
Signal, Image and Video Processing (2024) 18:2629–2641
https://doi.org/10.1007/s11760-023-02936-x

ORIG INAL PAPER

Image super-resolution reconstruction based on deep dictionary
learning and A+

Yi Huang1,2 ·Weixin Bian1,2 · Biao Jie1,2 · Zhiqiang Zhu1,2 ·Wenhu Li1,2

Received: 18 October 2023 / Revised: 23 November 2023 / Accepted: 1 December 2023 / Published online: 3 January 2024
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024

Abstract
Themethod of image super-resolution reconstruction through the dictionary usually only uses a single-layer dictionary, which
not only cannot extract the deep features of the image but also requires a large trained dictionary if the reconstruction effect is to
be better. This paper proposes a new deep dictionary learning model. Firstly, after preprocessing the images of the training set,
the dictionary is trained by the deep dictionary learning method, and the adjusted anchored neighborhood regression method
is used for image super-resolution reconstruction. The proposed algorithm is compared with several classical algorithms on
Set5 dataset and Set14 dataset. The visualization and quantification results show that the proposed method improves PSNR
and SSIM, effectively reduces the dictionary size and saves reconstruction time compared with traditional super-resolution
algorithms.

Keywords Deep dictionary learning · Image super-resolution · Anchored neighborhood regression · Sparse representation

1 Introduction

Image super-resolution (SR) reconstruction technology
refers to the process of reconstructing a high-resolution
image of a corresponding scene from a low-resolution image
of a given scene. The single-image super-resolution prob-
lem focuses on how to generate believable, visually pleasing
high-resolution (HR) output images from low-resolution
(LR) input images. Unlike similar image enhancement algo-
rithms, in SR, it is usually assumed that the input image,
although of lower resolution in the number of pixels, is still
of high resolution at the original scale. SR method mainly
focuses on increasing the scale of the image while ensur-
ing that the image is as clear as possible. The most direct
way to improve image resolution is to improve the optical
hardware in the acquisition system, however, since the man-
ufacturing process is difficult to greatly improve, and the
manufacturing cost is very high, it is often too expensive
to increase the image resolution physically. Therefore, the
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technology of image super-resolution reconstruction from
the perspective of software and algorithms has become a
research hotspot in many fields such as image processing and
computer vision. Traditional super-resolution reconstruction
algorithms mainly rely on basic digital image processing
techniques for reconstruction, such as interpolation-based
super-resolution reconstruction, degradation model-based
super-resolution reconstruction, and learning-based super-
resolution reconstruction.

Interpolation-based methods [1, 2] treat each pixel on the
image as a point on the image plane, so the estimation of
super-resolution images can be seen as fitting unknown pixel
information to the plane using known pixel information on
process. This type of algorithm is usually completed by a
predefined transformation function or interpolation kernel.
The method based on interpolation is simple to calculate
and easy to understand, but there are some obvious defects.
First, it assumes that the change of pixel gray value is a con-
tinuous and smooth process, but in fact this assumption is
not fully established; second, in the reconstruction process,
super-resolution is calculated only according to a pre-defined
transfer function The image, regardless of the degradation
model of the image, often leads to blurring, jaggedness and
other phenomena in the restored image, so the effect is not
good. Nearest neighbor interpolation, bilinear interpolation,
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and bicubic interpolation are common interpolation-based
methods.

Degradationmodel-based super-resolution reconstruction
[3] considers that HR images are properly transformed
by motion, blur and noise, resulting in reduced image
resolution. This method constrains super-resolution image
reconstruction by extracting key information in LR images
and incorporating prior knowledge of images that require
super-resolution reconstruction. Common methods include
iterative back projection method [4], projection to convex
set [5] and maximum a posteriori method [6], etc.

The learning-based method believes that there are cer-
tain correspondences between the LR images and the HR
images, mainly to learn these correspondences, so a large
amount of training data is needed, and these data are used
to learn mapping relationships, which can be used to predict
the HR images corresponding to the LR images to complete
the reconstruction. Common learning-basedmethods include
manifold learning [7], sparse coding methods [8], etc. Gradi-
ent priors [3, 9, 10], non-local self-similarity priors [11–13]
and sparsity priors [14–16] are some typical image priors.
These methods are able to recover sharp edges and sup-
press aliasing artifacts. However, the prior imposed on the
HR image will affect the performance of these methods to a
relatively large extent, and the reconstruction effect is poor
when the zoom scale of the image is large.

