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Abstract
In telemedicine-based healthcare system, such as cardiac health monitoring system, large amount of data needs to be stored
and transferred. This requires stupendous bandwidth and affects the channel efficiency. The main objective is to develop an
efficient compression technique for solving such problems in healthcare systems. In this work, the coalition of empirical mode
decomposition (EMD) and tunable quality wavelet transform (TQWT) scheme has been proposed for ECG signal compression
with a suitable decomposition level. Thus, the maximum energy is packed for fewer coefficients which have a significant
contribution to the original signal. The dynamic thresholding and dead-zone quantization are evaluated, to discard the wavelet
coefficientswith a small value near zero. Subsequently, a run-length encoding (RLE) lossless compression scheme is employed
to encode the wavelet coefficients. The presented technique was evaluated on the Massachusetts Institute of Technology-Beth
Israel Hospital (MITDB) arrhythmias dataset which contain regular and irregular heart rhythm. The compression ratio (CR%),
percent root-mean-square error (PRD%), normalized PRD (NPRD%), quality score (QS), and signal-to-noise ratio (SNR) of
33.11, 4.35, 8.21, 7.59, and 51.09 have been achieved, after implementing on 48 ECG records with 30-min duration. The
presented method was also implemented for normal and abnormal heartbeat classification for validation. The random forest
algorithm (RFA) is employed for the classification of cardiac rhythm. The results show minimal distortion with an improved
reconstruction of a signal after the compression and show a better performance than the state-of-art technique.

Keywords ECG signal · Tunable-Q wavelet transform · Random forest · Compression ratio · Run-length encoding

1 Introduction

ECG is the most common method to record the electrical
activity of heart rhythm. In recent years, cardiovascular dis-
ease has become the leading cause of death worldwide [1].
So, biomedical signals are widely used in medical fields
to examine cardiac disorders [2]. The main components of
ECG signals are P-wave, QRS complex, T-wave, U-wave,
segments, and intervals. Telehealth systems must be capa-
ble of transmitting ECG signals rapidly and storing them
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efficiently. When a patient with cardiac problems is admit-
ted, a long-term ECG recording is normally accomplished
[3]. Sometimes, 24–48 h of ECG are recorded continuously.
Hence, a vast number of data are collected while a constant
ECG monitoring system [4]. This creates a significant load
for fast data transfer and efficient data storage [5]. So, to
reduce the amount of data, the signal compression technique
has gained popularity. Minimum loss and high compression
ratio are two main aspects of effective compression meth-
ods. For efficient storage and transmission of ECG signals,
many compression techniques have been developed. Typi-
cally, these techniques can be categorized as lossless and
lossy compression. In lossless compression, the compres-
sion ratio is low but there is no loss of information. The lossy
technique has a high compression ratio with low loss of data
and is often used. Further, lossy compression is divided into
three parts: direct, parameter extraction, and transform-based
technique [6].
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To remove the redundancy of the ECG signal, direct
method is used in the time domain [7]. Turning point [8],
amplitude zone epoch coding (AZTEC) [9], and coordi-
nates reduction time encoding system (CORTES) [10] are
the direct method compression techniques. Muller et al. [8]
proposed a method based on a turning point through which
sampling points are analysed. The raw ECG signal sample
points are replaced by slopes and achieve an improved com-
pression ratio. In the parameter extraction method, specific
feature signals are extracted, and these features are encoded
and compressed [10]. Artificial neural networks (ANN),
vector quantization, and peak picking [11, 12] are some tech-
niques involved in this method. Cohen et al. [12] proposed
a method based on vector-quantized by taking the structural
features for compression of the ECG signal. Akazawa et al.
[13] compressed the ECG signal using Huffman coding and
the multi-template method. Deepu et al. [14] developed a
technique using an adaptive linear data prediction scheme
for QRS detection and compression of ECG signals.

The transformmethod shows the superiorities of the high-
quality compressionmethod. In thismethod, the time domain
is converted into a frequency domain. Hence, the transform-
based methods are energy contained, and the signals are
decomposed into different coefficients at various resolution
levels. Sub-band coding [15], discrete cosine transforms [16],
discrete Fourier transform (DFT) [17], discretewavelet trans-
forms [18, 19], and singular value decomposition [11] have
been widely used in the compression of ECG signals. Peng
et al. [20] used the lifting wavelet transformation method.
Cetin et al. [21] proposed a wavelet transform extrema
scheme for the compression of ECG signals.

In [22] and [23], ECG compression based on the empiri-
cal mode decomposition (EMD) method was proposed. The
spline fitting technique was used for the reconstruction of
an ECG signal which degrades the performance of the sig-
nal and contains a higher error rate. Another limitation is
that there is a mode mixing problem occurs, which results
in more distortion of the signal. In the past few decades, the
wavelet transform method has been interested a gain among
researchers. The signal is decomposed into multi-level sub-
bands,which gives high energy, and thus, higher compression
is achieved. The wavelet transform method has many advan-
tages but still contains some limitations that quality factor is
not possible to enhance the signal efficiency, and the selection
of the mother wavelet is another challenging task. The author
[24] proposed a new method with tunable quality wavelet
transform (TQWT) which has the flexibility of tuning the
input parameters. The Q-factor in the TQWT technique has
presumed oscillatory behaviour of the signal. The lower and
higher quality factor is utilized for no oscillatory behaviour
and processing of the signal. In TQWT, two-channel fil-
ter banks (AFB) with scaling factors are employed for the
reconstruction of the signal. In [25], the tunable-Q wavelet

transform method is used for the detection of sleep apnoea
in ECG signals. In [26], TQWT is optimized using a genetic
algorithm. [19] proposed a method for ECG compression
based on a tunable-Q wavelet transform method that deter-
mines theR-peak components of the ECGsignal and has high
computational complexity. The vast majority of compres-
sion methods fall short of providing perfect reconstruction
of a compressed signal. So, to overcome these limitations,
a novel technique has been proposed which gives better and
improved results over existing techniques. The main goal of
this study is to attain a higher compression ratio, with mini-
mizing the percentage root difference without compromising
the fidelity of the reconstructed ECG signal. Secondly, it also
provides a convenient or secure transmission of biomedi-
cal signals for various healthcare applications by preserving
the clinical characteristics of the signal. Thus, the algorithm
allows for more efficient storage and transmission of ECG
data while maintaining the accuracy and reliability of the
information conveyed. The main significant contribution of
the presented work is as follows:

• In this paper, we proposed a novelmethod for the compres-
sion of ECG signals based on EMD and tunable quality
wavelet transform (TQWT) technique.

