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Abstract
The hyperspectral image provides rich spectral information content, which facilitates multiple applications. With the rapid
advancement of the spatial and spectral resolution of optical instruments, the image data size has increased by many folds.
For that, it requires a compression algorithm having low coding complexity, low coding memory demand and high coding
efficiency. In recent years, many coding algorithms are proposed. The wavelet transform-based set-partitioned hyperspectral
compression algorithms have superior coding performance. These algorithms employ linked lists or state tables to track the
significant/insignificant of the partitioned sets/coefficients. The proposed algorithm uses the pyramid hierarchy property of
wavelet transform. The markers are used to track the significance/insignificance of the pyramid level. A single pyramid level
has many sets. An insignificant pyramid level having multiple sets is represented as a single bit in proposed compression
algorithm, while a single insignificant set in 3D Set Partition Embedded bloCK (3D-SPECK) and 3D-Listless SPECK (3D-
LSK) is represented as a single bit. Through this, the requirement of the bits in the proposed algorithm is less than other
wavelet transform compression algorithms at the high bit planes. The simulation result shows that the proposed compression
algorithmhas high coding efficiencywith very less coding complexity andmoderate codingmemory requirement. The reduced
coding complexity improves the performance of the image sensor and lowers the power consumption. Thus, the proposed
compression algorithm has great potential in low-resource onboard hyperspectral imaging systems.

Keywords Low complexity · Discrete wavelet transform · Listless embedded block partitioning · Set-partitioning embedded
block cube · Transform coding

1 Introduction

The hyperspectral (HS) image from spaceborne spectrom-
eters is a 3D volumetric data that has abundant spatial and
spectral information ranging fromvisible near-infrared (from
400 to 1000 nm) and short wave infrared (from 1000 to
2500 nm) of the electromagnetic (EM) spectrum for a sin-
gle scene [1, 2]. Due to high spectral resolution, the HS
image is used in numerous applications such as precision
farming [3], aerospace [4], medical surgery [5], drug sample
verification [6], corrosion detection [7], document validation
[8], food grain quality [9], mineral detection and exploration
[10], urban planning [11], soil quality measurement [12],
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analysis for land use and land cover [13], meteorological
condition monitoring [14], semiconductor device metrology
[15], astrionics [16], monsoon monitoring [17], and military
surveillance [18]. Remote sensing (RS) [19] is one of the fast-
growing fields of HS imaging in which researchers develop
algorithms related to the compression process [20], object
classification [21], feature extraction [22], target detection
[23], band selection [24], denoising [25], change detection
estimation [26], feature reduction [27], dimensionality reduc-
tion [28], segmentation [29], image unmixing [30], etc. The
HS images for the remote sensing applications are acquired
from the onboard HS image sensors [31]. The memory
required to save one HS image is approximately 150 MB.
[32]. Thus, HS image compression becomes a necessary
step before the HS image is transmitted to the earth station
for further processing to save the memory storage, trans-
mission bandwidth, data transmission time, and processing
power [33–36]. Besides the above-mentioned advantages,
HyperSpectral Image Compression Algorithm (HSICA) also
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reduces computational complexity, which improves the HS
image sensor performance [37].

The classification of different HyperSpectral Image Com-
pressionAlgorithms (HSICAs) can be performed on the basis
of data loss or coding process [38]. Based on data loss,
HSICAs can be divided into three sub-categories, named
lossless, lossy and near-lossless HS image compression [39].
For the lossless compression, there are no data loss and
the reconstructed HS image is as same as the original. The
near-lossless compression has loss of some data but the
reconstructed HS image is near to same as original HS image
(before compression process) [40]. The lossy compression
has the loss of image data, but it has a very high compres-
sion ratio than the other two types of compression. The lossy
compression has low coding efficiency. The peak signal-to-
noise ratio (PSNR) should be ‘∞’ for the ideal reconstruction
of the HS image after the compression process [41]. On the
other hand, human observers are almost unable to detect the
HS image degradations that occur when the PSNR is at least
40 dB. [42]. The best lossless HSICAhas a compression ratio
(CR) of 4, which is insufficient [43]. So, the lossy HSICA is
needed for the compression of the HS images.

On the basis of coding process, it can be further divided
into the nine sub-categories which follows as transform
coding (TC) [44], predicative coding (PC) [45], vector quan-
tization (VQ) [46], compressive sensing (CS) [47, 48], sparse
representation (SR) [49, 50], tensor decomposition (TD)
[51], neural network (NN)-based HS image compression
[52], machine learning (ML)-based [53], and hybrid com-
pression algorithm [54].

The TC-based HSICA uses mathematical transform
(Fourier transform, cosine transform, wavelet transform,
Karhunen–Loeve transform, 3D dual-tree transform, lapped
transform) to convert the HS image from time domain to
frequency domain by applying in all three dimensions [55].
Mathematical transform removes the unwanted redundancy
(spatial and spectral correlation) in the HS image. The
wavelet transform has an excellent performance than other
mathematical transforms because it offers a simultaneous
localization in time and frequency domain. The TC-based
HSICA also works with the other type of compression algo-
rithms to achieve the compression (hybrid type) [38].

The 3D set-partitioned embedded zero block coding, 3D
embedded zeroblock coding algorithm, improved AT-3D
SPIHT algorithm, JPEG-2000 and spectral decorrelation,
distributed source coding, 3D wavelet-fractal coding, adapt-
ing SPIHT, lapped transform and Tucker decomposition
(LT-TD), spatial-orientation treewavelet (STW), JPEG-2000
and spectral decorrelation are the state-of-the-art TC-based
HSICA [39, 56–63].