Yang et al. [17] used the sparseness of natural images,
introduce the theory of compressed sensing, build a dic-
tionary that can sparsely represent image blocks through
dictionary learning, and then, the reconstructed image can
be generated through the linear combination of the dic-
tionary and the sparse representation coefficients obtained
by linear programming, so as to restore the high-frequency
details of the image and achieve better results. On the basis
of Yang, Zeyde et al. [18] used K-SVD to train the dic-
tionary, which not only greatly accelerated the dictionary
training time but also improved the efficiency of learning.
Comparedwith themethod ofYang et al. [17], the reconstruc-
tion effect Significant improvement. After that, Timofte et al.
[19] performed manifold learning on dictionaries obtained
by dictionary sparse training, which accelerated the image
reconstruction time while ensuring the image reconstruc-
tion effect. Subsequently, he proposed an improved A +
algorithm (Timofte et al. [20]) which resulted in faster
training times and improved reconstruction quality. Perez-
Pellitero [21] proposed an improved SR linear regressor
training strategy and a reverse search method for accelerat-
ing regression-based SR methods. Zhao et al. [22] proposed
a multi-resolution dictionary learning (MRDL) model that
not only restores details well, reduces aliasing and noise, but
also have a large improvement in computational efficiency.
Zhang et al. [23] proposed a joint super-resolution framework
with structurally modulated sparse representations, which

also improves the performance of image super-resolution.
But all the work are based on a single-layer training dictio-
nary for reconstruction, which leads to the fact that if the
reconstruction effect is expected to be good, the size of the
trained dictionary is relatively large, and the deep features of
the image in these methods do not have much mention and
attention.

Tariyal et al. [24] proposed the method of deep dictio-
nary learning (DDL). In single-layer dictionary learning,
one utilizes the learned dictionary to synthesize data from
the coefficients. DDL extends this concept from a single
layer to multiple layers, learning a multi-layer dictionary so
that the deepest coefficients can be used to synthesize data.
Mahdizadehaghdam et al. [25] proposed a new model that
attempts to learn a deep dictionary for classification tasks.
Comparedwith traditional deep neural networks, deep dictio-
nary learningmethods usuallyfirst divide images into patches
and extract features at the patch level, which is the most
obvious difference between it and the deep neural network.
The learned patch-based feature dictionary is then used to
transform the input data into a global sparse feature represen-
tation. Song et al. [26] proposed multi-layer discriminative
dictionary learning (MDDL) with local constraints for image
classification. Through multi-layer dictionary learning, a
robust dictionary is learned in the last layer, and the sepa-
rability of encoded vectors belonging to different categories
is improved compared to other methods. Classification accu-
racy is also guaranteed. The classification accuracy is also
guaranteed. Tang et al. [27] proposed a new deep-to-point
encoding network for image multi-classification problems.
Thereafter, Montazeri et al. [28] proposed a multi-layer K-
SVD method, which was also used to solve classification
problems. However, image super-resolution reconstruction
using deep dictionary learning is relatively rare. Recently,
Huang et al. [29] proposed an image super-resolution model
for deep dictionary learning. Different from other multi-
layer dictionaries, their architecture contains L-1 analysis
dictionary and synthesis dictionary for extracting high-level
features. However, the results are slightly deficient with
the method proposed in this paper. Singhal et al. [30] pro-
posed deep coupled dictionary learning for solving the image
inverse problem. Inspired by such research results, this paper
will propose an improved image super-resolution reconstruc-
tion method for the limitations of image super-resolution
reconstruction methods through dictionary learning. In the
training part, this paper uses the deep dictionary learning
method to learn the deep dictionary, and then uses the A +
method to complete the super-resolution reconstruction of
the image. Experimental results show that in the case of the
same dictionary size, the proposed algorithm in this paper
has good improvements in PSNR and SSIM, and effectively
reduces the dictionary size.
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The main contributions to our work are summarized as
follows:

(1). A new method of super-resolution based on deep dic-
tionary learning is proposed.

(2). While ensuring the reconstruction effect, the size of
the dictionary is reduced and the reconstruction time is
shortened.

(3). Compared with some classical methods, our method
performs better with the same dictionary size. Com-
pared with some methods in recent years, our method
is also quite competitive.

The rest of the paper are organized as follows. The sec-
ond part outlines the relevant technologies and concepts used
in our approach. The third part introduces the detailed pro-
cess of the method. In Sect. 4, we conducted an experimental
evaluation of the proposed scheme, and in Sect. 5, we sum-
marized our work.

2 Related work

This section details the main methods involved in the pro-
posed scheme.

2.1 Deep dictionary learning

The shallow dictionary learning model is:

X � DZ (1)

whereX is the training data,D represents the dictionary, andZ
is the sparse coefficient.

