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Abstract
Hyperspectral imaging (HSI) contains several land cover objects with rich spatial and spectral features. By utilizing these
features, deep convolution neural networks (CNN) improved HSI classification accuracy. However, shallow CNN lacks global
co-relation of the spatial and spectral features. Further, by increasing the convolution layers, trainable parameters also increase.
Hence, computation cost significantly increases. In this study, a fusion-based HFTNet model is designed that extracts features
via convolution and transformer block to improve classification performance. In the proposed HFTNet, the convolution
block extracts local semantic features, and the transformer block captures the attention-based global features. We reduced
the computation costs by dividing the query vector into two parts and passing it to convolution and transformer blocks for
feature extraction. Finally, features are combined to generate enhanced semantic local and global features. The effectiveness
of the proposed method is tested on four datasets and achieved an accuracy of 99.34% (UP), 97.95% (IP), 99.70% (SV), and
84.23% (KSC). We found that HFTNet takes less computation time and achieves much better classification accuracy than
other methods.

Keywords Hyperspectral imaging (HSI) · CNN · Semantic features · Classification · Transformer

1 Introduction

Advanced spectrometers capture hyperspectral imaging
(HSI) with numerous spectral and spatial characteristics. The
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continuous spectral spectrum extends from visible light to
infrared, boosting the visibility of ground objects [1]. Cate-
gorizing each pixel, HSI has found widespread application
in mineral exploration, precise agriculture, and environmen-
tal monitoring. HSI has been broadly classified as either
spectral, spatial, or hybrid exploitation of spatial and spec-
tral information [2]. Since each ground item has a unique
spectral characteristic, the spectrum-based method converts
into a short pattern recognition that identifies spectral vectors
using a classifier [3]. However, external factors such as light-
ning, environment, and atmosphere influence the generation
of spectral vectors and create noise, or so-called spectral vari-
ability, leading to substandard performance [4]. To smoothen
the spectral difference of ground objects, the spatial infor-
mation described in [5] is often considered, and numerous
techniques based on joint spectral-spatial information have
been published [6–12].

Several handcrafted feature-based HSI classification
approaches exist, including the k-nearest neighbor [13, 14],
Bayesian estimation approach [15], multinomial logistic
regression [16, 17], and support vector machine (SVM)

123

Signal, Image and Video Processing (2024) 18:2975–2990

/ Published online: 1 February 2024

http://crossmark.crossref.org/dialog/?doi=10.1007/s11760-023-02964-7&domain=pdf


[18–21]. These approaches are incapable of noise sup-
pression and lack spatial-spectral characteristics. The spa-
tial variability of spectral information [22] and extracting
discriminative and most informative characteristics [23]
remain substantial obstacles in HSI. Moreover, several band-
reduction-based approaches, such as linear discriminant
analysis (LDA) [24–26], independent component analysis
(ICA) [27], and principal component analysis (PCA) [28,
29], fail to exploit the spatial correlation between pixels
effectively. The use of deep convolutional neural networks,
which can automatically extract high-dimensional spatial and
spectral characteristics, has allowed researchers to overcome
these obstacles.

The spatial and spectral properties of 3D HSI were
extracted as 1D features using the stacked autoencoders
(SAEs) and a deep belief network (DBN) Chen et al. [30,
31]. This was achieved at the expense of a great many spatial
details. The Classification performance was improved using
five layers of 1D-CNN to extract spatial information [32].
Before extracting spatial features from HIS with 2D-CNN,
principal component analysis (PCA) was used in [33, 34] to
minimize the dimension of HIS. By flattening the features,
a dual branch of 2D and 1D CNN layers allowed for the
joint exploitation of spatial and spectral characteristics [35].
In [36], a 3D convolutional neural network (CNN) model
was used to improve classification accuracy using spatial and
spectral information. Still, the enormous number of trainable
parameters caused the computation cost to skyrocket. Later,
[37, 38], using 3D and 2D CNN layers lowered the compu-
tational cost.

As shown by [39], dilated convolutional-guided feature
filtering can help reduce the model’s loss during training and
validation. This strategy lowers spatial feature loss without
diminishing the receptive field and can obtain distant features
that boost classification performance. In [40], the residual
connection-basedSSRNmodelwas used to exploit the spatial
and spectral information, where the residual connection was
added to each3D layer, followedbybatchnormalization.But,
due to the 3D layer and residual block, the computational
cost was considerable. Multi-branch 3D CNN was used in
[41] with an attention module for HSI object classification.
However, more trainable parameters are needed when more
3D layers are used, which raises computation costs.