Through listless HSICA has low coding complexity and
constant coding memory requirement, the 3D-LMBTC [61]

and 3D-ZM-SPECK [63] have little coding memory require-
ments, but they have high coding complexity. The 3D-LSK
[59] and 3D-NLS [60] have low coding complexity with
high coding memory requirement. The 3D-LCBTC [62] is
a special case of 3D-WBTC [58], which uses the two small
lists, LCBC & LPBC, and two-state marker tables, BCSM
& DSM [62]. The 3D-LCBTC [62] has higher coding mem-
ory requirements than 3D-LMBTC [61] and 3D-ZM-SPECK
[63]. The proposed HSICA 3D- Listless Block Cube Set Par-
titioning Coding (3D-LBCSPC) uses the property of wavelet
transform and has high coding efficiency with the fixed cod-
ing memory. The 3D-LBCSPC follows the same partition
rule as 3D-SPECK [56]. It also reduces the coding complex-
ity, which makes it an appropriate choice for the resource
constraint HS image sensors.

2 Related work

2.1 Set-partitioned hyperspectral image
compression algorithms

The set-partitioned HS image compression algorithms use
the set structure to represent a large number of insignifi-
cant coefficients. The set-partitioned HS image compression
algorithm has several properties such as low coding memory
requirement, low coding complexity, high coding efficiency
and embeddedness, whichmake them a perfect choice for the
compression of the HS image [40, 64]. The set-partitioned
HSICAs can be classified into four types named as list-based
set-partitioned HSICA [58], listless set-partitioned HSICA
[40], list & state table-based set-partitioned HSICA [62] and
array-based set-partitioned HSICA [43].

1. List-based set-partitionedHSICA: This type ofHSICA
uses the linked lists for tracking the partitioned sets or
coefficients. The 3D-SPIHT [57], 3D-SPECK [56] and
3D-WBTC [58] are the major compression algorithms
under this category. The 3D-SPIHT & 3D-WBTC use
three lists, while 3D-SPECK uses the two link lists for
the tracking of the sets. As bit rates grow, the size of
the lists grows rapidly and it also increases the coding
complexity [28]. Thus, these HSICAs are not the best
solution at the high bit rates.

2. Listless set-partitioned HSICA: This type of HSICA
uses the state table or marker for tracking the partitioned
sets or coefficients. The 3D-LSK [59], 3D-NLS [60],
3D-LMBTC [61] and 3D-ZM-SPECK [63] are the major
compression algorithms under this category. The demand
for coding memory is constant and depends only on the
dimension of theHS image and does not depend on the bit
rate. Due to the state table/markers, it has very less cod-
ing complexity [63]. But the reduced coding complexity
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and coding memory come at the cost of reduced coding
efficiency. This type of algorithm has slightly less coding
efficiency if the bit budget is exhausted in between the
bit plane [61].

3. List & state table-based set-partitioned HSICA: The
3D-LCBTC [62] is a type of compression algorithm that
uses the lists (2) and state table (2) to tracking of the
partitioned sets or coefficients. 3D-LCBTC is less com-
plex than other state-of-the-art HSICAwith at par coding
efficiency [62].

4. Array-Based set-partitioned HSICA: The 3D-BPEC
is a type of HSICA which uses arrays (six) to track the
partitioned sets or coefficients. It has slightly lower com-
plexity than list-based HSICA [43].

3 3D-Listless block cube set-partitioning
coding (3D-LBCSPC)

The proposed 3D-LBCSPC is a low-weight listless version of
3D-SPECK [56], which has low coding complexity, low cod-
ing memory requirement and high coding efficiency at low
bit rates. 3D-LBCSPC also outperforms the other wavelet
transform-based listless HSICA 3D-LSK [59] and 3D-ZM-
SPECK [63], which follows the same partitioned rules as
3D-SPECK [56]. 3D-LBCSPC uses the property of 3D
dyadicwavelet transform inwhich a large number of insignif-
icant coefficients are represented as a single numeric digit
’0’ at the high bit planes. 3D-LBCSPC uses the property of
wavelet transform. 3D-LBCSPC needs less than three to six
times bits at the highest bit plane than it’s peer compression
algorithms. Thus, it outperforms at low bit rates.

3.1 State markers

3D-LBCSPC uses three types of state table markers for the
tracking/significance of the partitioned block cube or coeffi-
cients. They are two fixed markers (α[η] and β[η]) and one
variable marker (γ [η]). The numeric value of the fixed mark-
ers is fixedduring the compression process,while the variable
markers change the value according to the partition rule or
bit plane. For the fixed markers, η is the leading indices of
the wavelet transform level while for the variable marker η

is the indices of all wavelet coefficients of the transform HS
image.

The numeric value of the marker α[η] and γ [η] depends
on the level of the wavelet transform. The HS image of size
‘N × N × N’ with ‘L’ level of wavelet transform, the initial
value and final value of the markers α[η] and γ [η] are given
in Eq. 1 and Eq. 2:

log2 N − L (1)

log2 N (2)

Themathematical value of theβ[η] is the fixed value on the
leading indices of each wavelet transform orientation. Alike
3D-LSK [29], each marker in the proposed HSICA holds 0.5
byte per coefficient.

