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Abstract
Blind image deblurring is a classical ill-posed problem that usually requires constraints on the clean image, the blur kernel,
and noise to make it well-posed. Recently, a simple yet effective sparse norm le is proposed, which adds two widely-adopted
sparse norms, i.e., l0 and l1. By using le to regularize the gradients of the clean image, and l2+∇le as the noise fitting function,
an enhanced sparse model for blind image deblurring is established and achieves surprisingly attractive results. In this paper,
inspired by the facts that the gradients of a natural image tend to obey a heavy-tailed distribution, and the noise exhibits
spatial randomness, we propose a more flexible model called the extended sparse model which can take the enhanced sparse
model as a special case. Specifically, for the image gradients, we suggest a improved sparse norm lP , which is developed
from l0 and l p(0 < p ≤ 1). Furthermore, we constrain the second-order derivative of noise to boost the percentage of
high-frequencies in the fidelity such that the recovery focuses more on high-frequencies that are erased in the blurry image.
Based on the half-quadratic splitting method and a variant of the generalized iterated shrinkage algorithm (GISA), we provide
an effective optimization scheme for the overall model. Extensive evaluations of benchmark datasets and real images indicate
the superiority of the proposed method against state-of-the-art deblurring algorithms.

Keywords Blind image deblurring · Extended sparse model · Sparse norm · Second-order derivative

1 Introduction

Blind imagedeblurringhas beenwidely investigated and seen
substantial progress in the past few decades. In general, the
blurry image B can be formulated by:

B = I ∗ k + n, (1)
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where I , k, and n represent the latent clean image, the blur
kernel, and the additive noise. We use ∗ to denote the con-
volution operator. The goal of blind image deblurring is to
estimate I and k from the given B. This is a highly ill-
posed problem, and theoretically, there exist infinite pairs
of I and k making the same B. In order to clear up such
indefiniteness, certain priors on the clean image, the blur ker-
nel, and noise should be imposed to constrain the space of
feasible solutions. In the Bayesian inference framework, the
most commonly-used estimator is the maximum a posteriori
(MAP):

P(I , k|B) ∝ P(B|I , k)P(I )P(k), (2)

where P(B|I , k) is the likelihood function, P(I ) and P(k)
denote statistical priors of I and k, respectively. By adopt-
ing− log P(I , k|B), such an MAP estimator is equivalent to
minimize the following regularized model:

min
I ,k

R1(B − I ∗ k) + αR2(I ) + βR3(k), (3)

where R1(·) is the data fidelity term used to model the noise
n, R2(·) and R3(·) regularize the clean image and the blur
kernel, α and β are regularization parameters.
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Existing MAP-based works usually assume the noise to
follow a Gaussian or Laplacian distribution [1–4]. Conse-
quently, the l2 or l1-norm is adopted to model the noise, i.e.,
||B − I ∗ k||22 or ||B − I ∗ k||1. However, as demonstrated
in the previous studies [5–7], the noise modeling should be
more complex empirically, and only using the above formu-
lations as the data fidelity term is less compelling. Recently,
by modifying the noise modeling technique from [8], Chen
et al. [9] proposed a weighted sum of the dense norm l2 and
the sparse norm le to model the unknown noise:

R1(B − I ∗ k) = ||B − I ∗ k||22 + ω1||∇1B − ∇1 I ∗ k||e, (4)

where ω1 is a weight parameter, ∇1 = {∂x , ∂y}, and || · ||e =
||·||0+||·||1.Comparedwith these complicate noisemodeling
skills, such as learning data fitting terms [5] or the mixture of
Gaussian [6, 7], the noise modeling (4) is surprisingly simple
but very effective as confirmed in [9]. Considering spatial
randomness of the noise [10, 11] in the blurry image, we
further introduce the second-order derivative of the residue
image to (4):

R1(B − I ∗ k) = ||B − I ∗ k||22 +
∑

i=1,2

ωi ||∇i B − ∇i I ∗ k||e,

(5)

whereω2 is a weight parameter, and∇2 = {∂xx , ∂xy, ∂yy}. In
Fig. 1, it can be seen that the proposed data fidelity term (5) is
more effective than the other two terms, as the corresponding
results contain fewer artifacts.