• The ECG signal is distributed into intrinsic mode func-
tion (IMF), and further, the TQWT technique has been
implementedwith fewer transformcoefficientswith higher
energy. The signal is divided into upper sub-band coeffi-
cients and lower sub-band coefficients up to six levels.

• The adaptive thresholding has been consideredwith appro-
priate signal level having efficient information about the
cardiac rhythm.

• After that, dead-zone quantization and run-length encod-
ing schemes have been employed to encode the wavelet
coefficients.

• The inverse TQWT technique is executed for the recon-
struction of the original ECG signal.

• The results are executed in 30min and 2min at theMITDB
arrhythmias database and showbetter results than the state-
of-the-art technique.

The rest of the paper is organized as follows: Sect. 2
describes the tunable-Q wavelet transform method, materi-
als, and method defined in Sect. 3, Sect. 4 consists of the
methodology, results, and discussion described in Sect. 5,
and Sect. 6 contains the conclusion of the proposed method.

2 Tunable-Q wavelet transformmethod
(TQWT)

The TQWT has recently high advancement for the detec-
tion of cardiac arrhythmias and analysing of heart-related
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Fig. 1 TQWT single-stage analyse filter bank

problems [27–29]. In this study, tunable-Q wavelet trans-
forms with empirical mode decomposition for compression
of ECG signal have been proposed. Due to the non-stationary
behaviour of the ECG signal, the TQWT decomposes the
time-series signal into various frequency coefficients using a
wavelet with different ‘Q’ factors. In tunable quality wavelet
transform, two scaling factors α and β are utilized for a lower-
pass and higher-pass filtering, respectively. Figure 1 depicts
the TQWT single-stage filter bank.

The lower-pass sub-bands signal L l(n) and higher-pass
sub-bands signalGh(n) are obtained using a lower-pass filter
Ml(ωf) and higher-pass filter Ch(ωf) with scaling factors α

andβ. The reconstruction signalZ(n) is effectuated inTQWT
using the relation [24]:

Z(ω) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|Ml(ωf)|2X(ωf), for εθ
|Ml(ωf)|2 + |Ch(ωf)|2X(ωf), forωεϑ

|Ch(ωf)|2X(ωf), for εμ
0

(1)

where X(ωf) is a Fourier transform of the input signal x(n).
The intervals θ , ϑ , , and μ are defined as follows:

θ � {|ωf| < (1 − β)π}

ϑ � {(1 − β)π ≤ |ωf| < απ}

μ � {απ ≤ |ωf|≤ π}

The reconstruction of the signal Z(n) requires the con-
ditions, Z(ωf) � X (ωf). Therefore, the lower-pass filter
Ml(ωf) and higher-pass filter Ch(ωf) should satisfy the fol-
lowing constrain [26]:

|Ml(ωf)|� 1, for |ωf| < (1 − β)π (2)

|Ch(ωf)|� 1, forαπ ≤ |ωf| ≤ π (3)

|Ml(ωf)|� 0, forαπ ≤ |ωf| ≤ π (4)

|Ch(ωf)|� 0, for |ωf| < (1 − β)π (5)

The pass band of Ml(ωf) and the stop band Ch(ωf) are
constituted by the interval θ , while the stop band Ml(ωf) and

pass band Ch(ωf) are constituted by the interval μ[26]

Ml(ω) � ∅

(
ωf + (β − 1)π

α + β − 1

)

(6)

Ch(ω) � ∅

(
απ − ωf

α + β − 1

)

(7)

where ∅ � 1
2 (1 + cosωf)

√
2 − cosωf. In Eqs. (6) and (7),

∅ represents the frequency response of daubechies with two
vanishingmoments. ForN length of an input signal, themax-
imum number of decomposition levels is followed as [24]:

J ′
max. �

⎡

⎣
log

(
βN
8

)

log
( 1

α

)

⎤

⎦ (8)

The relation between the TQWT input parameters and
scaling factor can be determined as follows:

Q � 2 − β

β
, r � β

1 − α
(9)

Further, 0 < α < 1, 0 < β ≤ 1, and α + β > 1 satisfy the
following relationship to process over-sampling and achieve
perfect reconstructions.

3 Material andmethods

In the proposed method, MITDB arrhythmias database was
considered for the validation of results. The database contains
forty-eight half-hours of ECG signals ranging from 22 to 89,
including 22 females aged 22–89 and 25 males aged 32–89
[30]. The first 23 records contain various cardiac disorders,
and the other 25 records contain different heart abnormali-
ties. The ECG signal is digitized at 360 samples per second
with 11 bits resolution of 10 mV which are included in the
database.

4 Methodology

In this work, firstly, the high-frequency noise is removed
using pre-processing technique. The ECG signal contains
various noises which corrupt the original signal. So, to
remove these types of noise, median filter and Savitzky—
Golay (SG) filter have been implemented.

Then, the EMDmethod is applied to obtain the first intrin-
sic mode function by shifting process. After that, the ECG
signal is divided into various sub-band coefficients upto six
levels using the TQWT technique, which contains maxi-
mum energy of the signal with few coefficients transform.
Further, dead-zone quantization (DQZ) and thresholding are
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Fig. 2 Block diagram for
proposed method

Fig. 3 The smooth and
baseline-free ECG signal

employed to quantize wavelet coefficients. Then, run-length
encoding is implemented for encoding the coefficients and
finally, the compressed ECG signal is obtained. Figure 2
describes the following steps for the presented compression
technique.