DDL draws on the idea of deep learning, and further
extracts more abstract deep features by extending shallow
dictionary learning to multiple layers. Figure 1 shows a
schematic diagram of two-layer dictionary learning. Mathe-
matically, it can be modeled as:

X � D1ϕ(D2Z2) (2)

here ϕ Is a nonlinear activation function. Extending this
idea, the problem of multi-level dictionary learning can be
expressed as:

X � D1ϕ(D2ϕ(. . . ϕ(DN ZN ))) (3)

2.2 Anchored neighborhood regression

In the image super-resolution problem, most of the neigh-
borhood embedding (NE) and sparse coding (SC) methods

Fig. 1 Schematic diagram of two-layer deep dictionary learning

use the l1 norm of coefficients to constrain or regularize the
least squares (LS) problem, resulting in a high computational
capacity requirement for the algorithm. In order to solve this
problem, we can reformulate the problem as the least square
regression of l2 norm regularization of coefficients. There-
fore, this paper uses Anchored Neighborhood Regression
(ANR) to transform the problem into solving the following
optimization problems:

min
β

‖ y − Nlβ‖22 + λ‖β‖2 (4)

where, y represents the input LR patches feature, and Nl

represents the neighborhood of LR dictionary space, β

Represents the sparse coefficient,λ Is the regularization coef-
ficient. The algebraic solution of the optimization problem
can be expressed as:

β � (
NT

l Nl + λI
)−1

NT
l y (5)

Since the sparse coefficients of the LR dictionary and the
HR dictionary are shared, that is, their sparse coefficients are
the same, then the reconstructed HR patches can be written
as:

x � Nhβ (6)

where x is the reconstructedHRpatches, and Nh is the neigh-
borhood of the HR dictionary space corresponding to Nl .
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For the atoms in the learned dictionary, each atom selects
its K-nearest neighbor atoms, and define these neighbor
atoms as the neighborhood of the atom. Once the neigh-
borhood is defined, a separate projection matrix P j can be
calculated for each dictionary atom d j according to its neigh-
borhood. Then, the super-resolution problem can be solved
by calculating the adjacent atom d j of each input patches fea-
ture y in the dictionary, and then using the stored projection
matrix P j to map it to the HR space:

x � P j y (7)

This method is an approximation of NE method with low
complexity, so it can greatly reduce the execution time and
time complexity of the algorithm.

2.3 Adjust anchored neighborhood regression(A +)

In ANR and other sparse coding methods, training samples
are only used in the dictionary construction (learning) stage,
while the adjusted anchored neighborhood regression (A +
) algorithm is different. When looking for the neighborhood
of each atom (calculated in the training phase and used in the
reconstruction phase), the neighborhood used for regression
is obtained from the training sample set. Therefore, training
samples in the reconstruction phase is also very important.
The ANRmethod is used again to conduct regression during
training. The difference is that the neighborhood is defined
based on training samples instead of sparse dictionary atoms.
Therefore, the optimization problem is transformed into:

min
δ

‖ y − Slδ‖22 + λ‖δ‖2 (8)

Here, the matrix Sl is used instead of Nl as the neighbor-
hood of the atom, which represents the K closest training
samples to the dictionary atoms that matching the input
patches y.

3 Proposed scheme

In this section, we introduce the details of the proposed
scheme. The method learns the required high- and low-
resolution dictionary from the training set through deep
dictionary learning, and selects dictionary atomic pairs to cal-
culate the projectionmatrix. Finally, the test image is read and
reconstructed through the dictionary and projection matrix.
The symbols involved are shown in Table 1.

Table 1 The notations used in this paper

Notations Description

X LR training data

Y HR training data

D Learned dictionary

Z Sparse coefficient

D1 The first layer dictionary

Z1 The first layer coefficients

λ Regularization factor

I Regularization termi

ϕ Activation function

D2 The second layer dictionary

Z2 The second layer coefficients

ZN−1 The (N-1)th layer coefficients

DN The Nth layer dictionary

ZN The Nth layer coefficients

Dl LR dictionary

Dh HR dictionary

Sl Neighborhood of LR dictionary atoms

Sh Neighborhood of HR dictionary atoms

β Sparse coefficients when reconstructing

P j Projection matrix

3.1 Pretreatment

The image super-resolution algorithm usually divides the
image into blocks in the spatial domain, carries out super-
resolution reconstruction on the image patches, fuses the
reconstructed images of every patch, and then, the super-
resolution reconstruction is completed. The spatial charac-
teristics of the original image patches cannot represent the
image well. The common practice is to subtract the average
value and divide it by the standard deviation to normalize
the image contrast. The commonly used image features are
the first and second derivatives of image patches. The per-
formance of these two feature types seems similar, while
Bevilacqua et al. [31] showed that the performance of using
only the average subtraction is slightly better than that of
using only the first derivative and second order derivative. In
this paper, the same features as Zeyde et al. [18] are used to
extract the first and second order features of an image patch,
and PCA is applied to reduce the dimensions.

