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Abstract
Road extraction is a crucial task that requires high-resolution remote sensing images with wide-ranging applications in urban
planning, navigation, and autonomous vehicles. However, this task is challenged by complex road structures and the need to
capture long-range dependencies. RoadTransNet is a new road extraction architecture that aims to solve these problems that
making the power of the Swin Transformer and Feature Pyramid Network (FPN) while introducing Transformer-like attention
mechanisms. RoadTransNet combines a robust convolutional backbone, inspired by the Swin Transformer, with an FPN to
capture multi-scale features effectively. The Transformer-like attention mechanisms, including multi-head self-attention and
cross-attention, enable the network to represent context information on a local and global scale, ensuring accurate road
extraction. The skip connections facilitate gradient flow, preserving fine details, and decoding layers transform extracted
features into precise road predictions. Our experiments are conducted using the RoadTransNet, which is subject to rigorous
assessment on the following datasets: the DeepGlobe road extraction challenge Dataset and the CHN6-cUG roads dataset. The
outcomes indicate its superior performance in achieving high-level metrics of precision and recall, as well as achieving high
F1 scores and IoU. The comparative evaluations performed against traditional methods showcase RoadTransNet’s ability
to capture complex road structures and long-range dependencies. The RoadTransNet stands as a comprehensive solution
for the extraction of roads in high-resolution remote sensing images, offering promising opportunities for improving urban
planning, navigation systems, and autonomous vehicle technologies. Its success lies in the synergy of convolutional and
transformer-based architectures, paving the way for advanced remote sensing applications in smart cities and others.

Keywords RoadTransNet · Swin transformer · Feature pyramid network · Self-attention · Cross-attention · Skip connections ·
Decoder · Road extraction

1 Introduction

Remote sensing road extraction acts a fundamental task in a
variety of essential applications, ranging fromurbanplanning
and navigation systems to the development of autonomous
vehicles [1]. The provision of accurate and timely road
network data is essential for the management of urban infras-
tructure, traffic analysis, disaster response, and emerging
technologies such as self-driving cars. With the advent of
high-resolution satellite and aerial imagery, the potential
for automating road extraction processes has grown signif-
icantly. However, extracting road networks from complex
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and diverse environments remains a formidable challenge
[2]. Furthermore, urban environments often encompass long-
range dependencies among road segments, which cannot be
effectively captured by traditional computer vision methods
[3].

Traditional road extraction techniques, including texture
analysis and mathematical morphology, have been time-
consuming and error-prone, as they heavily rely on hand-
crafted features and human operator intervention [4]. One of
the foremost challenges is the intrinsic complexity of urban
environments, which often leads to the misclassification of
roads due to their visual similarity with other urban features.
In areas characterized by complex urban settings, it becomes
essential to extract roads with high precision while minimiz-
ing false positives.

Additionally, remote sensing (RS) imagery tends to
lack effective capture of long-distance dependencies using
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DCNN-based models [5]. Existing deep learning architec-
tures, while adept at local feature extraction, struggle to
capture the global context required to disambiguate roads
from other objects accurately. Motivated by the pressing
need for more robust road extraction methods capable of
addressing the challenges presented by complex urban envi-
ronments, this research introduces a novel approach. We
propose the integration of a Transformer-like attentionmech-
anism into the road extraction pipeline, aiming to improve the
model’s capacity to detect long-distance dependencies and
contextually relevant data. The Transformer architecture, ini-
tially designed for natural language processing, has exhibited
remarkable success in various computer vision tasks bymod-
eling dependencies among different positions in an image or
sequence. Transformers rely on the self-attentionmechanism
as a fundamental component, which enables the capture of
global context information by assigning attention weights
to all positions within an input sequence. We hypothesize
that by adapting Transformer-like attention to road extrac-
tion, we significantly improve the model’s ability to identify
roads amidst complex urban elements.