Recently, a powerful deep learning method called the
transformer networkwas introduced to address natural image
categorization from sequential data [42]. Transformer net-
works are superior at analyzing sequential data because they
employ self-attention methods, unlike CNNs and RNNs.
This presents a novel approach that can effectively be uti-
lized for the HSI image land cover categorization. It is
well-known that the self-attention technique is the central
module in transformers and can capture global information
by encoding position. Although they address the long-term

dependence of spectrum properties, they lack spatial-spectral
integration data at the local level. Although they solve the
long-term dependency of spectrum features, they miss local
spatial-spectral integration data. In addition, local texture
data and positional information loss occur because current
transformer networks progressively encode spatial features
via the flattening technique and linear projection. A 3D-Swin
transformer-based technique was used in [43] to repre-
sent semantic-level images. The proposed technique used
numerous transformer blocks to improve performance but
considerably increased the calculational costs. Later, the
authors of [44] used the SSFTT approach to reduce the
computing cost of the 3D-Swin transformer-based technique
by employing one 3D and two 2D layers followed by a
transformer module, allowing extraction of global and local
characteristics. Yet, classification performance in several
classes may be improved. In [45], the fusion of convolu-
tion and transformer block in one technique was applied to
improve the classification. The proposed method used paral-
lel linear convolutionblocks and transformer blocks to collect
local and global data. The HSI cube is first turned into a
sequence and then handed to the transformer block to collect
the local and global features. This minimized the computa-
tional cost but at the expense of diminished performance.

To address the aforementioned issues associated with the
HSI classification problem, a novel deep learning model
called HFTNet is developed in this paper based on a dual
block transformer. HSI’s local spectral and spatial infor-
mation is extracted via a 3D convolution block and 2D
convolution layers based on the network architecture. As a
result, improved classification performance is achieved by
extracting global high-level semantic features using a dual-
block transformer network. The significant contributions of
the proposed method are as follows.

(1) Initially, a 3D convolution layer is incorporated to
focus on extracting spectral features, followed by imple-
menting network-in-network structured 2D convolution
layers explicitly designed to capture and analyze spatial
features.

(2) Integration of a transformer module is critical for spec-
tral and spatial features. This module establishes local
and global correlations within the data. The design
facilitates a dual-pathway approach that enhances the
representation of global semantic features and local
pixel-level details.

(3) The next stage involves sophisticated semantic and pixel
pathways integration. This integration strategically dis-
tributes self-attention information across both path-
ways. Furthermore, the transformer’s computational
costs are reduced to optimize efficiency by splitting the
query between the local convolution block and the trans-
former module.
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(4) The final step in this architecture involves a synergis-
tic fusion of the CNN network with the dual block
transformermodule. This fusion technique enhances the
overall classification accuracy significantly. The effi-
cacy and superiority of HFTNet are experimentally
proven through rigorous testing across four distinct
datasets.

The rest of the paper is organized as follows.
In Sect. 2, we have discussed the proposed method,

whereas Sect. 3 describes the quantitative and visual results.
Finally, in Sect. 4, the conclusion is discussed in detail.

2 The proposedmodel

The proposed method system flow has been illustrated in
Fig. 1. Let the hypercube of the HSI is I ∈ RM×N×B , where
M, N represents width and height, and B is the total bands.
Each pixel in I contains the spatial and spectral feature, and
their one hot encoding is given by H � {h1, h2, . . . hC },
whereC is the different objects of land cover. In HSI, several
continuous bands containing rich sets of spectral information
are available due to the high number of bands, computation
cost and redundancy increase. To overcome this problem,
principal component analysis (PCA) is applied over band B.
At the same time, maintaining the same spatial information.
Let after PCA total band isD and the hypercube is represented
by Y ∈ RM×N×D .

The proposed method extracts the spectral and spatial fea-
tures using 3D and 2D convolution layers. We added one 3D
CNN layer and the 2DCNN layers to extract spectral and spa-
tial features. We have not included several 2D CNN layers
since the labeled training data is less, whichmay lead to over-
fitting. Therefore, based on the depth-wise separable method
[46], CNN layers are utilized, which can enhance the perfor-
mance and reduce the computation cost. The depth-wise 2D
CNN layers filter per input is defined as.

Y ∗
h,w, b � σ

(∑
Ki , j , b Yh,w, b + Ai , j , b

)
, (1)

where Y ∗
h,w, b � Features map, Ki , j , b � Convolution kernel,

Ai , j , b � Bias.

2.1 Vision transformer preliminaries

The concept of vision transformer (ViT) was first used for
Natural Language Processing (NLP) [42]. Later, this tech-
nique was extended to other fields like image classification,
segmentation, object detection and image captioning. In ViT,
one sequence is transformed into another with the help of an

encoder and decodermodule. TheViT encoder takes an input
image and produces output results.