We subtract the LR image bicubically interpolated image
from the HR image to create a normalized HR block. The
patches generated from the SR process are added to the bicu-
bic interpolated image of the LR input image (overlapping
pixel values are averaged) to reconstruct the output.
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3.2 Dictionary construction

Dictionary construction is critical to the performance of
any SR reconstruction method with sparse representations.
Generally speaking, the performance of the algorithm is pos-
itively correlated with the size of the dictionary, that is, the
larger the dictionary, the better the effect, but this also brings
higher computational costs. The LR input image itself can
be used to build a dictionary, in which case there will be an
"inner" dictionary [32].However,manymethods prefer to use
different images to build an "external" dictionary beyond the
input query.

In the dictionary construction process of this paper, the
same set of training samples are used as those used by Zeyde
et al. [23] and Yang et al. [17]. For the dictionary learning
method, this paper draws on the deep dictionary learning
method proposed by TARIYAL et al. [29].

For single-layer dictionaries, D and Z can be obtained by
solving the following optimization problems:

min
D, Z

‖X − DZ‖2F (9)

For the problem of sparse representation, the purpose is
to learn the basis that can represent samples in a sparse way,
that is, Z is required to be sparse. The most commonly used
algorithm to solve this problem is K-SVD algorithm. Funda-
mentally, it solves the following optimization problems:

min
D, Z

‖X − DZ‖2Fs.t .‖Z‖0 ≤ ε (10)

For deep dictionary learning, as shown in Eq. (3), the pro-
posed method uses the greedy learning method to learn one
layer at a time, that is, first learn the dictionaries and coeffi-
cients of the first layer:

min
D1, Z1

‖X − D1Z1‖2F (11)

Z1 is not required to be sparse, except for the coefficient
of the last layer.

The above optimization problems can be solved by alter-
nately solving D1 and Z1, namely:

Z1 � (
DT
1 D1 + λI

)−1
DT
1 X (12)

D1 � Z1XT (
Z1ZT

1 + λI
)−1 (13)

alternate the above two processes to solve.
For the second layer, we need to solve the following prob-

lems:

min
D2, Z2

‖ϕ−1(Z1) − D2Z2‖2F (14)

it can also be solved by alternately solution, that is:

Z2 � (
DT
2 D2 + λI

)−1
DT
2 ϕ−1(Z1) (15)

D2 � Z2ϕ
−1(Z1)

T (
Z2ZT

2 + λI
)−1 (16)

solve alternately until the last layer:

min
DN , Z

‖ϕ−1(ZN−1) − DN ZN‖2F + λ‖ZN‖0 (17)

Among them, adding a regularization term requires the
last layer coefficient ZN to be sparse. The last layer can be
solved using K-SVD method.

First, use deep dictionary learning to learn the final LR
dictionary through LR image patches, and the resulting final
LR dictionary can be expressed as:

Dl � D1ϕ(D2ϕ(. . . ϕ(DN ))) (18)

whereϕ is the nonlinear activation function. Then, by forcing
Dh to share the same sparse coefficients as the last layer
in Dl , Dh can be built from the sparse coefficients and HR
patches,which can be calculated by the following expression:

Dh � Yϕ(ZN )T
(
ϕ(ZN )ϕ(ZN )T

)−1 (19)

where y represents the features of the HR patches, and ZN is
the sparse coefficient learned by the last layer of dictionary
learning. The process of dictionary construction is shown in
Fig. 2.

3.3 Sampling anchor neighborhoods

In order for robust regressors to be anchored to dictionary
atoms, we need to have a sample neighborhood centered on
the atom, in the sense of Euclidean distance, or up to the unit
l2 norm, on the surface of the unit hypersphere. The local
manifold on the unit hypersphere can be approximated by
a set of adjacent samples. At the same time, since we have
a consistent scale factor between the LR feature and its HR
patch at the time of feature extraction, when we bring the
LR patch feature into the hypersphere by l2 normalization,
we must also pass the same factor by the corresponding HR
patches are scaled to linearly transform which aims to pre-
serve the relationship between LR and HR spaces.