Our research on RoadTransNet makes several significant
contributions to the field of road extraction:

• Innovative architecture:RoadTransNet is a novel architec-
ture that effectively addresses the challenges of complex
road structures and long-range dependencies. By combin-
ing elements from the Swin Transformer, Feature Pyramid
Network (FPN), and Transformer-like attention mecha-
nisms, a powerful and versatile road extraction model is
developed.

• Effective feature extraction: RoadTransNet leverages a
Swin Transformer-based convolutional backbone, pre-
trained on ImageNet, to extract rich visual features. This
backbone provides a strong foundation for the model and
is designed to capture representations at both the low and
high levels of input RS images.

• Contextual information:Capturing of local andglobal con-
textual information is enabled by the use of multi-head
self-attention and cross-attention mechanisms. This helps
to bridge between the finer details and the large-scale
dependencies.

• Multi-scale features:TheFeature PyramidNetwork (FPN)
is integrated to enhance feature representation at multiple
scales. FPN’s lateral connections and top-down pathways
enable the model to detect road structures of varying
widths, high-resolution imagery requires a crucial capa-
bility to extract roads.

The leftover portions of this research work are Sect. 2
presents literature relating that focuses on extracting and
refining road features fromRS imagery for planning develop-
ment schemes. Section 3 outlines the RoadTransNet model

proposed to improve road feature extraction capability is dis-
cussed. In Sect. 4, the dataset used for experimentation and
the preprocessing steps applied are illustrated. In Sect. 5,
the results of the experiment, which were conducted using
bothqualitative andquantitativemeasures, are displayed.The
paper concludes in Sect. 6 with recommendations for future
research.

2 Related work

Multiple approaches designed with the aim of increasing
road extraction performance are summarized as follows:
attention-based cascaded network was introduced by Li et al.
[6]. Li et al. [7] illustrated a RemainNet model for extracting
roads from RS images. Images from the two road extrac-
tion datasets were used as test, validation, and training sets.
This method achieved only a 0.64 IoU value which requires
further improvements to increase segmentation accuracy.

Luo et al. [8] demonstrated the use of RS images to cre-
ate a bidirection transfer network (BDTNet) for extracting
roads. The BDTNet model yielded an IoU result of 67.21%
when evaluated using the DeepGlobe dataset. TransRoad-
Net model was introduced by Yang et al. [9] for extracting
roads utilizing RS images. This model achieved better road
extraction accuracy but has poor generalization ability. HU
et al. [10] suggested amultiscale deformable transfer network
(MDTNet). This method has achieved high IoU outcomes of
about 71.19% for DeeoGlobal road dataset. Wang et al. [11]
have developed a special type of neural network called the
dual-decoder-U-Net (DDU-Net) to make small-scale road
extraction more reliable and accurate when multiple roads
of different sizes were combined. Yan et al. [12] have intro-
duced a new regularized surface extraction model using a
graph-based neural network. Meanwhile, getting road sur-
face maps that were regular and well-defined was tough, and
a lot of manual labor was usually needed. Chandra et al. [13]
have demonstrated a technique for the detection of roads from
HRSi to focus on comprehending the cognitive processes,
knowledge, and reasoning utilized by the analyst when per-
forming the task.

Abdollahi et al. [14] have introduced a new type of deep
learning network called a VNet model that could create
high-quality road segmentation maps. Wei et al. [15] have
introduced a multistage framework to extract both road sur-
face as well as road centerline at the same time. However,
obtaining roads from high-resolution RMS images was still
challenging due to tree and building shadowing, road dis-
crimination, and intricate backgrounds. Luo et al. [16] have
designed AD-RoadNet that could help with decoding roads.
To assess the designed AD-RoadNet, additional information
such as ablation analysis, inference sizematter, and the labels
was of poor quality, and there were lots of different images
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that showed different levels of quality. Yin et al. [17] have
introduced a road extraction networkwhichwas referred to as
C2S-RoadNet. This model was capable of establishing long-
distance connections and making full use of global data, and
it was able to extract road informationmore effectively. Yang
et al. [18] introduced the SSEANet a semi-permeable edge-
aware network that enables RS of image segmentation.