The α[η] tracks wavelet pyramid level rather than the par-
titioned sub-band. It gave a great advantage at the low bit
rates where the lots of transform coefficients are insignif-
icant against the current threshold. If any pyramid level is
found insignificant against the current threshold, then a sin-
gle bit ‘0’ is used to represent the whole pyramid. In 3D-LSK
[59] and 3D-SPECK [56] seven ‘0’ is used for the LLH, LHL,
LHH,HLL,HLH,HHLandHHHsub-band. The β[η]marker
is used to skip the multiple wavelet pyramid level instead of
skipping a single pyramid level at the top bit plane. The γ [η]
is used to track the set partitioned with the pyramid-level
sub-band.

The 3D-LBCSPC uses three different types of symbols to
define the single coefficients, which are as follows.

IC The coefficient is insignificant to the
last bit-plane and not tested for the
current bit plane

NC The coefficient is significant to the
current bit-plane

SC The coefficient is significant to the
last bit plane and will be refined in
the current bit plane

The working of the static markers (α [η] and β [η]) and
dynamicmarker (γ [η]) for thewavelet pyramid level ‘L’ (for
static markers) and ‘L-1’ (for dynamic markers) is described
as below. In the same way, it can be generalized for the other
working levels of the transform HS image. The markers are
defined as in Tables 1, 2, and 3.

3.2 Proposed algorithm

The HS image is transformed (L level) with the dyadic
wavelet transform. The transform HS image coefficients are
quantized to the nearest integer. The transform HS image
cube is converted to the 1D array (linear array) through the
Morton mapping. The low-resolution sub-bands are present
at the starting of the array, while the high-resolution sub-
bands are present at the bottom of the array.

The proposed HSICA consists of two stages: initialization
and bit planes pass. Each bit plane pass has three sub-passes
named as insignificant coefficient pass (ICP), insignificant
set pass (ISP) and refinement pass (RP). Further, ISP can be
divided into insignificant bit plane pass (IBPP) and insignif-
icant group of bit plane Pass (IGBPP).
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Table 1 Static marker α [η] location in 1D array

α [1] Coefficient is the first index of the wavelet
pyramid level ‘L’. This coefficient along with
the other associated coefficient of the level ‘L’
can be skipped

α [4097] Coefficient is the first index of the wavelet
pyramid level ‘L-1’. This coefficient along
with the other associated coefficient of the
level ‘L-1’ can be skipped

α [32769] Coefficient is the first index of the wavelet
pyramid level ‘L-2’. This coefficient along
with the other associated coefficient of the
level ‘L-2’ can be skipped

α [262145] Coefficient is the first index of the wavelet
pyramid level ‘L-3’. This coefficient along
with the other associated coefficient of the
level ‘L-3’ can be skipped

α [2097153] Coefficient is the first index of the finest
pyramid level. This coefficient along with the
other associated coefficient of this level can
be skipped

Table 2 Static marker β [η] location in 1D array

β [513] It represents that all pyramid levels except
wavelet level ‘L’ can be skipped

β [4097] It represents that all pyramid levels except
wavelet level ‘L’ & ‘L-1’ can be skipped

β [32769] It represents that all pyramid levels except
wavelet level ‘L’, ‘L-1’ & ‘L-2’ can be skipped

β [2097153] It represents that only finest pyramid level can be
skipped

Table 3 Dynamic Marker γ [η] location in 1D array

γ [4097] � α [4097] represents all the coefficients present in the
wavelet level ‘L-1’ can be skipped

γ [4097] � α [4097]–1 represents a sub-band in the wavelet
level ‘L-1’ can be skipped

γ [4097] � α [4097]–2 represents a 1/8th of a sub-band in the
wavelet level ‘L-1’ can be skipped

γ [4097] � 0 the block cube size equal to coefficient size. The
coefficient is to be tested for the significance

3.2.1 Initialization pass

The encoding process of the proposed HSICA starts from the
upmost bit plane ‘n’ and move toward the lower bit plane or
until the bit budget is available. The initial threshold ‘T ’ is
shown in Eq. 3

T � 2n (3)

where

n � log2[max{|Ci |}] (4)

The static marker (α [η]) and the dynamic marker (γ [η])
are initialized as follows.

* α [1, 65, 129, 193, 257, 321, 385,449] � γ [1, 65, 129,
193, 257, 321, 385,449] � 3

for LLL5 sub-band

* α [513, 1025, 1537, 2049, 2561, 3073, 3585] � γ [513,
1025, 1537, 2049, 2561, 3073, 3585] � 4

for the staring nodes of LLH5, LHL5, LHH5, HLL5,
HLH5, HHL5, and HHH5 sub-bands

* α [4097, 8193, 12,289, 16,385, 20,481, 24,577, 28673]
� γ [4097, 8193, 12,289, 16,385, 20,481, 24,577,
28673] � 5

for the staring nodes of LLH4, LHL4, LHH4, HLL4,
HLH4, HHL4, and HHH4 sub-bands

* α [32769, 65,537, 98,305, 131,073, 163,841, 196,609,
229377] � γ [32769, 65,537, 98,305, 131,073,
163,841, 196,609, 229377] � 6

for the staring nodes of LLH3, LHL3, LHH3, HLL3,
HLH3, HHL3, and HHH3 sub-bands

* α [262145, 524,289, 786,433, 1,048,577, 1,310,721,
1,572,865, 1835009] � γ [262145, 524,289, 786,433,
1,048,577, 1,310,721, 1,572,865, 1835009] � 7