2.1.1 The self-attention encoder module

When connecting various locations within the same series,
the self-attention technique could calculate a projection of
such an input data sequence [41]. The self-attention network
represents the encoded structure and multi-layer perceptron
(MLP) block, where each block uses the normalization layer
with residual connections. A set of keys, value pairs, and
a query are mapped to output using the attention function
[47]. The sequence accessibility function and the appropriate
key generate the weights assigned to each value, and the
output is produced by adding theweighted total of the values.
To learn different meanings, three learnable weight matrices
Mq ,Mk andMv are created in advance, and tokens are linearly
mapped to 3-D-invariant matrices, containing queries q, keys
k, and values v. Finally, the attention score of each q and v is
calculated using Softmax activation as shown in Eq. (2).

SHA � Attention(q, k, v) � Softmax

(
q × kt√

dK

)
× v (2)

The proposed model concurrently attends data from mul-
tiple representation subsets located at different locations via
multi-headed attention. The computation carried out by the
encoder’smulti-head self-attention for q, k and v is calculated
through the concatenation of each head as follows.

MHSA � Concat(SHA1, SHA2, . . . , SHAh)M
0 (3)

where M is the parametric matrix, h is the total number of
heads, and M0 is the parametric matrix.

SHA j � Attention(qMq
j , kM

k
j , vMv

j ) (4)

The projection of the parametric matrix is defined as fol-
lows.

Mq
j ∈ RDm∗dK , Mk

j ∈ RDm∗dK , Mv
j ∈ RDm∗dK andM0

j ∈ RSHAJ ∗dm .

Once the weight matrix has been learned, it is fed into
the MLP block. Two interconnected layers make up the
MLP. The nonlinear activation function, the Gaussian error
linear unit (GELU), lies between these two layers. Adding
an LN after the MLP layer prevents gradient inflating,
mitigates vanishing gradient issues, and expedites training.
The stacked structure of layers is identical in the model.
For instance, let F ∈ Rm×D be the token features with
dimension D and length m. Mathematically, each block can
be defined as follows.

B � σ (FP),
∼
B � s(B), A � ∼

BQ (5)
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Fig. 1 The architecture of the
proposed HFTNet

(6)

b0 �
[
Xclass : X

1
pE : X2

p.... : X
N
p

]
+ EPOS,

E ∈ R(p2∗C)∗D , EPOS ∈ R(N+1)∗D

bml � MSA(LN(bl−1)) + bl−1, l � 1, 2, 3 . . . L (7)

bl � MLP
(
LN(blm)

)
+ bml , l � 1, 2, 3 . . . L (8)

y � LN(b0l ) (9)

F and P stand for the dimensions of the channel’s linear
projections, σ stands for an activation function, and s stands
for identity mapping.

2.2 Proposed convolutional and transformer block

The FEATURES extracted from the 2D convolutional block
generate 2D tokens using Eq. (10). Afterward, tokens are
used for input to the dual block. Finally, k, q and v vectors
are generated by flattening 2D features y, using Eq. (11).

Tokens � MaxPool(ReLU(Conv2d(y)). (10)

yqkv � Linear (Flatten(y)). (11)

The query vector q is split into two parts qa ∈ RN×C/2

and qb ∈ RN×C/2. The vector qa is passed to the transformer
block and qb to the convolutional block. By doing this, the
computation cost in the transformer block was reduced half
due to reduced channel size. The convolution block contains
several convolution layers of kernel 3 × 3 with step size
1 and padding zero shown in Fig. 2. Each convolution is
followed by ReLU activation and Local Response Normal-
ization(LRN).

2.2.1 Local response normalization (LRN)

The LRN is a contrast enhancement process for feature
maps and reduce the saturation problem of deep CNN. We

Fig. 2 The architecture of the convolution block

have used RELU activation function in the convolution
block that improves neurons learning capability even on
small samples.The learning activity of xix , y neurons can be
evaluated at a place (x,y) through j, for the generalization of
the resources. The LRN can be calculated using the formula
as shown below.

LRNi
x , y � Nei(x , y)/

⎛
⎝t + Ne

min(N , 1, i+n/2)∑
j−max(0, j , n/2)

(Nei(x , y))
2

⎞
⎠

β

(12)

where N �Total numbers of channel and t , x , n, β � hyper-
parameters. Before passing qa to the model, it is reshaped
using Eq. (13) to match the dimension with the convolution
block. The qb is reshaped to 2D using Eq. (14), Then fed to
the convolution block.