TheRoadformer by Jiang et al. [19] suffers to extracts road
features because of inherent difficulty to maintain extraction
at high level at constant time. Christophe et al. [20] have
introduced a robust geometrical approach to provide an initial
extraction level. The algorithmwas highly efficient and had a
limited number of parameters Lan et al. [29] have introduced
an automated road extractionmodule utilizing global context
aware dilated convolution network. The implementation of
residual dilated layers has enlarged the receptive field and
aids in learning extra discriminative features. To extract and
congregate multidimensional global contextual information,
a pyramid pooling network was utilized. Their integration
has entitled the stronger feature representation capability of
framework. It performs well on small scale dataset while not
examined using large scale dataset.

2.1 Limitations of existingmethods

While deep learning-based methods have demonstrated sub-
stantial progress in road extraction, they continue to grapple
with several limitations, especially when dealing with com-
plex urban environments: (i) Intra-class Differences and
Interclass Similarities: Roads come in various forms, includ-
ing urban roads, rural roads, highways, and railways, each
with distinct intraclass differences. Furthermore, urban roads
often share high interclass similarities with other urban
features such as buildings and pavements, (ii) Failure in
Complex Scenes: Many state-of-the-art models that excel
in relatively simple scenes struggle when applied to com-
plex urban environments. The intricate urban layout and the
presence of diverse objects challenge the ability of these
models to distinguish roads from other features. (iii) Limited
Long-Range Dependency Modeling: current neural network
models often fall short of accurately capturing RS imagery
long-distance dependencies, (iv) High computational over-
head: Some deep learning architectures involve significant
computational overhead, making them less practical for real-
time or large-scale road extraction tasks. In light of these
limitations, this research introduces a novel approach that
leverages Transformer-like attention mechanisms to address
the challenges associated with capturing long-range depen-
dencies and contextual information in road extraction. The
proposed "RoadTransNet" architecture aims to revolutionize
the field by offering improved precision and generalization
across diverse urban environments.

3 Proposedmethodology: RoadTransNet

RoadTransNet is a novel road extraction architecture
designed to overcome the limitations of existing methods by
effectively capturing long-range dependencies and contex-
tual information. At its core, RoadTransNet (shown in Fig. 1)
combines a convolutional backbone, a Feature Pyramid Net-
work (FPN), and a Transformer-like attention mechanism.
Each of these component’s working procedures is detailed in
the following sub-sections.

3.1 Convolutional backbone layer

In RoadTransNet, the selection of a robust convolutional
backbone is a pivotal decision as it determines ability of net-
work to identify useful features in high-resolutionRS images.
For this purpose, the Swin Transformer architecture is cho-
sen as our convolutional backbone. Swin Transformer has
gained widespread recognition for its effectiveness in cap-
turing hierarchical features, making it an ideal choice for our
task of extracting roads.

Swim transformer module: The Swin Transformer archi-
tecture is characterized by its unique design, which combines
the strengths of both convolutional and self-attention mech-
anisms. The Convolutional Backbone consists of multiple
Swin Transformer layers stacked on top of each other. This
hierarchical feature extraction is essential for detecting road
structures at different scales and complexities.

Model pretraining: The convolutional backbone is trained
on ImageNet, prior to fine-tuning for road extraction. This
pretraining step helps the network learn rich visual features
from a diverse range of images, which are then leveraged for
the task of road extraction.

Each Swin Transformer layer within the Convolutional
Backbone is composed of the following key components:
(i) Patch Embedding: The input image is subdivided into
non-intersecting segments, and each segment is inserted into
a sub-dimensional space. This allows the network to focus
on localized information within each patch. (ii) Multi-Head
Self-Attention: In Swin Transformer, it allows each patch to
assist to other patches both locally and globally. This captures
important contextual information and long-range dependen-
cies within the image. (iii) Feedforward Neural Networks:
After attention mechanisms, the features are passed through
feedforward neural networks (FFNs) within each patch.
These networks perform non-linear transformations and cap-
ture complex relationships between features. (iv) Residual
Connections: To facilitate gradient flow and prevent vanish-
ing gradients, residual connections are added around each
layer. These connections allow gradients to flow smoothly
during training, enabling the network to obtain low-level as
well as high-level features efficiently.
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Fig. 1 Overall architecture of the proposed road extraction framework

These operations, combined with the hierarchical organi-
zation of the Swin Transformers layers, lead to the extraction
of high-quality features from the input images.