for the staring nodes of LLH2, LHL2, LHH2, HLL2,
HLH2, HHL2, and HHH2 sub-bands

* α [2097153, 4,194,305, 6,291,457, 8,388,609,
10,485,761, 12,582,913, 14680065] � γ [2097153,
4,194,305, 6,291,457, 8,388,609, 10,485,761,
12,582,913, 14680065] � 8

for the staring nodes of LLH1, LHL1, LHH1, HLL1,
HLH1, HHL1, and HHH1 sub-bands

* β [513, 4097, 32,769, 262,145, 2097153] � 9

* γ [η] will be initialized to a higher value more than 8
except for the η � 1, 65, 129, 193,…………………,
12,582,913, 14,680,065

3.2.2 Insignificant coefficient pass (ICP)

The insignificant coefficient pass (ICP) is used to test the
insignificant coefficients of the previous bit plane or pass
against the threshold of the current bit plane.

3.2.3 Insignificant set pass (ISP)

The insignificant set pass is the combination of two
sub-passes, namely insignificant wavelet level (IWL) and
insignificant group of wavelet level (IGWL). The IWL pass
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is used to test the specific wavelet pyramid level for insignifi-
cance against the current threshold, while IGWL pass is used
to test the multiple wavelet pyramid levels for insignificance
against the current threshold. These passes are conducted
through the static markers. When the compression algorithm
moves from the higher bit plane to the lower bit plane, these
passes shall be ignored as maximum transform coefficients
are significant at the lower bit planes.

3.2.4 Refinement pass (RP)

The refinement pass is used to send the refinement bits for
those coefficients that are significant in any previous bit
plane.

The algorithm starts from the top bit plane ’n’ with all
three types of markers initialized as per coefficient location
in the 1D array defined in Tables 1, 2, and 3 for the HS image
cube of size ’256’. The five-level dyadic wavelet transform
is used to transform the HS image. The 3D-LBCSPC fol-
lows the same partitioned rule as 3D-SPECK, but the testing
of the significance of the coefficients is slightly different
from the 3D-SPECK and 3D-LSK. Instead of testing for
the block cubes, the 3D-LBCSPC test for the whole wavelet
orientation. In the best condition, one insignificant wavelet
orientation has maximum seven insignificant block cubes.
Thisway for the top bit planeswhen there are a lot of insignif-
icant coefficients, 3D-LBCSPCgenerates one bit to represent
the insignificant wavelet orientation, while 3D-SPECK will
generate the seven bits for the same set of coefficients. Iden-
tification of the wavelet orientation is performed through
the markers as the marker is present as the first index of
the block cube or wavelet orientations. For the significant
wavelet orientation, 3D-LBCSPC executes the same process
as 3D-SPECK and generates the same length of bit steam.
It is partitioned till it reaches the coefficient level. For any
significant block cube, the significance of the block cube is
sent and the block cube is partitioned into equal block cubes.
For any significant coefficient to the current bit plane, the
significance coefficient with the sign bit is sent to the output.
Thus, in the top bit plane, 3D-LBCSPC saves a lot of bits and
the coding efficiency should be high for the low bit rates and
for the high bit rate, it is almost the same as the other zero
block cube set-partitioned HSICA. The pseudo-code for the
3D-LBCSPC is covered in Table 4.

4 Results and discussion

The implementation and validation of the proposed HSICA
3D-LBCSPC with the other wavelet transform-based set-
partitioned HSICA 3D-SPECK (HSICA 1) [56], 3D-SPIHT
(HSICA 2) [57], 3D-WBTC (HSICA 3) [58], 3D-LSK
(HSICA 4) [59], 3D-NLS (HSICA 5) [60], 3D-LMBTC

(HSICA 6) [61], 3D-LCBTC (HSICA 7) [62] and 3D-ZM-
SPECK (HSICA 8) [63] are implemented on the Intel core i3
central processing unit@1.6GHz (64 bit) andRAMof 8GB.
FourHS images are employed in thismanuscript to determine
the performance of the HSICAs, which include Washing-
ton DC Mall (Hyperspectral Image I), Yellowstone Scene 0
(Hyperspectral Image II), Yellowstone Scene 3 (Hyperspec-
tral Image III), and Yellowstone Scene 18 (Hyperspectral
Image IV) [65]. The “Yellow Stone” data set (having spatial
dimension 512 by 680 and the spectral dimension of 224with
uncalibrated 16 bits/pixel) is captured by the AVIRIS (Air-
borne Visible/Infrared Imaging Spectrometer) sensor and
"Washington DC Mall" (having spatial dimension 1280 by
307 and the spectral dimension of 191 with the pixel depth of
14 bits per pixel) is captured by the HYDICE (Hyperspectral
Digital Imagery Collection Experiment) sensor. The Wash-
ington DC Mall HS image has made man structure, while
Yellow Stone HS images cover natural areas. The HS images
are cropped from the left top corner to the size of a cube and
zero padding is done if it is required. The five-level dyadic
wavelet transform is applied to each HS image, and trans-
form coefficients are quantized to the nearest integer. The 3D
transform image cube is converted to the 1D array through
the Morton mapping (linear indexing scheme) [62, 66]. The
performance of the HSICAs is calculated based on cod-
ing efficiency (peak signal-to-noise ratio, mean square error,
structural similarity index and feature-similarity index), cod-
ing memory and coding complexity (execution time required
for the generation of the encoded bitstream and execution
time required for the decoding of the received bitstream)
[40, 67, 68]. The peak signal-to-noise ratio (PSNR) is calcu-
lated in decibel (dB), coding memory in Kilobyte (KB) and
Megabyte (MB), encoding time and decoding time is calcu-
lated in second. The mean square error, structural similarity
(SSIM) index and feature-similarity (FSIM) index are the
unitless metrics [38, 69–72].