Attention(y) � Reshape

(
Softmax

(
qa × kt√

dK

)
× v

)
. (13)

Conv(y) � BatchNormalization(Conv2D(qb)). (14)

Finally, global features and local features are obtained
through the transformer and convolution block, and these
features are concatenated to form a pool of features vector as
shown in Eq. (15).

F � concat(Attention(y), Conv(y)). (15)
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In the classical ViT, the query is directly passed to the
MHA to attain the global correlation of the features. Due
to this, computation costs are high. The proposed HFTNet
divides the query vector into two parts to reduce the computa-
tion resources. The local and global correlation of the spatial
and spectral features is achieved through convolutional and
MHAblocks. Further, enhanced features are obtained by fus-
ing the features acquired via convolution and transformer
modules.The working of the conventional transformer and
proposed dual block transformer is shown in Fig. 3.

The feature vector F and the feature set y is passed to the
Softmax function that convert logits into probabilities [48].
The land cover class is determined by setting the value of
k � {9, 16, 16, 13} for the UP, IP, SV and KSC datasets
respectively and labeling is performed using variable L. A
bias valuew0y0 included in each iteration to classify the land
covers.The probabilities of class is calculated using Eq. (16).

P
(
y � L|F ( j)

)
� eF

( j)

k∑
L�0

eF
( j)

k

(16)

where F � w0y0 + w1y1 + w2y2.......... + wk yk .
The algorithm of the proposed method is shown below.
Algorithm 1: Proposed HFTNet Method

3 Result analysis

3.1 Dataset description

In the proposed study, we have implemented HFTNet on
four benchmark datasets, including the University of Pavia

Fig. 3 Working illustration of conventional and proposed dual block
transformer

(UP), Indian Pines (IP), Salinas Valley (SV) and Kennedy
Space Center (KSC). The first UP dataset was captured using
Reflective Optics System Imaging Spectrometer (ROSIS)
sensors. It has 115 continuous spectral bands with a spatial
resolution of 1.3 m per pixel (mpp) with height and width of
610 and 340, respectively. In the experiment, 103 bands are
used after removing the 12 noisy bands.The nine land cov-
ers contain 42,776 pixels labeled into nine categories. The

second IP datasetwas collected from the Indian Pines test
site in North-western Indiana by AVIRIS sensors.The land
cover contains 16 types of objects with a spatial resolution of
20mpp with a size of 145× 145 pixels. The 20 water absorp-
tion bands (104–108, 150–163, and 220) are removed, and
200 bands are used for the experiment.
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Table 1 Details of the sample in
each land cover with their ground
truth and color map
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The scene of the third SA dataset was also collected using
AVIRIS sensors over Salinas Valley, California, which has
224 spectral bands with a spatial resolution of 3.7 mpp.
The 20 water-absorbing bands (108–112, 154–167 and 224)
are removed, and 204 bands of spatial size 512 × 217 pix-
els with 16 classes are utilized in our experiment.The last
KSC dataset was captured using AVISRIS sensorsover the
Kennedy Space Center (KSC), Florida. The spatial size of
512 × 614 pixels with a spatial resolution of 20 m is used in
the experiment. After removing 48, water absorption and low
signal-to-noise ratio 176 bandswere adopted for the analysis.
A details description of each dataset is provided in Table 1
[51, 52].

3.2 Experimental setting and performance
indicators

The proposedmethod is implemented in Python environment
on the window10 operating system (OS) with 128 GB RAM
and NVIDIA Geforce TITAN X4000 with a dual GPU of
8 GB. First, bands of each dataset is reduced to 30 using
PCA. After that, model was trained for 100 epochs using
an Adam optimizer with an initial learning valueof 0.0001
and a batch size of 64. For UP, SA,and KSC dataset samples
are randomly split and 5%is used for training. Due to few
samples in several class of IP dataset 10% samples are used
for training.

To evaluate the quantitative performance of the model
overall (OA), average accuracy (AA) and Kappa coefficient
(Kc) and class-wiseclassification accuracy of each land cover
is calculated based on the confusion matrix [CMtp]. Where
[CMtp] denotes the number of testing pixels whose true label
is t and predicted label is p. [CMtp] can be defined as.

CMtp �
K∑

k�1

1(yk � t)1
(
y∗
k � p

)
(17)

where K � Total testing samples, yk � True label and y∗
k �

Predicted label.
The OA accuracy refers to the total number of correctly

predicted samples and it is formulated by the following equa-
tion.

OA � 1

K

T∑
t�1

CMtp (18)

The AA is used to calculate the mean accuracy of all per
class and it is defined as

AA � 1

K

T∑
t�1

CMtp

P∑
p�1

CMtp

(19)

TheKcmeasures proportion of error caused by the ground
truth map and final classification map.