In the LR dictionary, each atomfinds several atoms closest
to it to form the neighborhood Sl , these atoms are extracted
from the LR patches in the training set, and the distance
metric used for the nearest neighbor atom search is the anchor
Euclidean distance between atoms and training samples; in
theHRdictionary, the corresponding atoms are also extracted
to form the neighborhood Sh, which is also extracted from the
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Fig. 2 dictionary building

HRpatches in the training set. Compute the projectionmatrix
between these LR, HR atoms. After traversing all dictionary
atoms, in the end, each atom has a corresponding group of
neighbor atoms and a projection matrix. The calculation of
the projection matrix will be described in detail in the next
section.

3.4 Super-resolution reconstruction

Input the LR image to be processed and segment it with the
same block size as the dictionary training stage, and then
perform feature extraction on all the LR image segmentation
blocks. For each LR feature block X, finding which class it
is closest to in the neighborhood of the LR dictionary atoms
can be expressed as the following optimization problem:

min
β

‖x − Slβ‖22 + λ‖β‖2 (20)

where x represents the input LR image patches, and Sl rep-
resents the neighborhood of the LR dictionary atoms. Solve
the above optimization problem to get the coefficient β. The
algebraic form solution can be expressed as:

β � (
STl Sl + λI

)−1
STl x (21)

Directly use the projection matrix to which this class
belongs to obtain the corresponding HR block Y . which is:

y � Shβ (22)

where, y represents the output HR image patch, and Sh
represents the neighborhood of the HR dictionary atom cor-
responding to Sl . which is:

y � Sh
(
STl Sl + λI

)−1
STl x (23)

According to Eq. (7), the projection matrix can be
expressed as:

P j � Sh
(
STl Sl + λI

)−1
STl (24)

after the sampling of the LR neighborhood and the HR
neighborhood is completed, the projection matrix can be cal-
culated.

The calculation is performed on all input image patches
until all input low-resolution image patches have corre-
sponding reconstructed high-resolution image patches. All
the reconstructed high-resolution image blocks are pasted in
reverse according to the previous segmentation coordinates
(the average value of the overlapping area between blocks
is calculated) to obtain the final high-resolution image. The
super-resolution reconstruction process is shown in Fig. 3.

4 Experimental results and analysis

This section compares the proposed method with several
typical image super-resolution reconstruction methods NE
+ LLE, Yang [17], Zeyde [18], ANR [19], GR [19], MCSR
[33], A + (same dictionary size) [20] and CDDL[30]. At
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Fig. 3 super-resolution reconstruction

Table 2 PSNR/dB of each algorithm with different zoom scales on the Set5 dataset

Image Scale Yang Zeyde GR ANR NE + LLE MCSR A+ Our method

Baby – 38.20 38.30 38.40 38.30 – 38.13 38.44

Bird – 39.90 39.00 40.00 40.00 – 38.76 41.08

Butterfly × 2 – 30.60 29.10 30.40 30.40 – 28.83 31.98

Head – 35.60 35.60 35.60 35.60 – 35.51 35.72

Woman – 34.50 33.70 34.50 34.50 – 33.57 35.24

Average – 35.76 35.14 35.82 35.76 – 34.96 36.49

Baby 34.30 35.10 34.90 35.10 35.10 35.00 34.59 35.10

Bird 34.10 34.60 33.90 34.60 34.60 35.40 33.49 35.38

Butterfly × 3 25.60 25.90 25.00 25.90 25.70 28.80 24.77 27.14

Head 33.20 33.60 33.50 33.60 33.60 33.60 33.3 33.73

Woman 29.90 30.40 29.70 30.30 30.20 31.40 29.36 31.12

Average 31.42 31.92 31.4 31.9 31.84 32.80 31.1 32.49

Baby – 33.10 32.80 33.00 33.00 32.90 32.55 33.24

Bird – 31.70 31.30 31.80 31.70 32.40 31.03 32.58

Butterfly × 4 – 23.60 23.10 23.50 23.40 25.90 22.82 24.34

Head – 32.20 32.10 32.30 32.20 32.30 31.98 32.51

Woman – 27.90 27.40 27.80 27.70 28.80 27.17 28.64

Average – 29.70 29.34 29.68 29.60 30.50 29.11 30.26

The best result in each row are shown in bold

the same time, our proposed method is compared with some
methods in recent years, these methods are Huang’s method
[29], recurrent residual regressor (RRR) [34], single image
super-resolution (SISR) [35], based on deep learning-dilated
convolution (DC) [36] and multi-scale encoder decoder
(MSED) [37]. By using the most commonly used PSNR and
SSIM in image evaluation indicators for objective evaluation.
Where PSNR stands for peak signal-to-noise ratio and SSIM

for structural similarity. Its expressions are:

PSN R � 10log10
(
2552·MN
‖x̂−x‖2

)
(25)

SSI M � (2μx̂μx+C1)(2σ x̂ x+C2)(
μ2
x̂+μ2

x̂+C1
)(

σ 2
x̂ +σ 2

x̂ +C2
) (26)

where x̂ represents the reconstructed image, x represents the
original image, M and N represent the row and number of the
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Table 3 SSIM of each algorithm at different zoom scales on the Set5 dataset

Image Scale Yang Zeyde GR ANR NE + LLE MCSR A + Our method

Baby – 0.9362 0.9648 0.9645 0.9631 – 0.9628 0.9643

Bird – 0.9837 0.9812 0.9844 0.9834 – 0.9804 0.9862

Butterfly × 2 – 0.9532 0.9297 0.9514 0.9509 – 0.9290 0.9643

Head – 0.8818 0.8848 0.8838 0.8829 – 0.8813 0.8847

Woman – 0.9647 0.9604 0.9656 0.9648 – 0.9595 0.9690

Average – 0.9493 0.9442 0.9499 0.9490 – 0.9426 0.9537

Baby 0.9043 0.9211 0.9216 0.9225 0.9210 0.9191 0.9155 0.9218

Bird 0.9391 0.9477 0.9404 0.9488 0.9477 0.9518 0.933 0.9543

Butterfly × 3 0.8611 0.877 0.8316 0.8717 0.8705 0.9213 0.8250 0.9076

Head 0.8024 0.8204 0.8223 0.8239 0.8226 0.8230 0.8166 0.8262

Woman 0.9037 0.9176 0.9048 0.9168 0.9161 0.9280 0.8969 0.9282

Average 0.8821 0.8968 0.8841 0.8968 0.8956 0.9080 0.8774 0.9076

Baby – 0.8797 0.8782 0.8811 0.8797 0.8716 0.8722 0.8835

Bird – 0.8999 0.8908 0.9018 0.9004 0.9051 0.8842 0.9136

Butterfly × 4 – 0.7965 0.7483 0.7887 0.7850 0.8641 0.7395 0.8365

Head – 0.7736 0.7734 0.7762 0.7751 0.7774 0.7685 0.7825

Woman – 0.8643 0.8459 0.8619 0.8608 0.8913 0.8390 0.8836

Average – 0.8428 0.8237 0.8419 0.8402 0.8628 0.8207 0.8599

The best result in each row are shown in bold

Fig. 4 PSNR at scale 3 on set14 dataset
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Table 4 Comparison with recent methods(zoom scale 2)

Images PSNR SSIM

RRR SISR Huang DC MSED CDDL Our
method

RRR SISR DC MSED CDDL Our
method

set5

Baby 36.47 37.16 38.21 38.38 38.34 38.38 38.50 0.84 0.86 0.96 0.96 0.96 0.96

Bird 36.86 37.46 39.12 38.76 38.76 40.60 41.22 0.91 0.98 0.98 0.96 0.98 0.99

Butterfly 26.85 30.14 29.17 32.50 31.99 32.88 32.03 0.84 0.85 0.96 0.93 0.97 0.96