3.2 Feature pyramid network

FPN is integrated after the Convolutional Backbone to
enhance feature representation at multiple scales. This is par-
ticularly important for addressing the challenge posed by
multiscale road the structures. The top-down pathways and
lateral connections make up the FPN. These connections
enable the extraction of features at different spatial reso-
lutions, ensuring that the network effectively detects both
narrow and wide roads.

Lateral Connections: FPN includes lateral connections
that connect feature maps from different levels of the Con-
volutional Backbone. For each lateral connection, consider
the feature map at level i as Pi and the feature map from
the layer above (i + 1) as P(i + 1). Lateral connections are
achieved through 1 × 1 convolutions, and the equation for
lateral connections can be expressed as:

P ′
i � 1 × 1Conv

(
P(i+1)

)
(1)

here, P ′
i represents the feature map from lateral connections,

which is the result of applying a 1× 1 convolution to P(i+1).
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Top-down pathways: In addition to lateral connections,
FPN incorporates top-down pathways that involve upsam-
pling and merging feature maps from higher resolutions to
lower resolutions. It results in feature pyramids with rich
information at multiple scales. It is mathematically repre-
sented as,

P ′
(i−1) � Upsample

(
P ′
i

)
+ Pi (2)

In this equation, P ′
(i−1) represents the upsampled feature

map from the layer below (i − 1). Upsample() denotes the
upsampling operation to match the spatial dimensions, and
+ represents element-wise addition.

3.3 Transformer like attentionmechanism

RoadTransNet’s transformer-like attention mechanism helps
capture global and local context. The attention mechanism
operates in self-attention and cross-attention manner.

3.3.1 Self-attention

Self attention is an essential component of the transformer
architecture that enables each pixel in the feature map to
weigh its importance concerning other pixels. In the con-
text of road extraction, self-attention allows RoadTransNet
to concentrate on specific road segments while leaving out
irrelevant background data. For a given feature map X ∈
�(H×W×C), where H ,W , and C represent the height, width,
and channel numbers, respectively, self-attention computes
a weighted combination of the feature vectors at different
positions:

Y � Softmax

(
QKT

√
dk

)
.V (3)

where, Q, V and K are linearly projected queries, values and
keys derived from input feature map X ; Softmax is the soft-
max function that normalizes the attention scores; dk implies
key vector size.

This operation allows RoadTransNet to attend to rele-
vant spatial locations while suppressing noise and irrelevant
details.

3.3.2 Cross-attention

In addition to self-attention, RoadTransNet incorporates
cross-attention to capture global contextual information.
Unlike self-attention, cross-attention uses two distinct input
sequences, which means that, queries from input sequence
x, and values and keys from input sequence y with simi-
lar embedding sizes. Cross-attention considers information
from other image regions, enabling it to understand the

relationships between roads and surrounding features. Math-
ematically, cross-attention is expressed as:

Y � Softmax

(
QxK T

y√
dk

)

.Vy (4)

where Ky and Vy are linearly projected keys and values
derived from a different portion of the input feature map y,
and Qx is the linearly projected query from input sequence
x . By combining self-attention and cross-attention mecha-
nisms, RoadTransNet achieves a balance between local and
global information, allowing it to effectively capture road
context in complex scenes.

3.3.3 Positional encodings

To enable the transformer-like attention mechanism to con-
sider the spatial relationships between pixels, the Addition
of positional encodings to the input feature map. Position
encoding is a data structure that describes the absolute and
approximate positions of pixels in an image.