For the regularization term on the latent clean image, it is
generally believed that the gradients of sharp images follow
heavy-tailed distributions [12–14], which can be well mod-
eled by a hyper-Laplacian prior P(∇1 I ) ∝ e−α|∇1 I |p with
0.5 ≤ p ≤ 0.8. As a result, the l p-norm is adopted on the
image gradients for image deblurring [13, 15–18]. In other
works [1–3, 9, 19–21], the importance of pursuing sparsity of
image gradients for the blur kernel estimation has also been
illustrated, and they mostly used l0-norm to achieve sparsity.
Particularly in the work [9], an enhanced sparse norm le is
given to promote sparsity. Motivated by the success of these
previous works, we propose a composite lP -norm for image
gradients by taking advantage of both l0 and l p(0 < p ≤ 1).
The proposed lP -norm can be sparser than either single one
as well as the le-norm, and undoubtedly when p = 1, the lP -
norm is equivalent to the le-norm. With a proper of p value,
we confirm that using the lP -norm to regularize the image
gradients for the blur kernel estimation is more rational. As
shown in Fig. 2, we note that the proposed lP -norm (p is set
as 0.6) performs best among different regularization terms.

Minimizing the overall regularized model is challenging
since the proposed lP -norm is highly non-convex. To address
this optimization problem, we use the half-quadratic splitting
method [22] to split the model into several sub-problems,

and modify the thresholding rule of the generalized iter-
ated shrinkage algorithm (GISA) [23] to solve the related
lP -minimization problem. In the end, we summarize the con-
tributions of this work as follows:

• Wepresent amore flexible deblurringmodel based on the
model in [9]. By setting the corresponding parameters,
our model becomes that of [9].

• We propose an improved sparse regularization lP -norm
to regularize the image gradients and introduce a new
data fidelity term.

• We provide an effective optimization scheme for the pro-
posed deblurring model.

2 Related works

Extensive studies on blind image deblurring have developed
abundant technologies, such as selecting salient edges for
kernel estimation [4, 10, 24–29], end-to-end deblurring based
on deep learning [30–33], and imposing sparsity on the image
gradients [11, 15–18].

We only focus on the last category that is highly related
to the proposed method. In [11], Shan et al. concatenated
two piece-wise functions to fit the heavy-tailed distribution
of image gradients and combined it with a local prior to sup-
press ringing artifacts. Kotera et al. [17] used the l0.3-norm on
image gradients, and Gan et al. [16] adopted the l0.4-norm on
both image gradients and the blur kernel.Moreover, Almeida
et al. [15] used the l p-norm on gradients and manually set
p values as a non-increasing sequence (i.e., 0.8, · · · , 0.6,
· · · ,0.4, · · · ) while iterating. In [18], Zuo et al. further devel-
oped an iteration-wise learning method to produce a series of
increasing p(−1 < p ≤ 0.2) values and assigned them to the
corresponding iteration of deblurring. However, these meth-
ods do not perform well on specific images beyond natural
ones.

Instead of exploring the heavy-tailed distribution of gra-
dients to achieve sparsity, Krishnan et al. [34] used a
normalized sparsity regularization 11

l2
, and Xu et al. [21]

proposed the approximated l0-norm regularization to fulfill
the task. Recently, to further improve the deblurring per-
formance, researchers have suggested some complementary
priors for the l0-norm of gradients, Such as the dark channel
prior [2], the extreme channels prior [35], the discriminative
priors [1], and the local minimal intensity prior [36]. In [9],
Chen et al. used an enhanced sparse regularization to regular-
ize the gradients, and incorporate it with the noise modeling
(4) for the blur kernel estimation. In this paper, we extend the
noise modeling in [9] and suggest a more rational lP -norm
for image gradients. We show that the proposed algorithm
is advanced against [9] as well as state-of-the-art deblurring
methods.
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Fig. 1 Comparison between different data fidelity terms

Fig. 2 Comparison between
different regularization terms

3 Proposed deblurringmodel

3.1 Improved sparse regularization

In this subsection, we first introduce the proposed improved
sparse regularization lP -norm, and then provide the solution
of the lP -minimization problem.

For a signal X , the lP -norm of it is given by:

||X ||P = ||X ||0 + ||X ||pp. (6)

Given a degraded signal Y , and assuming its latent signal X
is sparse, the lP -minimization problem can be expressed as:

min
X

||Y − X ||22 + λ(||X ||0 + ||X ||pp), (7)

where λ is the penalty parameter. Note that Eq.(7) is an
element-wise minimization problem, thus it can be decom-
posed into a set of independent sub-problems, and one of

them is:

min
x

(y − x)2 + λ(|x |0 + |x |p), (8)

where x and y denote the elements of X andY , respectively, at
the same location.Without the term |x |p, Eq.(8) has a closed-
form solution [22]. Similarly, without the term |x |0, Eq.(8)
becomes a l p-minimization problem that can be effectively
solved by the generalized soft-thresholding (GST) operator
[23].