4.1 Pre-processing of ECG signal

The ECG signal is taken from the MITDB arrhythmias
database, and gaussian noise is added to remove the redun-
dancy from the signal. The median filter is used to remove a
baseline drift from the signal. Two state median filters with
200-ms and 600-ms window sizes are employed to make the
signal free frombaseline drift. Themedian filter improves the
cross-correlation with minimum loss of information present

in the signal. Firstly, the original ECG signal x ′[n] is consid-
ered with the window size of fs/2, and the output at the first
level is smed1[n]. After that, smed1[n] is considered as input
for the second level, and the output at the second stage is
smed2[n]. Finally, the second stage output smed2[n] is sub-
tracted from the original ECG signal x ′[n] and achieved
baseline free signal O[n].

O[n] � x ′[n] − smed2[n] (10)

Then, Savitzky–Golayfilter is used to smooth and enhance
the quality of the signal. Figure 3 shows the smooth and
baseline-free ECG signal.
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4.2 Proposed EMD +TQWT algorithm

4.2.1 Empirical mode decomposition implementation

Empirical mode decomposition (EMD) is utilized after fil-
tering method. EMD is adaptive and instinctive, with fully
function derived from the data. It determines the intrinsic
oscillatory models in time scales of signal characteristics,
and intrinsic mode function (IMF) is obtained by decom-
posing the signals [23]. For a function to be considered as
IMF, it must satisfy two requirements; firstly, the number
of local extremes and a number of zero crossings in entire
dataset must be equal or differ by most one. Secondly, the
envelope defined by local maxima and local minima should
have a mean value of zero at any point. The shifting process
is iteratively employed to attain the first IMF in ECG signal.
In this study, the mean a[n] the upper and lower envelope is
employed at first shifting process and then subtracted from
the filtered signal. The first IMF (H1) is given as follows:

H1 � O[n] − a[n] (11)

where O[n] is the filtered signal, and a[n] is the mean of the
envelope.

The relation between the first IMF function (H1) and shift-
ing function is expressed as follows [19]:

H1(n) � O(n) −
l∑

l�1

c1, l(n) (12)

The c1, l (n) is the shifting function and constructed by
cube spline fitting of maxima [19]. To achieve the first intrin-
sic mode function, the normalized standard deviation (Sd) is
calculated from the next shifting functions [30].

Sd �
K−1∑

n�0

|H (i−1)(n) − Hi (n)|2
H2

(i−1)(n)
(13)

The value of Sd is defined between the range of 0.2 and
0.3 [19] by the hit and trial method, the shifting process
is terminated. EMD contains a mode mixing problem that
leads to degrading the quality of an ECG signal. Thus, in
the proposed technique, an ECG signal is decomposed to
first IMF functions, and the shifting function with higher
amplitude values is considered further to achieve compres-
sion, other are discarded. Figure 4 depicts the flow diagram
for the proposed method. The output after empirical mode
decomposition method is represented as follows:x[n].

Fig. 4 Flow diagram for proposed method

4.2.2 Execution of TQWTmethod

After the empirical mode decomposition, for signal x[n]
lengthN , the following steps are illustrated for implementing
the TQWT technique:

I. From the given parametersQ and r, the scaling factors
α and β are calculated and follow the conditions: Q ≥
1, r > 1.

II. The parameters used for compression of an ECG sig-
nal are Q, r , , and J . The performance of the presented
method varies with the variation of these parameters.
The value of Q � 5.6, r � 2, and J � 6 was tested
on the entire ECG dataset for upto 2-min duration
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applying the error-trial method, and signals are recon-
structed with few errors.

III. The discrete Fourier transform (DFT) and normalized
DFT are performed on the signal and follow as:

X
′
(k) �

N−1∑

n�0

x(n)exp(− j
2π

N
nK ), 0 ≤ K ≤ N − 1

(14)
X

′
u(k) � 1√

N

N−1∑

n�0

x(n)exp(− j
2π

N
nK ), 0 ≤ K ≤ N − 1

(15)

Here X ′(k) and X ′
u(k) defined as discrete Fourier and

unitary DFT. The X ′
u(k) signal has also decomposed

the signal by analysing filter bank (AFB) upto J level
of decomposition. Therefore, each filtered output sig-
nal must be sampled.

IV. In the j th level of decomposition, three parameters
are considered and followed:

N j
l � 2 × round

(
0.5 × Nα j

)
, 1 ≤ j ≤ J

N j
h � 2 × round

(
0.5 × Nβα j−1

)
, 1 ≤ j ≤ J

N j � N , N j � N j−1
0 , 2 ≤ j ≤ J

where N j
l , N

j
h , and N j describes the length of lower

frequency, higher frequency, and input signal, where
1 ≤ j ≤ J , respectively.

V. For the next level of decomposition, low sub-band
frequencies are used. At J level of decomposition,
each sub-band energy distribution is controlled by r
within the sub-band that achieved high energy.

VI. After that, the inverse TQWT has applied for the
reconstruction of the signal, to get the lower-pass and
higher-pass sub-bands output p′

l( j) andd
′
h( j) as trans-

form coefficients.
VII. Subsequently, the thresholding and DZQ technique is

executed. To encode the transform coefficients, RLE
encoding scheme is applied.

VIII. The maximum compression ratio and minimum PRD
ratio are calculated. The algorithm shows the imple-
mentation of the EMD + TQWT method for the
compression of an ECG signal.