3.4 Skip connections and decoding layers

To enhance the training process and ensure that Road-
TransNet effectively captures both high-level semantics and
low-level details, the skip connections and decoding layers
are introduced into the architecture.

3.4.1 Skip connections

Skip connections allow the network to recover low-level
features from the Convolutional Backbone. Mathematically,
skip connections are realized through element-wise addition,
as follows:

Xskip � XConv_ Backbone + XTA (5)

where Xskip represents the feature maps obtained through
skip connections, XConv_Backbone denotes the feature maps
from the convolutional backbone and XTA signifies the high
level representations generated by the transformer like atten-
tion mechanism.

3.4.2 Decoding layers

The decoding process involves a series of convolutional and
activation layers that progressively refine the features. We
leverage the contextual understanding learned by the atten-
tionmechanism to guide the decoding process and ensure that
the final predictions align with the road structures present in
the input images. Mathematically, the decoding process is
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represented as:

Proad � Decoder(Xskip) (6)

where Proad represents the pixel-wise road probability map
and Decoder(Xskip) denotes the decoding layers responsible
for refining the features.

3.5 Activation function and loss function

The activation/transfer function utilized in RoadTransNet is
RectifiedLinearUnit (ReLU). It introduces non-linearity into
the network,which is essential for learning complex road pat-
terns and features. For RoadTransNet training, the loss/error
function is the Dice Loss. It measures the similitude between
the ground truth andpredicted roadmasks,making it effective
for handling imbalanced datasets and encouraging accurate
road extraction. Using the following expression, the Dice
Loss is computed,

Dice Loss � 1 − 2 · |P ∩ G|
|P| + |G| (7)

where P represents the predicted road mask, G represents
the ground truth road mask, |P ∩ G| is the intersected mask
regions between ground truth and predicted, |P| is predicted
mask of the total number in road pixel, and |G| is the total
road pixel count in the ground truth mask.

4 Experimental data and preprocessing

In this section, a detailed overview of the datasets utilized
in RoadTransNet for assessment and training is displayed,
along with the specific data preprocessing steps, augmen-
tation techniques, and the strategy employed for dataset
splitting.

4.1 Dataset description

Two primary datasets are employed for training and evaluat-
ing RoadTransNet:

DeepGlobe Road Extraction Challenge Dataset [21, 22]:
This dataset constitutes a fundamental component of our
training and evaluation data. It encompasses high-resolution
remotely sensed imagery obtained from areas in Thailand,
India, and Indonesia, with the following attributes. The
imagery boasts an impressive spatial resolution of 50 cm per
pixel, ensuring fine-grained visual details. Each image in the
dataset is sized at 1024 × 1024 pixels, offering an extensive
field of view for comprehensive road analysis. In accordance
with common practice, we partition the dataset is divided
into 1250 testing images and 4976 training images.

CHN6-CUG Roads Dataset [23]: It is another pivotal
component of our training and evaluation data and is curated
from Google Earth. It comprises images captured in 6 repre-
sentative cities of China, featuring following characteristics:
Image’s spatial resolution is 50 cm per pixel, allowing for
detailed urban and suburban analysis. Each image is format-
ted to 512× 512 pixels, providing a balanced representation
of different urban landscapes. The dataset is thoughtfully
divided into two subsets: 3608 training images are reserved
and 903 testing images are assigned.

4.2 Dataset preprocessing

To bolster model robustness and enhance training efficiency,
a series of data preprocessing and augmentation techniques
are judiciously applied: (i) Resizing: Feeding two differ-
ent dataset images with varied resolutions might impact the
model’s extraction performance. So, resizing is performed
on the images that scale the images into the desired range
without any information loss. In our work, the images are
resized to a pixel dimension of 512×512. (ii)Normalization:
Input images undergo normalization to ensure they exhibit
zero mean and unit variance. This standardization guaran-
tees uniform scaling across the entire dataset. (iii) Data
Augmentation:Augmentation procedures, including random
horizontal flips, random rotations, and random scaling, are
judiciously employed. These augmentations serve to enrich
the diversity of the training dataset, empowering the model
to generalize effectively across varying road structures and
environmental conditions.