Head 33.55 34.67 35.53 35.74 35.61 35.78 35.75 0.81 0.80 0.87 0.87 0.88 0.88

Woman 32.16 34.01 33.85 35.26 35.17 35.60 35.30 0.86 0.97 0.97 0.96 0.98 0.97

Average 33.18 34.69 35.18 36.13 35.97 36.65 36.56 0.85 0.89 0.95 0.94 0.95 0.95

set14

Baboon 23.28 24.07 – 25.16 25.29 25.24 25.62 0.67 0.68 0.74 0.75 0.76 0.76

Barbara 26.19 28.02 – 28.23 28.57 28.53 28.73 0.79 0.78 0.86 0.87 0.88 0.88

Brigde 26.14 27.11 – 27.63 27.40 27.66 27.75 0.75 0.74 0.84 0.84 0.85 0.85

Coastguard 28.30 29.19 – 30.51 30.43 30.69 30.56 0.75 0.75 0.84 0.85 0.86 0.84

Comic 26.33 27.05 – 28.30 27.53 28.74 28.24 0.81 0.81 0.91 0.89 0.92 0.91

Face 34.04 34.65 – 35.77 35.69 35.79 35.72 0.80 0.80 0.88 0.88 0.88 0.88

Flower 30.41 31.10 – 33.38 33.75 33.78 33.02 0.85 0.84 0.93 0.92 0.95 0.93

Foreman 31.71 31.88 – 34.59 34.50 34.58 37.03 0.81 0.85 0.96 0.95 0.96 0.97

Lena 33.47 34.55 – 36.59 36.56 36.99 36.58 0.82 0.83 0.93 0.93 0.94 0.93

Man 29.50 30.23 – 30.99 30.28 31.25 30.85 0.79 0.78 0.87 0.87 0.89 0.89

Monarch 33.40 35.22 – 37.64 36.51 37.90 37.00 0.87 0.87 0.97 0.97 0.98 0.98

Pepper 33.37 34.10 – 35.52 34.98 35.74 37.00 0.81 0.82 0.92 0.91 0.93 0.92

2ppt3 26.38 28.04 – 30.45 30.30 30.26 30.08 0.80 0.80 0.97 0.95 0.97 0.98

Zebra 30.74 31.32 – 33.44 33.45 33.44 33.66 0.83 0.94 0.94 0.92 0.91 0.94

Average 29.52 30.47 – 32.01 31.80 32.19 32.27 0.80 0.81 0.90 0.89 0.91 0.90

The best result in each row are shown in bold

image, μ represents the mean, σ 2 represents the variance, σ
represents the covariance, and C1 and C2 are constants. The
larger the PSNR value, the better the reconstructed image
quality. The closer the SSIM value is to 1, the more similar
the reconstructed image is to the original image.

The datasets used in the experiment set5, set14, BSDS100,
Manga109 and Urban100. Set5 and Set14 datasets are low-
complexity single image super-resolution data sets based on
non-negative neighborhood embedding. These two training
sets are used for single image super-resolution reconstruc-
tion, that is, to reconstruct HR images based on LR images
to obtain more details. BSDS100 is a data set containing 100
natural images, Urban100 is a data set containing 100 Urban
landscape images, and Manga109 is a data set containing
109 comic images. These three data sets are very challenging
data. sets because they contain different scenes and genres.

4.1 Experimental parameters

The experimental platform is Intel Core i7-
11800H@2.30 GHz, the operating system is 64bit

Windows10 Professional Edition, Matlab R2019a. The
dictionaries used in this experiment are two-layer dictionar-
ies. When the magnification is 2, 3 and 4, the size of the
deep dictionaries are 2048 × 1024 × 512, 4096 × 2048 ×
1024 × 512, and 8192 × 4096 × 2048 × 1024, respectively.
The neighborhood size K � 2048.

4.2 Experimental results and analysis

Tables 2 and 3 give the quantitative experimental results on
the set5 dataset. Figure 4 shows the experimental results of
the method proposed in this paper when the scale is 3 on the
set14 dataset.

Through the experimental results, it is not difficult to
find that compared with some classic methods, the proposed
method in this paper has obvious improvements in PSNR and
SSIM. Table 4 shows the comparison results of the proposed
method with recent methods when the zoom scale is 2. It can
be seen that compared with some methods in recent years,
our method is also very competitive in PSNR, and in terms
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Table 5 PSNR and SSIM on the BSDS100 dataset, Manga109 dataset, and Urban100 dataset