4.1 Coding efficiency

PSNR is mainly used to quantify the reconstruction qual-
ity of HS images affected by lossy compression. PSNR is
mathematically shown in Eq. 5 [70]

PSNR � [
20 log10(MAXa) − 10 log10(MSE)

]
(5)

The maximum value of the image signal is represented as
MAXa. The mean square error (MSE) is calculated in Eq. 6

MSE � 1

(N × N × N )

∑

x

∑

y

∑

z
[A(x , y, z) − B(x , y, z)]2

(6)
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Table 4 Pseudo-code of
proposed 3D-LBCSPC encoding
algorithm
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Table 4 (continued)

The A(x,y,z) is the original (uncompressed) HS image and
B(x,y,z) is the reconstructed (compressed) HS image. The
‘N’ is a dimension (each) of the HS image. The compres-
sion ratio (CR) is a parameter (unitless) that defines the ratio
between the bits required to represent the original image to
the bits required to represent the reconstructed image. Math-
ematically, it defines as in Eq. 7

CR �
∑

x
∑

y
∑

z[A(x , y, z)]
∑

x
∑

y
∑

z[B(x , y, z)]
(7)

Bit rate associatedwith the compression process is defined
as in Eq. 8

Bit Rate (bpppb)

� Bits required to represent a pixel in the reconstrcuted HS image

Bits required to represent a pixel in the original HS image

(8)

The 3D-LBCSPC has the same partition rule as 3D-
LSK [59] and 3D-SPECK [56] (zero block cube-based
set-partitioned HSICA). We observed from Table 5 (PSNR)
that 3D-LBCSPC outperformers in the low bit rates (equal to

0.1 or less than 0.1) with the other HSICA. It has been also
observed from Table 6 that 3D-LBCSPC has more signifi-
cant bits than the other HSICA, which increases the PSNR
of the proposed HSICA. 3D-LBCSPC uses the wavelet ori-
entation property in which a single bit is used to define the
seven insignificant sub-bands present in the samewavelet ori-
entation plane while for the 3D-LSK [59], 3D-ZM-SPECK
[63] and 3D-SPECK [56], each insignificant sub-band is
defined by the bit at the high bit planes. So, a large num-
ber of bits are saved at the high bit plane level and for the
high bit rate the performance of 3D-LBCSPC is almost bet-
ter to its peer’s algorithms. It has been noticed from Table 5
that variation between the PNSR of proposed 3D-LBCSPC
and 3D-SPECK [56] exists in the range of − 0.28 dB to
0.14 dB for Hyperspectral Image I, − 0.01 dB to 0.11 dB for
Hyperspectral Image II,− 0.19 dB to 0.18 dB for Hyperspec-
tral Image III, and − 0.27 dB to 0.14 dB for Hyperspectral
Image IV. Similarly, the variation between the 3D-LBCSPC
and 3D-LSK [59] exists in the range of 0.15 dB to 0.73 dB for
Hyperspectral Image I, 0.03 dB to 0.36 dB for Hyperspectral
Image II, 0.13 dB to 0.39 dB for Hyperspectral Image III,
and − 0.1 dB to 0.28 dB for Hyperspectral Image IV. In the

123



3170 Signal, Image and Video Processing (2024) 18:3163–3178

Table 5 Comparison of the 3D-LBCSPC with other state-of-the-art HSICA on coding efficiency (PSNR)

Bit
rate

Compression
ratio

HSICA
1 [56]

HSICA
2 [57]

HSICA
3 [58]

HSICA
4 [59]

HAICA
5 [60]

HAICA
6 [61]

HSICA
7 [62]

HAICA
8 [63]