4.3 Algorithm for proposedmethod

1. Function proposed EMD_TQWT algorithm:
2. Define the input: x(n), Q, r , J
3. Output: pl ′( j) and dh ′( j) f or Q ≥ 1, r > 1and J ∈ N
4. Scaling factor: α and β, α � 1−β

r , β � 2
(Q+1) ,

Table 1 Performance of proposed method on MIT-BIH arrhythmias
database (30 min)

ECG record (m) CR PRD NPRD QS SNR

100 40.32 6.56 12.61 6.14 45.23

101 36.23 6.89 11.89 5.25 40.09

102 31.56 5.67 3.63 5.56 48.45

103 35.77 4.65 12.43 7.69 43.67

104 37.88 6.36 9.36 5.95 49.66

105 30.08 6.08 10.55 4.94 43.23

106 36.34 4.89 3.89 7.43 52.34

107 26.32 5.56 12.38 4.73 64.89

108 28.98 8.46 6.67 3.42 43.46

109 30.75 3.17 12.56 9.70 49.06

111 34.54 4.18 6.34 8.26 40.56

112 29.65 2.1 6.45 14.11 55.45

113 35.34 5.29 3.48 6.68 59.01

114 30.98 5.02 12.01 6.17 41.77

115 34.23 3.52 6.67 9.72 54.35

116 34.65 4.78 7.23 7.24 53.55

117 30.34 1.56 6.68 19.44 55.76

118 36.56 1.98 4.58 18.46 58.54

119 29.01 2.22 4.67 13.06 64.76

121 32.8 1.62 5.54 20.24 60.43

122 36.78 1.2 3.55 30.65 58.08

123 28.67 1.67 7.29 17.16 63.58

124 30.97 2.65 4.26 11.68 54.33

200 31.56 4.34 9.89 7.27 64.23

201 33.09 5.97 9.01 5.54 46.67

202 36.08 7.29 7.49 4.94 45.78

203 31.9 4.23 12.21 7.54 43.12

205 34.79 5.6 10.66 6.21 44.28

207 37.8 5.56 13.23 6.79 47.98

208 35.65 6.89 12.36 5.17 40.54

209 35.08 7.78 9.49 4.50 44.43

210 29.87 3.29 9.11 9.07 41.09

212 30.97 4.3 7.92 7.20 49.88

213 33.56 4.21 5.39 7.97 57.79

214 34.6 3.55 8.06 9.74 50.34

215 30.58 5.45 12.48 5.61 49.77

217 32.99 6.87 6.33 4.80 51.99

219 34.44 1.12 2.85 30.75 64.89

220 34.06 1 5.86 34.06 57.54

221 31.2 2.62 7.22 11.90 51.08

222 31.99 1.22 10.89 26.22 46.88

223 32.55 1.08 6.34 30.13 58.54

228 33.54 1.87 12.54 17.93 47.88
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Table 1 (continued)

ECG record (m) CR PRD NPRD QS SNR

230 29.26 5.01 9.16 5.84 46.25

231 31.58 6.96 7.44 4.53 52.24

232 35.67 6.36 8.54 5.60 49.05

233 32.88 5.14 8.43 6.39 54.33

234 34.94 5.43 6.77 6.43 45.66

Total 48 records 33.11 4.35 8.21 7.59 51.09

5. Fs � Sampling frequency
6. N � Length of input signal x(n)
7. X ′(k) � DFTofinputsignal
8. X

′
u(k) � unitaryDFTofx(n)

9. f or j � 1tojdo
10. N j

l � 2 × round
(
0.5 × Nα j

)

11. N j
h � 2 × round

(
0.5 × Nβα j−1

)

12. [X(n), W (n)] � AFB(X
′
u(k), N

j
l , N

j
h )

13. p
′
l( j) � U I DFT (W (n))

14. d
′
h( j) � U I DFT (X(n))

15. Calculate theCRandPRD from the reconstructed signal
16. If (PRD � � min) and (CR � � max), then
17. Selected values of Q, r , J are optimum values
18. else
19. Go to step 2
20. end
21. END

4.4 Dead-zone quantization (DQZ) and thresholding

The main goal of ECG compression is to increase the com-
pression ratio with minimal loss of information. This can
be achieved through thresholding and quantization methods
[31]. In TQWT, the signals are decomposing into transform
coefficients. Further, the thresholding and quantization are
performed on the coefficients using dead-zone quantization
[32]. In theDQZmethod, a small interval [−T hd, Thd] is cho-
sen around zero, where Thd is known as threshold value [19].
The sub-bands coefficients greater than −T hd are quantized
to the nearest level, and coefficients smaller than Thd are con-
verted to zero [32]. Thus, by selecting the suitable threshold
value, compression efficiency can be improved without any
significant loss. The dead-zone quantization is followed as;

B ′
n � {(−3δ, −Thd) if n � −1}

{(−T hd, Thd) if n � 0} (16)

{(2l ′ − 1
)
δ,

(
2l ′ + 1

)
, δ otherwise

V ′
n � {zero, If n � 0

Table 2 Performance of proposed method on MIT-BIH arrhythmias
database (2 min)