Dataset Scale Zeyde GR ANR NE + LLE A + MSED CDDL Our method

BSDS100 × 2 PSNR 29.57 29.57 29.58 29.57 31.18 31.42 31.66 31.66

SSIM 0.8436 0.8436 0.8436 0.8436 0.8873 0.8938 0.9003 0.9001

× 3 PSNR 27.22 27.23 27.22 27.22 28.30 28.56 28.70 28.72

SSIM 0.7390 0.7394 0.7391 0.7390 0.7834 0.7846 0.7860 0.7862

× 4 PSNR 25.98 25.99 25.98 25.98 26.84 27.03 27.21 27.20

SSIM 0.6682 0.6688 0.6684 0.6682 0.7090 0.7103 0.7130 0.7123

Manga109 × 2 PSNR 30.85 30.83 30.86 30.85 35.22 35.59 35.71 35.70

SSIM 0.9345 0.9344 0.9346 0.9345 0.9664 0.9691 0.9699 0.9702

× 3 PSNR 26.96 26.99 26.99 26.96 29.28 29.57 29.65 29.66

SSIM 0.8546 0.8554 0.8554 0.8547 0.9101 0.9218 0.9336 0.9342

× 4 PSNR 24.94 24.95 24.94 24.94 27.02 27.09 27.31 27.34

SSIM 0.7858 0.7859 0.786 0.7858 0.8471 0.8499 0.8510 0.8522

Urban100 × 2 PSNR 26.90 26.89 26.91 26.90 29.18 29.44 29.52 29.55

SSIM 0.8405 0.8405 0.8407 0.8405 0.8927 0.8986 0.9004 0.9011

× 3 PSNR 24.48 24.48 24.48 24.48 26.04 26.22 26.36 26.38

SSIM 0.7353 0.7354 0.7354 0.7353 0.7979 0.8088 0.8120 0.8112

× 4 PSNR 23.16 23.17 23.17 23.16 24.35 24.50 24.58 24.62

SSIM 0.6583 0.6585 0.6584 0.6582 0.7192 0.7211 0.7234 0.7225

The best result in each row are shown in bold

of SSIM, our method has achieved good results on most of
the test pictures. Table 5 gives the quantitative experimental
results on the BSDS100, Manga109 and Urban100 datasets.

Figures 5 and 6 show the visualization experimental
results of the super-resolution reconstructed part of the
image. It can be seen from the figure that the reconstruction
result of bicubic interpolation is the worst, not only quite
blurry, but also missing a lot of high-frequency detail infor-
mation, and the visual effect is not good compared with the
original image; the algorithmofYang et al. has improved per-
formance and reconstructed the original image, and the image
retains most of the information of the original image, but the
edge of the reconstructed image is not clear enough, and the
overall effect is not particularly good; the edge information
of the reconstructed image of Zeyde’s algorithm is better than
that ofYang’s, but the visual effect of the reconstructed image
is slightly poor; the reconstructed image of the NE + LLE
algorithm has good detailed information, but the graininess is
strong, which affects the vision; the A +method has the same
dictionary size as the method in this paper, the reconstruc-
tion effect is not particularly ideal, and some places are more
Blurred; the proposedmethod in this paper combinesA+ and
deep dictionary learning algorithm to reconstruct the image
with super-resolution, so that the edge of the reconstructed
image is clear, and the visual effect is better than the previ-
ous methods. We have enlarged an area in the results, and the
enlarged area is shown as a box in the figure. The enlarged
image of Fig. 5 shows that the proposed method not only has

fewer artifacts but also has a clearer reconstruction effect than
other methods. The enlarged image of Fig. 6 shows that the
proposed method better removes jagged edges that appear in
other methods, and the visual effect is also better.

4.3 Ablation experiment

We conducted some parameter-related experiments on the
proposed method. First, we conducted experiments with dif-
ferent number of layers and different dictionary sizes to
observe the effect. Figure 7a shows the PSNR of different
λ on the set5 data set at a magnification factor of 2 and a
dictionary size of 1024 × 512 × 256. The spacing of λ is
set to 0.05. It can be seen that as λ increases, the PSNR start
to increases and then gradually decreases. It can be inferred
that the PSNR reaches the highest peak when λ is around
0.15. Figure 7b shows the PSNR on the set5 data set when
the amplification factor is 2, the first and last dictionary sizes
are 1024 and 256 respectively, and λ is 0.1, and the number
of dictionary layers is different. As the number of interme-
diate layers increases, PSNR shows a downward trend after
being flat at the beginning. It is speculated that too many
layers will cause over-fitting. Figure 7c shows the PSNR on
the set5 dataset when the magnification is 2, λ is 0.1, the first
layer dictionary size is 2048, the number of dictionary layers
is different, and the last layer dictionary size is different. It
can be seen that the PSNR gradually decreases because the
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Fig. 5 The reconstruction effect of each algorithm of butterfly when the zoom scale is 3

Fig. 6 The reconstruction effect of each algorithm of foreman when the zoom scale is 3
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Fig. 7 a PSNR with different λ (top left), b PSNR with different number of layers (top right), c PSNR with different number of layers and different
tail layer dictionary sizes (bottom)

overall dictionary size gradually decreases, which reduces
the reconstruction effect.

5 Conclusion

In view of the reason that the image super-resolution recon-
struction algorithm ignores the image deep features, this
paper proposed a deep dictionary model for image super-
resolution, which can extract the image features to train the
deep dictionary, and then carries out super-resolution recon-
struction by adjust anchored neighborhood regression. The
algorithm in this paper effectively reduces the size of the dic-
tionary.The experimental results show that the reconstruction
results of the algorithm in this paper aremore ideal than those
of multiple image super-resolutionmethods in the case of the
same dictionary size, and have achieved good improvement
in the objective evaluation criteria PSNR and SSIM.
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