In the following, we show that the solution of Eq.(8) can
be obtained by modifying the thresholding rule of the GST
operator. Let

E(x) = (y − x)2 + λ|x |p, (9)

and

F(x) = (y − x)2 + λ(|x |0 + |x |p). (10)

By fixing p = 0.5 and λ = 2, we plot the curves of
E(x) and F(x) with five typical y values, respectively, in
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Fig. 3 Curves of the functions E(x) (Top row) and F(x) (Bottom row) with different values of y. We use p = 0.5 and λ = 2. The green square
denotes the inflection point, and the red circle is the minimum point

Fig. 3, without loss of generality, only the case of y > 0
is considered. The so-called GST operator is proposed to
minimize E(x) based on the observations that there exists a
specific threshold τp(λ), where E(0) equals E(x∗

p) as seen in
Fig. 3c. If y < τp(λ), x = 0 (e.g., Fig. 3a and b) is the global
minimum. Otherwise, a non-zero solution (e.g., Fig. 3d and
e) would be optimal. Thus, the main issues of GST operator
focus on how to calculate the τp(λ) and search the non-zero
solution Sp(y, λ), which satisfies E ′(Sp(y, λ)) = 0, i.e.,

Sp(y, λ) = y − λp(Sp(y, λ))p−1. (11)

More details and proofs can be found in [23] and its sup-
plementary material. Since F(x) is the sum of E(x) and the
positive constant λ when x is non-zero, Sp(y, λ) is also the
non-zero solution of F(x).

From Fig. 3f–j, one can see that GST strategy can also be
used to minimize F(x) with a different and larger threshold.
We use τP (λ) to denote this threshold, and rewrite the F(x)
as:

F(x) =
{
y2 if x = 0,

(y − x)2 + λ(1 + x p) if x > 0.
(12)

The first-order derivative of F(x) in the range of (0,+∞) is:

F ′(x) = 2(x − y) + λpx p−1. (13)

We solve the following equation system to obtain the thresh-
old τP (λ) and its corresponding x∗

P :

(x∗
P − τP (λ))2 + λ(1 + (x∗

P )p) = (τP (λ))2, (14)

2(x∗
P − τP (λ)) + λp(x∗

P )p−1 = 0. (15)

From Eq.(15), we can obtain that τP (λ) equals to x∗
P +

1
2λp(x

∗
P )p−1 and then carry it to Eq.(14):

(x∗
P )2 = λ(1 − p)(x∗

P )p + λ, (16)

we use fixed point iteration method to estimate x∗
P . After

obtaining x∗
P , the threshold τP (λ) is:

τP (λ) = x∗
P + 1

2
λp(x∗

P )p−1. (17)

Considering all the cases of y, the solution of Eq. (8) is given
by:

TP (y, λ) =
{
0 if |y| ≤ τP (λ),

sgn(y)Sp(|y|, λ) if |y| > τP (λ).
(18)

where sgn(y) denotes the sign of y. Algorithm 1 shows the
corresponding pseudo code, and we empirically use J = 5
in all experiments. As mentioned before, we further show
that the solution of lP -minimization problem with p = 1
is exactly the solution of the le-minimization problem [9].
When p = 1, Algorithm 1 converges at t = 1, and x∗

P = √
λ,

τP (λ) = √
λ + 1

2λ, then TP (y, λ) becomes:

Te(y, λ) =
{
0 if |y| ≤ √

λ + 1
2λ,

sgn(y)(|y| − 1
2λ) if |y| >

√
λ + 1

2λ.
(19)

This solution had been given in the supplementary material
of [9].
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Algorithm 1 Solving Eq.(8)
Require: y, λ, p, J
Ensure: TP (y, λ)

1: t ⇐ 1
2: x∗

P ⇐ (λ(1 − p))
1

2−p )