ECG record (m) CR PRD NPRD QS SNR

100 42.42 5.63 8.34 7.53 46.43

101 38.21 4.33 6.44 8.82 42.13

102 33.26 6.34 4.99 5.24 49.56

103 32.47 5.23 5.45 6.20 45.99

104 34.08 6.21 4.23 5.48 52.88

105 31.28 4.34 3.89 7.20 46.78

106 38.54 6.34 6.77 6.078 58.34

107 28.22 8.44 8.99 3.34 66.67

108 32.44 6.56 7.56 4.94 45.9

109 35.75 6.34 6.35 5.63 51.89

111 32.74 2.34 6.36 13.99 43.56

112 32.35 4.67 5.35 6.92 56.45

113 34.34 5.02 5.38 6.84 62.01

114 33.78 3.45 7.28 9.79 46.77

115 35.13 2.55 4.29 13.77 59.35

116 33.77 4.44 7.39 7.60 58.55

117 31.84 5.56 3.67 5.72 57.76

118 38.46 6.32 3.99 6.08 61.23

119 32.01 3.33 10.2 9.61 65.06

121 34.8 4.78 4.9 7.28 62.98

122 38.78 4.23 4.77 9.16 63.65

123 30.87 2.56 3.98 12.05 69.98

124 33.97 3.56 4.76 9.54 65.98

200 38.56 4.87 4.99 7.91 69.34

201 37.09 5.04 6.54 7.35 58.98

202 39.08 4.9 5.48 7.97 62.35

203 33.9 3.45 6.38 9.82 54.89

205 36.79 2.56 7.29 14.37 54.28

207 40.8 6.76 5.93 6.03 63.96

208 38.95 3.09 8.3 12.60 57.9

209 39.08 3.66 10.09 10.67 61.78

210 36.87 3.09 6.01 11.93 55.36

212 34.47 5.22 3.98 6.60 59.45

213 35.46 6.33 4.56 5.60 64.36

214 37.6 3.21 2.98 11.71 60.34

215 38.58 2.11 4.88 18.28 59.77

217 39.99 2.07 4.97 19.31 62.67

219 36.54 3.05 3.89 11.98 67.34

220 39.56 2.46 6.45 16.08 63.79

221 33.2 3.11 4.87 10.67 62.54

222 33.99 2.25 6.36 15.10 56.45

223 36.65 6.87 4.33 5.33 62.45

228 35.54 5.45 4.84 6.52 57.88
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Table 2 (continued)

ECG record (m) CR PRD NPRD QS SNR

230 30.76 5.66 5.39 5.43 50.25

231 35.28 3.45 7.01 10.22 52.24

232 34.57 3.66 9.09 9.44 52.05

233 35.54 2.67 4.99 13.31 54.33

234 39.34 3.09 3.99 12.73 59.57

Total 48 records 35.57 4.38 5.81 8.10 57.58

{n
, for n � ±1, ±2, ±3, ±4, (17)

where B ′
n represents nth decision interval tunable-Q wavelet

coefficients, andV ′
n describes the quantized output value. The

step size in quantization is denoted by
, and half of step size
is representedby δ.The transformcoefficients are determined
by comparing the thresholding (Thd) value in the process of
quantization. In the present study, the value of threshold is
taken using the relation Thd � M−N

40 [19].M and N described
the maximum and minimum value of sub-bands, and 40 is
the threshold constant which is selected based on trial-and-
error method by varying the Thd values in the intervals. The
step size (
) satisfies the condition 
 < 2Thd. The value
of 
 is determined by the relation 
 � γ Thd, where γ is
chosen from the range from 1.20 to 1.80 as discussed in the
literature [32]. In the proposedmethod, the value of γ � 1.50
gives better performance for compression of ECG signal on
all records at MIT-BIH arrhythmias database.

After the quantization, the wavelet coefficients are con-
verted into integer numbers which improve the encoding
performance. This stepminimizes the bit requirement to store
the coefficients in computermemory and reduces bit required
to encode the transform coefficients.

4.5 Run-length encoding

Run-length encoding (RLE) is a lossless encoding method
for representing data in a simple encoding system. An RLE
method eliminates redundant sequences of data and reduces
data size with minimal loss of information [33]. The detailed
coefficients repeat the values at intervals of time. Based on
the data length, each sequence of the RLE system is coded as
a codeword. Subsequently, the compressed data are obtained
which is stored and transmitted in a telemedicine system. The
inverse run-length encoding is implemented at the receiver
side for the reconstruction of the signal.

5 Results and discussion

To validate the efficacy of the proposed technique, all 48
ECG recordings from MITDB arrhythmia database were
employed for experimentation [34]. The sampling rate of 360
Hz with 11 bits/sample is used. Several quality measurement
variables can be used to determine howwell a signal is repro-
duced when compared with a reference signal, such as CR,
PRD, NPRD, SNR, and QS.

I. Compression ratio

To attain the quality of the reconstructed signal, compres-
sion ratio is evaluated. A higher compression ratio shows
better compression with less bandwidth required to transmit
the signal.

(18)

Compression Ratio (CR)

� Total no. of original bit size (x)

Total no. of reconstructed bit required size
(
s′
in

)

II. Percentage root difference (PRD)

PRD tomeasure distortion between the original signal and
reconstructed signal.

(19)

Percentage RMS Difference (PRD)

�
√
√
√
√

N−1∑

i�0

x (i) − s′
in (i))

2

∑N−1
i�0 (x (i))2

× 100

where x(i) is original signal and sin
′ is the reconstructed signal

III. Quality score (QS)

TheQS demonstrates the effectiveness of the compression
method.

Quality Score (QS) � Compression Ratio

Average root mean square diffrence
(20)

IV. Signal-to-noise ratio (SNR)

SNRmeasures the amount of noise reside before and after
the reconstruction of signal decibels (dB). It is described as
follows;

10 × log

(∑N
i�N

(
x(i) − xavg

)2

∑N
i�1

(
x(i) − s′

in

)2

)

(21)

Here, x(i)andxavg gives the original and average of ECG
signal.
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Fig. 5 a ECG signal, b proposed
EMD + TQWT method, and
c reconstructed signal on record
no. 100 at MITDB

Fig. 6 a ECG signal, b proposed
EMD + TQWT method, and
c reconstructed signal on record
no. 117 at MITDB

V. Normalized percentage root-mean-square difference
(NPRD)

The normalized PRD distinguishes the original signal
from the average signal of the rebuilt signal. (22)

Normalized Percentage (NPRD)

�
√
√
√
√

N−1∑

i�0

x (i) − s′
in(i))

2

∑N−1
i�0

(
x(i) − xavg

)2 × 100
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Table 3 Comparison of proposed method with existing techniques (30 min)

ECG
record
no.