Kc �
1
K

∑
t CMt t − 1

K 2

(∑
p CMtp

)(∑
p CMpt

)

1 − 1
K 2

(∑
p CMtp

)(∑
p CMpt

) (20)

3.3 Comparative performance evaluation

To demonstrate the effectiveness of the proposed method
seven classical method are selected, namely 1DCNN
[32], 2DCNN [33], 3DCNN[36], HybridSN[37], SSRN[49],
SSFTT[40]and MBDA [44]. For all the methods experiment
is conducted according to the setting and parameters men-
tioned in the article. The 1DCNN consists of five weighted
layers: input, convolution, max pooling, fully connected and
classification layer. It contains 20,1D convolutionskernel-
swith an output size of 128. For the classification of LULC,
a Softmax activation function was added on the top layer of
the 1D CNN. Following the conventional CNN architecture,
2DCNN is equipped with three convolutional layers of size
8, 16 and 32, followed by amax-pooling layer, batch normal-
ization and ReLU activation. The 3DCNN network consists
of 3D convolutional followed by batch normalization and
max-pooling layers. The size of 3D convolution blocks is
8, 16, and 32, respectively with a filter of size 3 × 3 × 3.
HybridSN consists of three 3D convolution layers of size 8,
16 and 32. After the 3D block, a 2D convolutional layer of
size 64 was included in the model. Each 3D and 2D block
contains a filter of size 3 × 3 × 3 and 3 × 3 respectively. In
SSRN, separate spectral and spatial blocks contain skip con-
nections of 4 convolutional layers and two identity mapping.
After two consecutive 3D convolutional layers, a residual
linkin the spatial block. The SSFTT network contains one
3D and one 2D convolution block and transformer module.
At the top, a Softmax layer is added for the classification.

3.4 Quantitative results

The experimental results of the HFTNet on four datasets are
demonstrated in Tables 2, 3, 4, and 5. The performance mea-
sures AA, OA and Kappa for every class in each dataset have
been evaluated [50]. We can notice in Table 2 that 1DCNN
performs poorly in all the classes but slightly improved
performance results in 2DCNN. However, a few classes’
performances could be more optimal due to missing spec-
tral information. The 3DCNN improves further performance,
but the computation cost is high. The HybridSN method
used 3DCNN and 2DCNN to extract spectral and spatial fea-
tures. The Metal Sheet class accuracy 99.62% is highest by
HybridSN. The SSRN method exploits spatial and spectral
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Table 2 Performance comparison on UP dataset

Id. 1DCNN [32] 2DCNN [33] 3DCNN[36] HybridSN [37] SSRN [49] SSFTT [40] MBDA[44] HFTNet

1 92.23 97.67 96.54 98.82 95.64 99.33 99.82 98.78

2 97.63 98.52 98.84 99.17 98.28 100 100 100

3 65.23 85.36 88.92 90.57 87.85 98.51 99.53 98.62

4 94.65 96.82 94.68 95.48 93.61 97.34 99.67 99.87

5 98.24 99.42 99.52 99.62 99.32 98.54 98.84 99.12

6 86.21 98.32 99.12 98.54 98.92 99.02 99.21 99.58

7 87.54 93.74 91.53 88.95 87.67 97.56 98.67 99.82

8 83.64 95.64 92.35 91.26 90.26 98.72 99.17 98.85

9 89.58 88.68 96.36 95.72 93.65 97.58 97.15 99.46

AA 82.33 94.91 95.32 95.35 93.91 98.51 99.12 99.34

OA 84.52 95.63 96.98 96.42 95.82 98.98 99.25 99.56

Kappa 83.48 95.14 94.25 95.38 94.23 98.27 99.18 99.42

Bold indicates the highest accuracy obtained in that class

Table 3 Performance
comparison on IP Dataset Id. 1DCNN

[32]
2DCNN
[33]

3DCNN
[36]

HybridSN
[37]

SSRN
[49]

SSFTT
[40]