3D-LBCSPC

Hyperspectral image I

0.001 14,000 26.28 26.28 26.25 26.14 25.90 26.26 26.41 26.32 26.39

0.005 2800 28.95 28.95 28.93 28.71 28.71 28.70 28.66 28.73 29.01

0.01 1400 30.08 30.08 30.04 29.99 29.83 29.98 30.01 29.99 30.14

0.05 280 34.23 34.23 34.21 34.04 33.81 33.99 34.29 34.06 34.37

0.1 140 37.22 37.22 37.20 36.96 37.00 36.83 37.34 36.87 37.29

0.25 56 42.17 42.17 42.16 41.62 41.69 41.34 42.28 41.37 42.01

0.5 28 48.02 47.99 47.97 47.01 47.79 47.51 48.11 47.55 47.74

Hyperspectral image II

0.001 16,000 27.11 26.75 27.09 26.83 26.61 26.75 26.87 26.82 27.19

0.005 3200 29.45 29.31 29.43 29.27 29.25 29.24 29.41 29.25 29.55

0.01 1600 30.28 30.19 30.27 30.27 30.15 30.31 30.53 30.33 30.38

0.05 320 33.76 33.61 33.73 33.56 33.59 33.51 33.69 33.54 33.87

0.1 160 35.57 35.44 35.56 35.49 35.41 35.45 35.55 35.46 35.67

0.25 64 39.30 39.19 39.29 39.26 39.17 39.22 39.37 39.23 39.29

0.5 32 43.62 43.65 43.51 43.57 43.26 43.55 43.62 43.58 43.68

Hyperspectral image III

0.001 16,000 27.82 27.49 27.8 27.78 27.28 27.88 28.07 27.92 27.97

0.005 3200 30.24 30.09 30.22 30.03 30.03 30.01 30.44 30.02 30.38

0.01 1600 31.27 31.14 31.25 31.17 31.1 31.13 31.42 31.14 31.37

0.05 320 34.57 34.39 34.55 34.58 34.27 34.44 34.67 34.51 34.71

0.1 160 36.63 36.49 36.64 36.42 36.49 36.35 36.74 36.37 36.81

0.25 64 40.83 40.63 40.84 40.46 40.59 40.29 40.81 40.31 40.65

0.5 32 45.88 45.66 45.87 45.39 45.57 45.13 45.58 45.15 45.69

Hyperspectral image IV

0.001 16,000 28.11 27.94 28.06 28.08 27.88 28.07 28.14 28.16 28.21

0.005 3200 30.44 30.32 30.43 30.27 30.03 30.26 30.22 30.28 30.51

0.01 1600 31.41 31.29 31.39 31.32 31.1 31.29 31.57 31.43 31.55

0.05 320 34.46 34.3 34.45 34.41 34.27 34.25 34.62 34.28 34.54

0.1 160 36.43 36.29 36.43 36.25 36.49 36.19 36.51 36.2 36.53

0.25 64 40.08 39.93 40.07 39.92 40.59 39.8 40.19 39.84 39.82

0.5 32 44.51 44.47 44.5 44.31 44.46 44.22 44.63 44.22 44.24

same way, the variation between the 3D-LBCSPC and 3D-
ZM-SPECK [63] exists in the range of 0.07 dB to 0.64 dB for
Hyperspectral Image I, 0.05 dB to 0.37 dB for Hyperspec-
tral Image II, 0.05 dB to 0.54 dB for Hyperspectral Image
III, and − 0.02 dB to 0.33 dB for Hyperspectral Image IV.
For the ideal HS image reconstructed after the compression,
the numeric value of MSE should be ‘0’ and PSNR numeric
should be ‘∞’ [38, 42]. Table 6 throws the detailed view of
the HS image quality (HSIQ) as coding efficiency (PSNR)
with the refinement coefficients (RC) and newly significant
coefficients (NSC) for that bit rate.

Bjontegaard metric calculation or BD-PSNR is used to
compare the rate-distortion performance of two different
HSICA of the same HS image over a range of different bit
rates (bpppb) [40]. Table 7 gives the numeric value of the
BD-PSNR over the seven different bit rates.

4.2 Codingmemory

The 3D-LBCSPC uses the markers to track the significance
of coefficients or partitioned block cube sets. The memory
required by the dynamic marker γ [η] is ‘RCW’ when each
marker is the size of one byte (‘R’, ‘C’ and ‘W’ represents the
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Table 7 Comparison of the 3D-LBCSPC with other state-of-the-art HSICA on Bjøntegaard Delta PSNR gain

HS Image HSICA 1
[56]

HSICA 2
[57]

HSICA 3
[58]

HSICA 4
[59]

HAICA 5
[60]

HAICA 6
[61]

HSICA 7
[62]

HAICA 8
[63]

Hyperspectral
Image I

0.0372 0.0391 0.0634 0.3092 0.3454 0.3241 0.0530 0.2861

Hyperspectral
Image II

0.0863 0.2249 0.1093 0.2076 0.2947 0.5225 0.0746 0.4994

Hyperspectral
Image III

0.0857 0.2632 0.0978 0.2501 0.3363 0.3203 - 0.0246 0.2937

Hyperspectral
Image IV

0.0397 0.1726 0.0545 0.1597 0.1898 0.2234 - 0.0107 0.1698

three dimensions of the transformed HS image). In the same
way, the static markers α [η] and β [η] require the memory
of ‘7L + 8’ and ‘L’. The coding memory required by the sub-
band coefficients is defined as ‘IP’ (‘P’ is the size of the
coefficient of sub-band and ‘I’ is the length of sub-band).

Thus, the total memory is required by the coding (encod-
ing and decoding) process.

(9)

MEM3D−LBCSPC � [IP + RCW + (7L + 8) + L]

� [IP + RCW + 8 (L + 1)]

It has been noted that the static marker does not get
updated. They use it as the reference for the dynamic marker
to determine the significance of the wavelet transform level
or new sub-band. The numeric value of the coding memory
is calculated with the help of Eq. 9

The coding memory required by 3D-LSK is given as in
Eq. 10

MEM3D−LSK � [IP + RCW] (10)

So, it is clear that the memory requirement of the 3D-
LBCSPC is slightly higher than the 3D-LSK, which is equal
to the ‘8(L + 1)’. For the five levels of the wavelet trans-
form, only 48 bytes of extra memory is required (less than
1 KB coding memory). It has been clear from Table 8
that 3D-LBCSPC requires more coding memory than 3D-
LCBTC, 3D-LMBTC and 3D-ZM-SPECK [61–63], but it
outperformed the 3D-NLS [60]. It also requires less coding
memory for the high bit rates (greater than 0.25 bpppb) than
its list-basedHSICA3D-SPECK, 3D-SPIHT and 3D-WBTC
[56–58].