3: while t ≤ J do
4: x∗

P ⇐ √
λ(1 − p)(x∗

P )p + λ

5: t ⇐ t + 1
6: end while
7: τP (λ) ⇐ x∗

P + 1
2λp(x∗

P )p−1

8: if |y| ≤ τP (λ) then
9: TP (y, λ) ⇐ 0
10: else
11: t ⇐ 1
12: x ⇐ |y|
13: while t ≤ J do
14: x ⇐ |y| − 1

2λp(x)p−1

15: t ⇐ t + 1
16: end while
17: TP (y, λ) ⇐ sgn(y)x
18: end if

3.2 Deblurringmodel and optimization

This section presents the proposed deblurring model and the
corresponding optimization scheme. We use l2-norm to reg-
ularize the blur kernel k just as many state-of-the-art method
[1, 2, 9, 19, 36, 37] adopt. Our proposed deblurring model is
given by:

min
I ,k

||B − I ∗ k||22 +
∑

i=1,2

ωi ||∇ i B − ∇ i I ∗ k||e

+α||∇1 I ||P + β||k||22. (20)

Since it is intractable to obtain the solution of (20) directly,
we perform alternating minimization in terms of the latent
clean image I :

min
I

||B − I ∗ k||22 +
∑

i=1,2

ωi ||∇i B − ∇i I ∗ k||e + α||∇1 I ||P ,

(21)

and the blur kernel k:

min
k

||B − I ∗ k||22 +
∑

i=1,2

ωi ||∇ i B − ∇ i I ∗ k||e + β||k||22,

(22)

3.2.1 Estimating the latent clean image I

To estimate the latent clean image I , the half-quadratic split-
ting method is adopted by introducing auxiliary variables f1,
f2, and g with respect to ∇1(B − I ∗ k), ∇2(B − I ∗ k) and
∇1 I , respectively. Thus, (21) can be rewritten as:

min
f1, f2,g,I

||B − I ∗ k||22 +
∑

i=1,2

ωi || fi ||e

+
∑

i=1,2

δi || fi − ∇i (B − I ∗ k)||22 + α||g||P + δ3||g − ∇1 I ||22,

(23)

where δ1, δ2, and δ3 are penalty parameters. This optimiza-
tion problem can be solved by alternatively minimizing f1,
f2, g and I .
Given I , we obtain f1 and f2 by:

min
f1

δ1|| f1 − ∇1(B − I ∗ k)||22 + ω1|| f1||e, (24)

and

min
f2

δ2|| f2 − ∇2(B − I ∗ k)||22 + ω2|| f2||e. (25)

Note that these two are minimization problem [9] and have
closed-form solutions based on (19):

f1 =

⎧
⎪⎪⎨

⎪⎪⎩

∇1(D) + ω1
2δ1

if ∇1(D) < −
√

ω1
δ1

− ω1
2δ1

,

∇1(D) − ω1
2δ1

if ∇1(D) >
√

ω1
δ1

+ ω1
2δ1

,

0 otherwise.

(26)

and

f2 =

⎧
⎪⎪⎨

⎪⎪⎩

∇2(D) + ω2
2δ2

if ∇2(D) < −
√

ω2
δ2

− ω2
2δ2

,

∇2(D) − ω2
2δ2

if ∇2(D) >
√

ω2
δ2

+ ω2
2δ2

,

0 otherwise.

(27)

We use D to represent the residue image B − I ∗ k for the
convenience of display.

The sub-problem referring to g is given by:

min
g

δ3||g − ∇1 I ||22 + α||g||P . (28)

This is a lP -minimization problem, and the solution can be
obtained via Algorithm 1.

For the fixed f1, f2 and g, estimating I becomes a
quadratic problem:

min
I

||B − I ∗ k||22 +
∑

i=1,2

δi || fi

−∇ i (B − I ∗ k)||22 + δ3||g − ∇1 I ||22. (29)

By using fast Fourier transform (FFT), we can obtain the
closed-form solution of (29) in the following:

I = F−1

(
F(k)F(B) + ∑

i=1,2 δiF(∇i )F(k)
(
F(∇i B) − F( fi )

) + δ3F(∇1)F(g)

F(k)F(k) + ∑
i=1,2 δiF(∇i )F(k)F(∇ i )F(k) + δ3F(∇1)F(∇1)

)

(30)

where F(·), F−1(·), and F(·) denote the FFT, inverse FFT,
and the complex conjugate operator after FFT, respectively.
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Fig. 4 The flowchart of the
proposed blur kernel estimation
in a coarse-to-fine manner.
B1, B2, . . . , Bn−1 are the
down-sampled versions of the
blurry image B with gradually
increasing resolution, and Bn is
B, where n denotes the number
of image pyramid layers. After
estimating the blur kernel k in
one layer, it is up-sampled and
passed to the next layer