MBDA[44] HFTNet

1 47.24 64.85 82.46 85.82 88.45 95.42 94.15 97.85

2 75.56 80.16 87.52 95.48 97.83 96.74 98.45 96.43

3 68.15 84.62 92.25 97.57 95.26 96.84 96.14 96.78

4 65.42 76.87 85.12 96.13 94.74 95.98 98.24 99.15

5 80.23 82.14 75.58 94.62 92.94 96.36 98.86 99.28

6 85.84 89.52 86.12 99.06 98.53 97.94 96.32 98.58

7 78.86 85.38 98.84 94.72 98.24 99.12 100 100

8 95.36 100 93.46 94.85 100 100 99.82 100

9 48.28 58.04 62.12 88.28 84.52 87.96 83.86 90.63

10 76.53 85.48 79.48 88.58 97.38 97.65 98.74 99.18

11 87.78 92.68 95.72 97.76 98.72 98.06 99.14 97.89

12 78.52 67.92 97.62 96.26 94.32 95.15 96.05 97.17

13 82.76 85.94 97.34 95.32 98.92 98.98 99.12 100

14 91.38 95.86 97.82 99.16 99.23 100 99.18 99.05

15 48.85 89.48 87.42 90.86 95.27 96.28 98.19 99.12

16 85.46 87.68 92.84 97.32 96.63 95.28 93.87 96.10

AA 74.76 82.91 88.23 94.49 95.69 96.74 96.92 97.95

OA 76.23 83.48 92.14 95.74 96.14 96.78 97.52 98.64

Kapa 72.82 79.67 88.73 94.86 95.12 96.52 95.98 97.36

Bold indicates the highest accuracy obtained in that class

features using a 3D convolution layer with residual atten-
tion. This model classification accuracy is higher compared
to HybridSNmodel for several classes. TheViT-basedmodel
SSFTT outperforms Asphalt and Meadows.

However, other classes’ performances need further
improvement. The MBDA method computation cost is high
due to multiscale 3D-CNN layers, but classification accu-
racy improvement can be seen in Meadows, Gravel and

Bricks class. The proposed method performance is high-
est for Meadows, Tress, Bare-soil, Bitumen, and Shadows
classes with less computation cost due to the use of only one
3D-CNN layer and Dual block vision transformer. Similarly,
in Table 3, we can notice HFTNet, SSRN andMBDA perfor-
mance is 100% for Hay-Windrowed class. For small sample
classes like Alfalfa, Grass-Pasture-Mowed and Oats pro-
posedmodel achieved the highest accuracy of 97.85%, 100%
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Table 4 Performance
comparison on SV Dataset Id. 1DCNN

[32]
2DCNN
[33]

3DCNN
[36]

HybridSN
[37]

SSRN
[49]

SSFTT
[40]

MBDA[44] HFTNet

1 96.42 97.42 97.12 99.42 100 100 98.65 100

2 97.24 98.15 99.15 99.85 99.95 100 100 100

3 98.32 98.87 99.54 97.84 100 99.26 99.34 100

4 99.21 96.14 99.25 97.52 96.82 95.92 97.18 99.58

5 97.58 99.12 100 100 98.54 98.24 99.23 99.98

6 99.26 99.28 100 100 100 99.86 100 100

7 98.05 98.88 99.58 97.32 98.65 99.53 97.38 99.82

8 87.56 84.35 94.72 91.82 95.42 96.16 100 100

9 99.54 99.65 98.14 96.74 97.08 99.82 97.18 100

10 97.86 93.85 92.89 90.82 98.74 99.78 96.85 98.92

11 97.54 95.74 96.74 94.21 99.42 96.57 99.96 99.98

12 99.46 98.96 99.62 97.85 98.35 98.64 100 100

13 98.15 75.46 97.92 87.98 98.27 98.87 98.24 99.25

14 99.23 96.52 98.34 99.25 98.68 99.92 99.94 99.96

15 88.32 89.75 95.68 96.54 97.86 97.15 98.31 99.14

16 87.48 98.36 100 88.76 94.85 100 100 98.54

AA 96.33 95.03 98.04 95.99 98.29 98.73 98.89 99.70

OA 97.28 96.86 98.25 97.16 99.15 98.87 99.14 99.85

Kappa 95.45 94.78 98.14 96.45 99.87 98.98 99.02 99.83

Bold indicates the highest accuracy obtained in that class

Table 5 Performance
comparison on KSC dataset Id. 1DCNN

[32]
2DCNN
[33]

3DCNN
[36]

HybridSN
[37]

SSRN
[49]

SSFTT
[40]