4.3 Coding complexity

The coding complexity is the time required by the HSICA
to encode the input HS image and decode the received bit-
stream to reconstruct the HS image [62]. It has been noticed
in Tables 9, 10 that encoding time is greater than the decoding

time. From Tables 9, 10, the proposed HSICA outperforms
the other HSICA and it has the lowest coding time require-
ment for all bit rates. The complexity is reduced because
the proposed HSICA uses the markers to define the wavelet
level. If the whole wavelet level is insignificant, it saves the
coding memory requirement and also it reduces the number
of computation operations (logical and numeric).

For an insignificant wavelet level, the proposed HSICA
requires only one significance test while for the other com-
pression algorithms at least seven significance tests are
required for the testing of the whole wavelet level. Thus,
it has very low complexity at the low bit rates and moderate
performance at the high bit rate.

5 Conclusion

The coding complexity is a big issue with the HS image sen-
sors. The high coding complexityminimizes the performance
of the sensor and more power is consumed by the sensor due
to a lot of computations. Hence, for the resource constraint
HS image sensors, compression algorithms have low cod-
ing complexity with low coding memory requirement and
at par coding efficiency. The proposed HSICA 3D-LBCSPC
is the low complexity compression algorithm that utilizes
the property of the wavelet orientation. It also required a
low fixed coding memory. 3D-LBCSPC gives the best cod-
ing efficiency performance at the low bit rate, but for the
high bit rates, it performs at par with the other compression
algorithms. It also works with both lossy and lossless com-
pression. Thus, 3D-LBCSPC is an optimum choice for the
low-resource HS image sensors.
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Table 8 Evaluation of coding memory of 3D-LBCSPC with other state-of-the-art HSICA

Bit
rate

HSICA 1
[56]

HSICA 2
[57]

HSICA 3
[58]

HSICA 4
[59]

HAICA 5
[60]

HAICA 6
[61]

HSICA 7
[62]

HAICA 8
[63]

3D-LBCSPC

Hyperspectral image I

0.001 26.67 37.33 28.08 4096 8192 96 2318 0 4097

0.005 102.3 99.21 89.33 4096 8192 96 2318 0 4097

0.01 232.2 222.7 202.4 4096 8192 96 2318 0 4097

0.05 1084 1041 991.7 4096 8192 96 2318 0 4097

0.1 1846 1931 1756 4096 8192 96 2318 0 4097

0.25 4571 4463 4289 4096 8192 96 2318 0 4097

0.5 8644 8555 8514 4096 8192 96 2318 0 4097

Hyperspectral image II

0.001 22.58 21.51 22.69 4096 8192 96 2318 0 4097

0.005 91.12 98.91 91.29 4096 8192 96 2318 0 4097

0.01 265.9 267.8 266.4 4096 8192 96 2318 0 4097

0.05 982.4 1036 985.4 4096 8192 96 2318 0 4097

0.1 2219 2326 2229 4096 8192 96 2318 0 4097

0.25 5450 5611 5464 4096 8192 96 2318 0 4097

0.5 10,005 9981 9832 4096 8192 96 2318 0 4097

Hyperspectral image III

0.001 25.28 24.94 25.06 4096 8192 96 2318 0 4097

0.005 101.2 105.8 101.5 4096 8192 96 2318 0 4097

0.01 205.1 218.9 208.6 4096 8192 96 2318 0 4097

0.05 1108 1149 1136 4096 8192 96 2318 0 4097

0.1 1855 1808 1854 4096 8192 96 2318 0 4097

0.25 4401 4449 4412 4096 8192 96 2318 0 4097

0.5 7918 7805 7935 4096 8192 96 2318 0 4097

Hyperspectral image IV

0.001 24.67 22.41 24.55 4096 8192 96 2318 0 4097

0.005 100.8 105.5 101.1 4096 8192 96 2318 0 4097

0.01 210.9 229.9 214.4 4096 8192 96 2318 0 4097

0.05 1088 1212 1106 4096 8192 96 2318 0 4097

0.1 1970 2083 1980 4096 8192 96 2318 0 4097

0.25 4867 5047 4878 4096 8192 96 2318 0 4097

0.5 9078 8488 9093 4096 8192 96 2318 0 4097
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Table 9 Evaluation of encoding time of 3D-LBCSPC with other state-of-the-art HSICA

Bit
rate

HSICA 1
[56]

HSICA 2
[57]

HSICA 3
[58]

HSICA 4
[59]

HAICA 5
[60]

HAICA 6
[61]

HSICA 7
[62]

HAICA 8
[63]

