 7.3224

MUTR-Net 22.36 0.8781 0.6134 7.4864

Our 22.86 0.8947 0.6247 7.5602
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Table 3 Quantitative
comparisons using full-reference
and non-reference metrics on
UIEB-890 dataset

Methods UIEB-890 dataset

PSNR↑ SSIM↑ UCIQF↑ Entropy↑

UDC’P 11.25 0.5958 0.5889 6.0180

Two-Step 19.89 0.7123 0.5758 7.2464

L2UWE 13.83 0.8066 0.5501 7.1162

Water-Net 20.24 0.9027 0.5879 7.2613

UWCNN 17.49 0.8492 0.5195 6.8690

FUnlE-GAN 18.01 0.8698 0.5904 7.3132

USLN 21.80 0.9268 0.5820 7.3568

MUTR-Net 23.88 0.9465 0.6080 7.4413

Our 23.96 0.9471 0.6264 7.5695

Table 4 Quantitative
comparisons using non-reference
metrics on Challenging-60
dataset

Methods Challenging-60 dataset

UCIQE↑ Entropy↑

UDCP 0.5241 5.6842

Two-Step 0.5449 6.9874

L2UWE 0.5326 7.0602

Watcr-Nct 0.5675 7.0416

UWCNN 0.4850 6.4408

FUnlE-GAN 0.5500 6.7900

USLN 0.5636 7.3363

MTUR-Nct 0.5832 7.2752

Our 0.5987 7.3678

Table 5 Comparisons of
inference time and parameters Models Inference time (s) Parameters (M)

Water-Net 1.17 24.8

UWCNN 0.04 0.2

FUnIE-GAN 0.09 7.0

Ours 0.95 5.19

Table 6 Ablation study on different branches and loss functions on the Test-R90 dataset

Methods MSN MPN MSE loss TV loss Charbonnier loss PSNR↑ SSIM↑ UCIQE↑ Entropy

1 w/o ✓ ✓ ✓ ✓ 22.25 0.8839 0.6182 7.5100

2 ✓ w/o ✓ ✓ ✓ 22.35 0.8933 0.6200 7.5427

3 ✓ ✓ w/o ✓ ✓ 22.45 0.8915 0.6108 7.5198

4 ✓ ✓ ✓ w/o ✓ 22.71 0.8923 0.6131 7.4879

5 ✓ ✓ ✓ ✓ w/o 22.78 0.8928 0.6148 7.5155

Multi-SPNet ✓ ✓ ✓ ✓ ✓ 22.86 0.8947 0.6247 7.5602
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Fig. 6 Ablation study of MPN

have low contrast and color bias. While the results with full
model show better color balance and high contrast. Thus, it
can be proved that MPN effectively removes color bias and
significantly improve contrast.

Table 6 analyzes the effectiveness of two branches and
three loss functions quantitatively. It can be seen that different
branches including MSN and MPN of network and total loss
functions in the proposed method have achieved the highest
score, indicating that the proposed Multi-SPNet has the best
performance.

The highest score indicating that the proposed Multi-
SPNet has the best performance.

5 Conclusion

In this paper, an effective and efficient scale-patch synergy
Transformer is proposed for underwater image enhancement.
The multi-scale network pays attention to global informa-
tion and effectively eliminates severe color casts, while the
multi-patch network aims to improve the contrast and recover
local details. Thus, the proposed Multi-SPNet combines the
advantages of multi-scale and multi-patch to obtain better
performance on four publicly used datasets both qualitatively
and quantitatively. More importantly, our method has fewer
parameters than other competitors. In the future, we will try
to investigate more effective networks for the challenging
underwater image enhancement.
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