MBDA[44] HFTNet

1 75.54 63.34 80.76 68.18 82.46 87.52 64.25 85.27

2 45.86 66.83 57.49 61.43 72.54 78.63 88.76 85.64

3 42.56 35.38 53.24 65.52 78.21 77.81 91.24 90.52

4 53.35 37.84 44.67 48.24 56.83 55.27 72.28 80.62

5 63.24 40.64 65.94 70.16 93.58 87.78 88.67 93.25

6 45.82 42.45 48.58 42.43 57.86 68.46 67.89 75.48

7 30.48 32.94 40.26 45.34 42.32 48.35 51.48 71.34

8 46.53 47.37 56.38 67.82 72.43 65.28 66.78 74.94

9 52.67 68.72 46.86 57.28 54.85 58.92 64.96 88.36

10 48.14 42.85 41.58 45.84 43.76 48.84 46.43 68.74

11 51.34 49.86 58.93 63.76 68.78 78.65 88.75 91.82

12 54.53 65.67 66.37 62.94 72.13 81.52 76.38 94.76

13 72.72 42.92 68.92 65.87 75.52 82.42 95.57 95.10

AA 52.53 48.99 56.14 58.83 66.97 70.73 74.03 84.23

OA 54.34 50.24 57.83 62.17 68.58 72.36 75.54 85.46

Kappa 53.48 49.84 55.98 60.28 67.92 71.13 74.62 84.16

Bold indicates the highest accuracy obtained in that class
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Fig. 4 Illustration of patch size
on performance for UP, IP, SA
and KSC dataset is shown in
a–d respectively
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Fig. 5 Classification map visualization of different methods on IP dataset. a False color image b Ground truth map c 1DCNN d 2DCNN e 3DCNN
f HybridSN g SSRN h SSFTT i MBDA and j HFTNet
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Fig. 6 Classification map
visualization of different
methods on UP dataset. a False
color image b Ground truth map
c 1DCNN d 2DCNN e 3DCNN
(f) HybridSN g SSRN h SSFTT
i MBDA and j HFTNet

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

and 90.18%, respectively. In addition, HFTNet obtained very
close performance compared to other methods.

In Table 4, SSFTT, MBDA and HFTNet achieved iden-
tical performance due to the large sample in each class. In
some classes, HybridSN obtained the highest classification
accuracy. For the KSC dataset, out of 13 classes, the pro-
posed method achieved the highest classification accuracy in
10 classes.

The SSRN method obtained the highest performance in
one class, and the MBDA method achieved the highest in
three classes, as shown in Table 5. In summary, the pro-
posed method works well on a small sample for other classes
having large sample sizes, and HFTNet achieved identical
performance. This confirms that adding a dual block trans-
former enhanced the feature selection process and improved
the classification accuracy with less computation cost.

3.5 Effect of patch size on performance

In the proposed study, we conducted experiment on 9× 9, 11
× 11, 13 × 13, 15 × 15 and 17 × 17 patch size. For smaller
patch, 9 × 9 model performance is poor in all the datasets.
However, classification performance improved as the patch
size increases. Maximum value of AA, OA and kappa was
obtained with the patch size of 15 × 15. Further, increasing
patch size reduces the classification accuracy as shown in
Fig. 4.

3.6 Visual results

The visualization map of several methods is shown in Figs. 5
and 6. In Fig. 5, we can notice classification map of 1DCNN,
2DCNN, 3DCNN and SSRN is poor for the Meadows and
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 7 Classification map visualization of different methods on SV dataset. a False color image bGround truth map c 1DCNN d 2DCNN e 3DCNN
f HybridSN g SSRN h SSFTT i MBDA and j HFTNet

Bitumen class in UP dataset. The 1DCNN and 2DCNN con-
tains vast noise due to this objects are not classified accurately
in all the datasets. Whereas, SSFTT, MBDA and proposed
HFTNet is very close to ground truth map. For Metal Sheets
class HybridSN and HFTNet achieved similar visualization
map. On IP dataset, again the visual performance of 1DCNN,
2DCNN and 3DCNN is inferior in several classes, as shown
in Fig. 7. The Grass-Free land cover class visualization map
of 3DCNN, SSRN, MBDA and HFTNet is similar to the
ground truth map. Since these methods can suppress the
noise. Furthermore, for Alfalfa, Grass-Pasture-Mowed and
Oats class, the HFTNet visualization map is closer to ground
truth than other methods.

In Fig. 8, we can see the visual representation for classes
one, two, three and four of the proposed method is very sim-
ilar to the ground truth map. Due to the semantic global and

local spatial and spectral features. However, for class five
3DCNN andHybridSN obtained slightly better maps. Again,
for classes, six and eight MBDA and HFTNet achieved
the best visualization map. For other classes, the proposed
method classification map is very close to the ground truth.
In the KSC dataset visualization map of class one, HFT-
Net is much better than other methods. For classes two and
three, MBDA achieved the best visual map. The remaining
class classification map of the proposed method is close to
the ground truth map. In short, the visualization map of the
HFTNet on UP, IP, SA and KSC datasets is much better than
other methods in several classes due to the improved spa-
tial and spectral features obtained through convolutional and
transformer blocks.
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Fig. 8 Classification map
visualization of different
methods on KSC dataset. a False
color image b Ground truth map
c 1DCNN d 2DCNN e 3DCNN
f HybridSN g SSRN h SSFTT
i MBDA and j HFTNet

(a) (b) (c) (d) (e)

(f) (g) (h) (i)   (j)