EMD + DWT
algorithm [33]

TQWT + optimization
[25]

Wavelet coefficients
[7]

Proposed method

CR PRD QS SNR CR PRD QS SNR CR PRD QS SNR CR PRD QS SNR

117 25.74 1.91 13.44 52.78 23.62 1.72 13.72 35.28 16.14 2.95 5.47 30.60 30.34 1.56 19.44 55.76

119 26.01 4.41 5.89 51.00 15.13 3.59 4.20 28.88 24.83 3.67 6.77 28.72 29.01 2.22 18.46 58.54

123 24.38 2.69 9.06 50.92 17.94 2.43 7.36 32.26 14.16 3.15 4.50 30.03 28.67 1.67 17.16 63.58

200 22.64 7.64 2.96 50.04 17.81 8.20 2.17 21.71 16.23 4.23 3.84 27.46 31.56 4.34 7.27 64.23

201 16.04 3.71 4.33 60.18 21.87 4.02 5.43 27.90 12.96 4.14 3.13 27.65 33.09 5.97 5.54 46.67

207 28.23 6.15 4.59 54.75 28.72 6.17 4.65 24.19 42.11 4.85 8.68 26.29 37.8 5.56 6.79 47.98

228 27.12 8.41 3.22 47.73 32.52 9.05 3.59 20.86 8.6 3.25 2.65 29.76 33.54 1.87 17.93 47.88

233 19.74 6.68 2.95 53.37 13.87 6.65 2.08 23.54 13.94 3.30 4.22 29.64 32.88 5.14 6.39 54.33

Fig. 7 a ECG signal, b proposed
EMD + TQWT method, and
c reconstructed signal on record
no. 215 at MITDB

Fig. 8 CR-PRD curves for different records of theMIT-BIH arrhythmia
database

The presentedmethodology is implemented on all 48ECG
records at the MITDB database available on physionet [33].
In this work, two separate ECG recordings have been taken
from lead II, one for a duration of 30 min and another for
a duration of 2 min. The dataset contains different cardiac
arrhythmias and irregular heartbeats. The results obtained
from the analysis are summarized in Table 1, which presents
valuable insights into the effectiveness of the proposed tech-
nique. The average CR of 33.11, PRDof 4.35, NPRDof 8.21,
QS of 7.59, and SNR of 51.09 dB obtained at 30-min records,
respectively. Table 2 shows the experimental results for 2-
min recording and gives average CR, PRD, NPRD, QS, and
SNR of 35.57, 4.38, 5.81, 8.10, and 57.58 dB on the MITDB
database. Figure 5 shows the ECG signal and compressed
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Table 4 Evaluation of results on MITDB arrhythmias database using
the proposed method

ECG record (m) CR PRD QS

100 40.32 6.56 6.14

101 36.23 6.89 5.25

102 31.56 5.67 5.56

107 26.32 5.56 4.73

108 28.98 8.46 3.42

117 30.34 6.68 19.44

119 29.01 2.22 13.06

ECG signal at record no. 100 and shows a compression ratio
of 40.32, PRD of 6.56, and quality score of 6.14, respec-
tively. Figure 6 depicts the ECG signal and reconstructed
signal at record no. 117which contain irregular ectopic beats.
Upon meticulous visual scrutiny of the proposed method, it
has been discerned that the reconstructed signals exhibit a
remarkable congruity with the original signals as compared
to [7, 33]. The conspicuous similarity between the original
and reconstructed signals is a testament to the efficacy of
the proposed method and highlights its potential utility as a
robust signal reconstruction technique in pertinent domains
as depicted in Figs. 5 and 6.

Table 3 illustrates the performance of presented algorithm
and compared in terms of parameters CR, PRD, QS, and
SNR, which have been widely used in the literature [7, 33],
and [25]. In [25], optimization technique is used for the com-
pression of an ECG signal and gives an average CR of 22.27,
PRD of 4.77, and QS of 6.54. In [33], the discrete wavelet
and empirical mode decomposition method is proposed and
depicts average CR, PRD, and QS of 21.56, 4.65, and 5.38,
respectively. In this study, the average CR of 33.11, PRD of
4.35, and QS of 7.59 are achieved. The results show a better
CR with a minimum PRD ratio and the reconstructed signal
resembles the original signals as shown in Fig. 7. Thus, the
proposed algorithm validates the higher compression ratio
and quality of the compressed ECG signal as compared to
state-of-the-art techniques. In record 117, the CR, PRD, and
QS of 30.34, 1.56, and 19.44 are obtainedwhich is better than
[7, 33]. In record no. 200, the CR of 31.56, PRD of 4.34, QS
of 7.27, and SNR of 64.23 are obtained which offers bet-
ter performance than the recent techniques based on wavelet
transform, discrete cosine, and optimization technique. In
record no. 201, the PRD and SNR are low as compared to
[33] but give improved CR with minimum reconstruction
error. In record no. 207, the CR, PRD, and QS show lesser
results as compared to [7]. However, it is noteworthy that
the CR of the proposed scheme varies across different ECG
records, with some records exhibiting a higher CR [25, 33]
while others display a lower CR [7]. This indicates that the

effectiveness of the proposed scheme is contingent upon the
specific ECG record being compressed, and may be influ-
enced by the unique characteristics and complexities of the
underlying signal. Based on the performance of results, it can
be inferred that the proposed scheme outperforms other tech-
niques in terms of compression ratio, PRD, and improved
quality score. The superiority of the proposed scheme is
evident from the consistently higher CR values with mini-
mum reconstruction error achieved than [7] and [33]. Hence,
the proposed scheme is better than the existing technique.
Figure 8 presents the CR versus PRD curves for multiple
ECG records from theMITDBarrhythmia database.Notably,
as the CR increases, the PRD also increases, indicating a con-
sistent relationship between the two metrics across different
ECG signals. Overall, the results provide compelling evi-
dence for the efficacy and generalizability of the proposed
ECG compression method.

In this work, the validation of results is also performed
on different regular and irregular heartbeat signals at the
MITDB database on ECG records no. 100, 101, 102, 107,
108, 117, and 119, respectively. Table 4 shows the compres-
sion ratio, PRD, and quality score of irregular cardiac rhythm,
and results show improved results as a comparison [19, 33].
Figure 6 depicts the performance of the proposed technique
on record no. 117 and depicts a better reconstruction of signal
with less redundancy of data. Figure 9 shows the performance
of compression ratio at different ECG records with improved
results as compared to [24, 33].