3D-LBCSPC

Hyperspectral image I

0.001 3.99 4.06 5.94 2.67 14.18 5.91 3.17 3.24 3.03

0.005 9.85 9.73 8.2 2.78 61.33 8.35 3.35 4.83 3.41

0.01 20.45 29.93 10.99 3.25 73.64 9.26 4.41 5.97 4.08

0.05 222.2 303.4 94.36 5 90.57 19.45 5.49 12.18 5.57

0.1 1163 1297 762.6 7.31 102.5 34.74 7.94 19.55 8.04

0.25 6234 6871 4358 13.35 120.8 68.15 14.02 40.25 14.12

0.5 17,995 18,742 19,551 24.12 151.3 122.5 26.03 74.87 25.21

Hyperspectral image II

0.001 3.42 4.33 5.94 2.35 15.97 5.73 2.47 2.94 2.91

0.005 9.84 5.85 8.5 2.71 75.93 7.36 3.87 6.44 3.37

0.01 22.53 9.41 10.83 2.88 90.43 16.99 4.29 10.28 3.94

0.05 250.3 134.4 131.5 4.14 106.55 27.4 5.02 16.02 4.82

0.1 966.7 570.8 632.6 6.04 125.87 36.27 7.21 18.42 6.76

0.25 4973 3032 4100 10.24 134.4 96.34 12.21 56.67 11.02

0.5 12,007 10,112 12,975 17.25 154.41 177.73 18.95 67.74 19.23

Hyperspectral image III

0.001 4.08 4.03 5.85 2.07 15.97 5.68 2.76 3.19 2.22

0.005 9.12 5.96 7.87 2.89 75.93 7.78 3.28 4.74 3.01

0.01 20.18 9.7 11.64 3.34 90.43 8.55 4.01 7.52 3.92

0.05 204.3 125.2 89.77 4.57 106.55 19.48 5.31 22.88 5.07

0.1 1183 775.8 835.9 5.91 125.87 32.46 6.47 30.14 6.24

0.25 8499 5151 6309 10.41 134.14 70.4 11.91 43.49 11.92

0.5 29,849 18,383 23,861 16.19 154.41 125.42 17.09 72.62 16.87

Hyperspectral image IV

0.001 4.56 5.6 7.23 2.39 6.03 5.74 2.89 2.82 2.52

0.005 15.24 6.23 8.15 2.81 11.53 7.53 3.34 4.44 3.01

0.01 21.67 10.2 12.64 3.18 18.44 8.93 3.98 5.64 3.54

0.05 269.6 130.4 98.12 4.3 22.64 18.61 4.88 13.02 4.57

0.1 1336 893.4 882.3 6.11 25.53 32.45 6.41 18.18 6.48

0.25 8435 5133 5501 10.35 34.5 69.66 11.38 36.3 11.12

0.5 27,917 17,945 18,818 17.43 65.13 125.19 19.01 66.91 18.05
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Table 10 Evaluation of decoding time of 3D-LBCSPC with other state-of-the-art HSICA

Bit
rate

HSICA 1
[56]

HSICA 2
[57]

HSICA 3
[58]

HSICA 4
[59]

HAICA 5
[60]

HAICA 6
[61]

HSICA 7
[62]

HAICA 8
[63]

3D-LBCSPC

Hyperspectral image I

0.001 1.78 2.92 1.59 2.08 12.79 2.48 2.21 3.02 2.07

0.005 5.18 5.25 2.41 2.43 48.29 3.86 2.68 4.65 2.38

0.01 10.78 14.31 4.51 2.68 57.16 4.04 3.08 5.61 2.74

0.05 172.7 236.2 84.75 4.02 69.23 12.01 4.34 11.79 4.31

0.1 1081 1078 762.11 6.24 77.57 21.79 6.71 18.36 6.47

0.25 6012 6305 4703 11.68 90.45 50.91 12.02 37.86 12.79

0.5 17,597 18,534 15,400 22.65 100.5 96.84 25.07 69.02 24.43

Hyperspectral image II

0.001 1.87 1.52 1.46 1.4 12.18 2.18 1.61 2.79 1.51

0.005 5.4 2.45 2.77 2.49 66.24 3.21 3.01 6.05 2.78

0.01 10.01 4.92 3.86 2.71 81.48 6.23 3.27 10.04 2.94

0.05 207.2 127.8 130.1 3.38 94.49 14.94 3.94 11.35 3.33

0.1 887.6 717.5 614.3 5.98 106.8 23.01 6.64 17.81 5.94

0.25 4796 3129 4140 6.74 113.86 58.62 7.18 47.06 6.98

0.5 11,898 9954 12,299 14.7 125.56 120.33 15.34 60.13 15.03

Hyperspectral image III

0.001 1.74 1.39 1.32 1.89 8.43 4.1 2.11 3.02 2.01

0.005 5.13 2.24 2.44 2.47 66.02 6.02 2.74 3.99 2.64

0.01 12.51 5.18 5.14 2.69 84.96 7.06 3.02 6.33 2.94

0.05 160.3 114.7 80.01 4.46 92.68 14.84 5.19 18.56 5.02

0.1 1474 760.5 827.8 5.59 104.98 21.49 6.37 27.82 6.11

0.25 8587 5832 6549 9.27 115.94 48.95 10.34 39.95 10.02

0.5 26,948 15,672 23,161 14.97 141.97 114.52 16.68 67.23 16.21

Hyperspectral image IV

0.001 2.41 1.64 1.73 2.02 5.27 2.1 2.24 2.74 2.11

0.005 9.57 2.33 2.55 2.34 8.26 2.88 2.47 4.28 2.31

0.01 12.68 5.23 6.11 2.89 14.44 3.91 3.23 5.41 2.82

0.05 226.5 120.5 89.08 3.74 19.5 11.48 4.29 11.36 4.01

0.1 1241 829.1 866.3 5.96 21.07 21.02 6.57 17.22 6.22

0.25 9067 4536 5494 6.62 29.65 48.91 7.08 33.79 6.89

0.5 25,042 17,677 18,136 12.03 55.03 92.97 12.87 62.31 12.12
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