4.3 Training process

The training process revolves around the fine-tuning of
RoadTransNet on the combined DeepGlobe and CHN6-
CUGdatasets, withmeticulous attention to hyperparameters.
RoadTransNet is optimized using the Adam optimization
algorithm. The choice of Adam is based on rigorous exper-
imentation to ascertain the best results. Using Adam opti-
mizer, the hyperparameters such as learning rate is set to
2 × 10−4, maximum training epochs to 100 and batch size
to 8.

5 Experimental results

Here, we meticulously show the results of simulation con-
ducted with RoadTransNet, offering both quantitative and
qualitative insights into its performance. The entire develop-
ment of this work is based on Pytorch framework v1.11.0,
running on Nvidia GeForce 3060 toolkit using intel core
i59400f, 12 GBmemory, andWindows 10 operating system.
Also, RoadTransNet’s performance is rigorously evaluated
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Table 1 Performance analysis
results of DeepGlobe Dataset Methods Metrics

Precision (%) Recall (%) F1-score (%) IoU (%) APLS (%)

A 82.72% 85.71% 84.78 82.83 69.73%,

B 80.92% 83.91% 86.87 84.98 75.71%

C 84.18% 76.77% 80.3 78.66 70.07%

D 70.05% 61.17% 61.35 61.09 69.72%

E 88.67% 85.07% 78.28 76.67 65.41%

F 90.75% 87.72% 89.27 87.66 57.92%

G 76.27% 72.09% 76.75 74.98 60.02%

H 76.27% 79.42% 78.16 76.34 70.13%

I 90.05% 92.85% 91.43 87.67 74.67%

J 93.04% 89.30% 91.35 87.67 87.74%

K 84.37% 82.11% 83.22 80.02 75.64%

Proposed 95.72% 95.06 94.86 92.10 92.47

Table 2 Performance analysis
results of CHN6-CUG Roads
dataset

Methods Metrics

Precision (%) Recall (%) F1-score (%) IoU (%) APLS (%)

A 67.02 76.04 75.34 60.43 68.36

B 56.47 58.78 67.53 68.02 74.45

C 76.93 75.49 68.43 65.32 68.34

D 68.43 62.07 71.01 63.80 62.79

E 56.89 80.30 77.90 61.27 64.49

F 87.56 56.87 65.93 56.43 56.76

G 63.09 63.46 69.26 52.87 59.54

H 74.39 72.02 86.32 63.76 70.02

I 80.45 85.43 78.63 70.98 73.78

J 72.03 68,05 84.07 82.46 85.03

K 79.35 79.44 79.39 65.93 81.97

Proposed 93.56 92.76 90.76 89.65 90.03

using a range of quantitative metrics: Precision, Recall, F1-
Score, and IoU. These metrics provide a comprehensive
assessment of themodel’s accuracy, completeness and spatial
alignment with the ground truth road network.

5.1 Quantitative results

This section evaluates the efficiency of the proposed Road-
TransNet in resolving RS road extraction tasks using quan-
titative metrics.

Table 1 shows the Precision, recall, f1-score, IoU, and
APLS rate analysis graph of different methods for the Deep-
Globe dataset. This comparison has gauged the exactness to
extract road features by the proposed RoadTransNet over
others. The RoadTransNet has achieved a precision rate
of 95.72% which is the highest among the compared 11

other competitive road extractionmethods such asRADANet
(Method A) [24], TransRoadNet (Method B) [10], BDTNet
(Method C) [9], Swin-ResUnet + (Method D) [25], C2S-
RoadNet (Method E) [18], CoupleUNet (Method F) [26],
TransLinkNet (Method G) [28], RemainNet (Method H) [8],
Seg-Road (Method I) [29], RoadFormer (Method J) [20],
AD-RoadNet (Method K) [27]. As, recorded in the table,
the each measure evaluated achieved high performance rate,
illustrating its quality and accuracy of prediction.