Table 6 Training (m) and test
time(s) of the HFTNet on four
datasets

Methods IP UP SV KSC

Train Test Train Test Train Test Train Test

1DCNN [32] 3.26 1.57 7.12 3.02 8.46 4.23 2.54 1.02

2DCNN [33] 7.18 3.24 11.04 7.29 12.37 9.54 4.32 1.21

3DCNN [36] 8.22 3.48 12.13 8.06 14.26 10.52 5.37 2.08

HybridSN [37] 4.45 2.07 9.45 5.51 10.26 7.47 2.39 1.53

SSRN [49] 3.26 2.12 6.51 4.23 11.34 8.26 4.16 1.53

SSFTT [40] 2.98 1.96 4.17 2.97 8.18 4.67 2.35 1.19

MBDA [44] 5.63 3.10 8.97 5.12 12.54 6.31 4.87 2.15

HFTNet 2.46 1.41 3.96 2.53 7.32 4.16 2.01 1.03

3.7 The training and validation time comparision

We investigated the training and test time on four datasets
with the same experimental settings.Aswe can see inTable 6,

the training and validation times of the 3DCNN [36] and
MBDA [44] are relatively high. However, 1DCNN [32] and
2DCNN [33] take less computation time, and the SSFTT
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takes the least training and test time [40] and HFTNet. How-
ever, the training and test time of SSFTT is high compared to
HFTNet. In the SSFTT, the query vector is directly passed to
theMHA, but inHFTNet, we divided the query into two parts
and passed it to the convolution and transformer blocks. This
confirms thatHFTNet can be used for real-time hyperspectral
image processing.

3.8 Industrial applications of the proposedmethod

HFTNet canbeused for automatedquality control in theman-
ufacturing industry. It is perfect for identifyingminor flaws or
irregularities in commodities, including electronics to auto-
mobile parts, because it can analyze spatial and spectral
properties in-depth. Further, it can be used for early can-
cer and several severe disease detection. The high-dimension
features extracted by themodel can help with anomaly detec-
tion, early diagnosis, and predictive analytics for patient care.
In addition, HFTNet can analyze satellite and aerial imagery
in agriculture to track crop health, forecast yields, and iden-
tify plant illnesses because of its ability to comprehend the
images’ local and global features. The proposed approach
can be used to analyze geographic and environmental data
for environmental applications. This involves maintaining
track of land use changes, monitoring deforestation, and
evaluating the condition of natural ecosystems. Other appli-
cations can be security and surveillance. The sophisticated
feature extraction can improve surveillance systems in secu-
rity applications. It can also be used for facial recognition
and crowd analysis to detect security risks.

4 Conclusion

Thehyperspectral image (HSI) contains rich spatial and spec-
tral information sets. The traditional CNN based improved
the HSI classification performance but lacked semantic
global and local features. In addition, computational cost
significantly improves due to many trainable parameters. In
the proposed study, an HFTNet based on convolution and
transformer is proposed that extracts local features from the
convolution block and global semantic features from the
transformer block. Finally, the features of both blocks are
combined, and classification is performed using the Softmax
layer. The computational resources are reduced by dividing
the query into two parts and passing them through two mod-
ules.

Further, the quantitative and visual performances obtained
on four datasets are much better than state-of-the-art meth-
ods. The effectiveness of the proposed method is tested on
four datasets and achieved an accuracy of 99.34% (UP),
97.95% (IP), 99.70% (SV), and 84.23% (KSC). The compu-
tation cost of the proposed model is less due to the reduction

of the query in the transformer. The high performance of the
proposed methods can be used in several industrial applica-
tions.

The computational resource requirements of the HFTNet
still need reduction as it involves 3D convolution layers and
transformermodules. In addition, themodel performance has
been evaluated on the open-access datasets, and its effec-
tiveness depends on the quality and volume of the data.
The network’s performance must be evaluated when data is
scarce, noisy, or poorly quality. The sophisticated architec-
ture of HFTNet is beneficial for feature extraction, but it can
also increase the risk of overfitting, especially when dealing
with limited or particular datasets. Further, the model needs
to be tested on the real-time diverse datasets.

In the future study, we will optimize the algorithm to
reduce computational requirements, making HFTNet more
accessible and efficient for various applications. In addition,
model architecture canbe refined to improve its ability to han-
dle diverse and limited datasets effectively through advanced
data augmentation techniques or transfer learning. Further,
the method can be directed toward enhancing the real-time
processing capabilities of HFTNet, making it more suitable
for applications in dynamic environments. We can utilize the
potential to integrate HFTNet with other emerging technolo-
gies, such as edge computing and IoT devices, to expand its
applicability in real-world scenarios.
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