The performance comparison of the presented approach
in terms of CR, PRD, and QS has been compared with the
existing techniques and illustrated in Table 5. In [35], ampli-
tude zone time epoch coding was utilized on the MITBD
database and achieved CR, PRD, and QS of 10, 28, and 0.36,
respectively. The author proposed a method based on sub-
band coding [15] and obtained the CR of 5.3, PRD of 2.6,
andQSof 5.4. In [21],wavelet transformmethodwas used for
compression and ensured a compression performance at 4.03
and PRD of 5.26. In [36], discrete cosine transform method
is proposed for the compression of an ECG signal. They
achieved a CR of 11.49, PRD of 3.43, and QS of 3.82. [19]
utilized the wavelet transform method which contains DZQ
and RLE techniques for ECG compression. They achieved
20.61, 4.43, and 5.88 CR, PRD, and QS, respectively. The
author presents the optimization technique with an improved
CRof 22.27, PRDof 4.77, andQS of 6.54 [25]. The proposed
method contains a CR of 33.11, PRD of 4.35, and QS of 7.59
which is higher than the state-of-the-art techniques. Figure 10
shows the graph between the CR and PRD at different ECG
records and validates the performance of proposed scheme.
Thus, from Table 5, it can be concluded that the presented
methodology offered a higher compression ratio with mini-
mumPRDand improvedquality score than others.Hence, the
proposed method demonstrates better performance in terms
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Fig. 9 The graph depicts the
performance of the proposed
technique on different parameters
at the MITDB

Table 5 Performance of
proposed method and existing
method on MITDB database
(30 min)

Authors Method Year CR PRD QS

Cox et al. [35] AZTEC 1968 10 28 0.36

Koymen et al. [15] Sub-band coding 1991 5.3 2.6 5.4

Koymen et al. [18] Transform method 1993 9.41 5.94 –

Cetin et al. [21] Wavelet transform 1994 4.03 5.26 –

Ahmed et al. [37] Discrete cosine + DWT 2009 25.1 5.89 4.26

Kumar et al. [38] Beta wavelet 2013 5.67 2.40 2.36

Ziran et al. [20] EZW 2017 21.10 9.11 –

Jha and kolekar [36] Discrete cosine transform 2017 11.49 3.43 3.82

Chandan et al. [39] Wavelet transform 2019 22.62 5.66 4.72

Chandra et al. [16] Cosine modulated filter 2020 23.86 1.405 19.08

Chandan et al. [19] Wavelet transform 2021 20.61 4.43 5.88

Jha and kolekar [33] EMD + DWT 2021 21.56 4.65 5.38

Kolekar et al. [7] Wavelet coefficients 2022 17.18 3.92 4.37

Pal et al. [25] TQWT + optimization 2022 22.27 4.77 6.54

Mohammad et al. [40] Optimized B-spline 2023 7.9 2.1 3.7

Proposed method EMD + TQWT – 33.11 4.35 7.59

Fig. 10 The graph depicts the
performance of compression
ratio and PRD on different
records on the MITDB database

of compression ratio, distortion, and quality score in the field
of ECG compression.

In Table 6, the compression ratio, PRD, and QS are taken
for comparison with the previously published ECG com-
pression technique. The proposed scheme gives a higher
compression ratio than [19, 32] and [33] with improved PRD

and QS, respectively. In [32], the PRD is small but the com-
pression ratio of the presented scheme ismuch better than the
existing technique. Figure 9 shows the CR and PRD values
at different records of ECG signal, and it is observed that as
the compression ratio is varying the value of PRD also varied
and thus validates the proposed method. Table 6 depicts that
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Table 6 Comparison of proposed
and existing methodology in
MIT-BHD (30 min)

Authors Record no. CR PRD QS

Kolekar et al. [7] 117 16.14 2.95 5.47

119 24.83 3.67 6.77

Chen et al. [32] 117 12 1.08 –

119 14.58 1.82 –

Chandan et al. [19] 117 23.42 1.81 12.97

119 16.35 2.23 7.34

Jha and kolekar [33] 117 25.74 1.91 13.44

119 26.01 4.41 5.89

Presented methodology 117 30.34 1.56 19.44

119 29.01 2.22 13.06

Fig. 11 The graph depicts the
performance of proposed
technique and the state-of-the-art
technique

on ECG records no. 117 and 119, the compression ratio is
high, the PRD ratio is less and QS is better than the [7, 19,
32], and [33]. Figure 11 depicts the performance of the pre-
sentedmethodwith the existing technique. Themethod gives
a high compression ratio withminimal loss of information by
reconstructing the original ECG signal. Hence, the presented
technique is better than the state-of-the-art technique.

5.1 Detection of normal and abnormal heartbeat
classification for validation of the proposed
method

To validate the performance of EMD+TQWT technique,
heartbeat classification for cardiac arrhythmias is evaluated.
The features are extracted from the EMD+TQWT method,
and a random forest classifier (RFA) is used for the classifi-
cation of a signal. The dataset is taken from the Kaggle and
contains five categories such as normal beat (NB), supraven-
tricular beat (SB), ventricular beat (VB), fusion beat (FB),
and unknown beats (QB). The dataset consists of two lead
ECG signals from MITDB database. The QRS complex is
detected using the Pan-Tompkins method [41]. The length of
each heartbeat is taken as 272 samples, 98 samples are con-
sidered before R-peak, and 174 samples are selected after
R-peak. About 70% of the data is used for training, and 30%

dataset is employed for testing the model. The method is
again tested after the compression, to check the quality of
the signal.

Table 7 shows the heartbeat classification of normal and
abnormal cardiac rhythm before and after compression,
respectively. Figures 12 and 13 depict the original signal and
reconstructed signal on abnormal heartbeats on records no.
106 and 123 at MITDB database. The result shows that the
signal is reconstructed with minimum loss of data. Hence,
the validation of the proposed method for ECG compression
is profitably executed.