The analysis outcomes of the suggested RoadTransNet
for assessing the CHN6-CUG Roads dataset are displayed in
Table 2.

The proposed TransRoadNet method gives better results
of 93.56% precision, 92.76% Recall, 90.76% f1-score,
89.65% IoU, and 90.03% APLS, in which these values are
greater than the existing methods that are compared. Table
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Table 3 Ablation experiment

Components Precision

Swin
Transformer

FPN Attention mechanism Positional
encoding

Skip
connections

Decoding
layers

DeepGlobe
dataset

CHN6-CUG
Roads dataset

Self-attention Cross-attention

� X X X X X X 0.561 0.532

� X X X X X � 0.589 0.563

� � X X X X X 0.629 0.602

� � X X X X � 0.682 0.654

� � � X X X X 0.750 0.739

� � � X X X � 0.785 0.732

� � X � X X X 0.763 0.751

� � X � X X � 0.785 0.773

� � � � X X X 0.805 0.796

� � � � X X � 0.846 0.836

� � � � � X X 0.837 0.816

� � � � � X � 0.865 0.852

� � � � � � X 0.916 0.894

� � � � � � � 0.957 0.935

Table 4 Visualized road extraction results of CHN6-CUG Roads dataset using RoadTransNet

Images

Ground truths

Output images

3 provides the ablation experiment of our RoadTransNet
framework. The result shows that the inclusion of dis-
tinct components to perform specific operations has highly
enhanced results of extracting roads from background of RS
samples.

5.2 Qualitative results

Sample Image Visualizations: We present sample images
from the testing dataset, juxtaposing the original remote sens-
ing imagery which corresponds to field truth road masks

as well as RoadTransNet’s predictions. These visualizations
vividly demonstrate the model’s effectiveness in capturing
road structures, regardless of their complexity or scale.

The road extraction results for CHN6-CUGRoads dataset
for various methods are shown in Table 4. Rural roads
comprise the majority of the satellite images included in
the DeepGlobe dataset, displaying similar texture to the
background and covering vegetation areas and forest lands
with varied shadow lengths. However, with the integrated
components of the Swin Transformer, FPN, and attention
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mechanisms, the proposed RoadTransNet extracts or seg-
ments complex spatial information from the RS imagery
data with high degree of accuracy. In comparison with Deep-
Globe dataset, the images in CHN6-CUG dataset consist of
more intricate intersections, high spectral reflectance, ele-
vated roads, blocked roads, heavily trafficked roads, railways,
narrow paths, etc. The typical extraction techniques face high
level of difficulty in extracting road scenes from such com-
plex scenes, resulting in loss of significant features. But,
our proposed RoadTransNet model with its ability to extract
contextual information extracts more intricate road networks
precisely, showing closer results to ground truths. It is visu-
ally displayed that the proposed RoadTransNet extracts road
features precisely than other compared networks.

6 Conclusion

Extracting roads from RS high-resolution images is one of
the most fundamental tasks with significant implications for
urban planning, navigation, and autonomous vehicles. Com-
plex road structures and the necessity to capture long-range
dependencies have posed formidable challenges to exist-
ing methods. In response, we introduced RoadTransNet, an
innovative architecture that combines the strengths of the
Swin Transformer, Feature Pyramid Network (FPN), and
Transformer-like attentionmechanisms to address these chal-
lenges effectively. The cornerstone of RoadTransNet is its
convolutional backbone, inspired by the Swin Transformer
architecture. The DeepGlobe Road Extraction Challenge
Dataset and CHN6-CUG Roads Datasets were used for the
extensive experiments that demonstrated RoadTransNet’s
outstanding performance. The model consistently achieved
high precision, the recall, the F1-score, and the Intersection
over Union (IoU) metrics, surpassing traditional methods.
RoadTransNet’s ability to capture complex road structures
and long-range dependencies positions it as a formidable
solution in the area of image analysis from remote sens-
ing. Future research will focus on addressing computational
intensity to enhance the network’s performance and hyper-
parameter tuning problems.
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