The result shows that the average accuracy, sensitivity,
and specificity before compression are 99.90%, 97.42%,
and 99.92% for a normal beat, while for an abnormal beat,
98.81%, 96.12%, and 99.57% are achieved, respectively.
After the execution of the proposed technique, the average
accuracy, sensitivity, and specificity after compression are
99.87%, 96.34%, and 99.23% achieved for normal heartbeat
classification. The average accuracy of 98.62%, the sensi-
tivity of 95.21%, and the specificity of 99.34% are obtained
for abnormal beat classification after the compression tech-
nique. Thus, it validates the performance of the presented
technique.
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Table 7 Normal and abnormal
heartbeat classification Number of classes Before compression After compression

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

Normal beats 99.90 97.42 99.92 99.87 96.34 99.23

Abnormal beats 98.81 96.12 99.57 98.62 95.21 99.34

Fig. 12 a–c The reconstructed
signal on abnormal database after
compression on record no. 106 at
MITDB using proposed method

5.2 Discussion

In this study, a novel technique based on EMD and TQWT
method is proposed for achieving efficient ECG compres-
sion. The main advantage of this work is to provide a high
compression ratio with a minimum error rate and improved
quality score although the clinical information is preserved as
earlier. Firstly, the signal is decomposed into a set of intrinsic
mode functions (IMFs), each of which represents a specific
frequency component of the signal. Secondly, the TQWT
transforms each IMF component into a series of coefficients
that represent the energy of different frequency bands to
retain only the most significant coefficients with high energy.
Table 1 shows the average CR of 33.11, PRD of 4.35, NPRD
of 8.21, QS of 7.59, and SNR of 51.09 dB at 30-min records,
and Table 2 gives average CR, PRD, NPRD, QS, and SNR
of 35.57, 4.38, 5.81, 8.10, and 57.58 dB on 2-min record-
ing at MITDB database. Hence, the proposed approach is
a highly effective compression technique that can provide a

high compression ratio while maintaining the quality of the
compressed data.

The second advantage of this method is that it gives a
high compression ratio with a minimum PRD rate. Tables 5
and 6 show a comparative study of the presented approach
with recently published works such as wavelet transform,
DCT, DWT, and beta-transform method for compression of
ECG signal. From Table 5, it is found that the proposed
scheme gives higher CR, PRD, and QS than [7, 19, 33,
35–38] and [40]. Some researchers may focus on records
containing arrhythmias or other cardiac abnormalities, as
these cases can be more challenging to diagnose accurately
when evaluating the performance of a particular algorithm.
In [7] and [33], records no. 100, 117, and 119 are selected
for comparison with the previously proposed algorithm for
the validation of results. Table 6 provides the comparison
between the two records, namely record no. 117 and record
no. 119, which offers better results than [7, 19, 32] and
[33]. Further, the compression ratio and PRDvalues obtained
from this study are compared with the recently developed
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Fig. 13 a–c The reconstructed
signal on abnormal database after
compression on record no. 123 at
MITDB using proposed method

algorithm for their performance in signal reconstructions.
Specifically, the PRD values for the proposed approach are
below 6% for the maximum number of ECG signals, indi-
cating their effectiveness in preserving signal fidelity while
maintaining relatively low distortion. Table 7 shows the clas-
sification of normal and abnormal heartbeats before and after
compression. Figures 12 and 13 depict the original signal
and reconstructed signal on abnormal heartbeats using the
presented technique. Thus, the validation of the proposed
method is executed profitably. Therefore, it can be concluded
that the proposed scheme outperforms compression with a
higher compression ratio and minimum reconstruction error
while maintaining the quality (QS) of the signal approaching
superior to the state-of-the-art technique.

In the future, the proposed method has significant impli-
cations for various fields that require efficient data storage
and transmission, such as telemedicine, Holter monitor-
ing, and image processing. The presented technique is also
applied to other biomedical signal analyses such as arte-
rial blood pressure (BP), photoplethysmography (PPG), and
electroencephalogram (EEG). The limitation of this study,
the parameters are selected on the hit and trial method in the
TQWT technique for compression of ECG signal. Further,
more optimization techniques and other methods are used
for better selection of these parameters. In this study, only
a limited database is executed for the validation of results.
Further investigation may be required to identify the factors

contributing to the variability in CR observed for different
ECG records.

5.3 Computational time

The presented methodology is executed on MATLAB Soft-
ware R-2017b. The software is installed on PCs with Intel
Core i5 processors, 10 generations having 4 GB RAM. The
average time to process 48 records of MITDB arrhythmias is
0.30 s as compare to [7]. Calculation’s time is improved with
a parallel processing computer system for real-time applica-
tions and ASIC processor proposed regulation in the medical
system.

6 Conclusion

In this work, a novel ECG data compression technique based
on empirical mode decomposition and tunable-Q wavelet
transform method has been proposed. The ECG signal
is decomposed into multiple resolution levels, to get the
maximum energy at fewer coefficients. The dead-zone quan-
tization and thresholding have been used to obtain relevant
wavelet coefficients. The run-length encoding is performed
to achieve transform coefficients for compression of the ECG
signal. The presented technique is evaluated on the MITDB
dataset which contains 48 ECG records with 2-min and 30-
min time duration. For the 30-min duration, the average CR
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(%), PRD (%), NPRD (%), QS (%), and SNR (dB) of 33.11,
4.35, 8.21, 7.59, and 51.09 dB are achieved. In the 2-min
duration, the average CR of 35.57, PRD of 4.38, NPRD of
5.81, QS of 8.10, and SNR of 57.58 dB, respectively, are
achieved. The results show a better performance than the
existing technique. The presented technique is also imple-
mented for normal and abnormal heartbeat classification. The
random forest algorithm is employed for the classification
of cardiac rhythm. The MITDB dataset is taken which con-
tains regular and irregular cardiac beats. The data are divided
into 30% for testing and 70% for training purposes. The
results show minimal distortion and improved reconstruc-
tion of the signal. The proposed method is further improved
by using different resolution levels and filtering techniques.
The present methodology can be employed in telemedicine
and other healthcare monitoring systems.
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