3.2.2 Estimating the blur kernel k

Based on the valuable experiences of previous works [10,
38], we adopt an improved version of (22) by solving k in
the gradient domain, i.e.,

min
k

||∇1B − ∇1 I ∗ k||22
+

∑

i=1,2

ωi ||∇ i B − ∇ i I ∗ k||e + β||k||22. (31)

We also use the half-quadratic splitting method to introduce
auxiliary variables h1 and h2 with respect to∇1(B−I∗k) and
∇2(B − I ∗ k), then the above formulation can be rewritten
as:

min
h1,h2,k

||∇1B − ∇1 I ∗ k||22 +
∑

i=1,2

ωi ||hi ||e

+
∑

i=1,2

ϕi ||hi − ∇ i (B − I ∗ k)||22 + β||k||22. (32)

where ϕ1 and ϕ2 are penalty parameters. We solve (32) by
alternatively updating h1, h2 and k from the following for-
mulations:

min
h1

ϕ1||h1 − ∇1(B − I ∗ k)||22 + ω1||h1||e, (33)

min
h2

ϕ2||h2 − ∇2(B − I ∗ k)||22 + ω2||h2||e, (34)

and

min
k

||∇1B − ∇1 I ∗ k||22
+

∑

i=1,2

ϕi ||hi − ∇ i (B − I ∗ k)||22 + β||k||22. (35)

The solutions of (33) and (34) are similar with (26) and (27),
respectively. And (35) can be efficiently solved by FFT.

k = F−1

(
F(∇1 I )F(∇1B) + ∑

i=1,2 ϕiF(∇ i I )
(F(∇ i B) − F(hi )

)

F(∇1 I )F(∇1 I ) + ∑
i=1,2 ϕiF(∇ i I )F(∇ i I ) + β

)
.

(36)

Fig. 5 Quantitative evaluations on the dataset [24] in terms of Success
Percent

Algorithm 2 Blur kernel estimation algorithm
Require: Blurry image B, initialize k from the coarser pyramid, hyper-

parameters ω1, ω2, α, β
Ensure: Output blur kernel k
1: t ⇐ 1
2: while t ≤ 5 do
3: Initialize δ1, δ2, δ3
4: while δ3 ≤ 105 do
5: Solve for f1, f2, g, and I using (26), (27), Algorithm 1, and

(30) in sequence
6: δ1 ⇐ 2δ1, δ2 ⇐ 2δ2, δ3 ⇐ 2δ3
7: end while
8: Initialize ϕ1, ϕ2, t t ⇐ 1
9: while t t ≤ 5 do
10: Solve for h1, h2, and k using (33), (34) and (36) in sequence
11: ϕ1 ⇐ 2ϕ1, ϕ2 ⇐ 2ϕ2
12: t t ⇐ t t + 1
13: end while
14: t ⇐ t + 1
15: end while

After obtaining k, its negative elements are set to 0 and then
normalized k. Same to state-of-the-art deblurring methods,
the blur kernel estimation is performed in a coarse-to-fine
manner with an image pyramid [10] as shown in Fig. 4, the
main steps from one of pyramid layers are listed in Algo-
rithm 2.
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4 Experimental results

Same as previous algorithms [1, 2, 9, 35], the proposed
method only estimates the blur kernel from the blurry input
and then adopts one of the existing non-blind deblurring
methods [13, 14, 20, 39–41] to obtain the final clean image.
In all experiments, we experientially set ω1 = 4e − 3,
ω2 = 4e−4, α = 4e−3, and β = 2. Since p is an important
parameter in the proposed model, the deblurring effects with
different p values (ranged from 0.1 to 1with a step of 0.1) are
evaluated on three widely-used benchmark datasets [20, 24,
42]. We show two results of the proposed method on these
datasets, i.e., Ours-FP: setting a fixed p value for the entire
dataset, and Ours-GFP: setting a fixed p value for a group of
blurry images with the same ground truth in the dataset. And
the results of other methods are provided by the authors or
generated by their code using default settings. Our method is
implemented in MATLAB, and all experiments are run on a
computer with Intel Core i7-8700 CPU and 16 GB RAM.For
a fixed blur kernel size of 21×21, it takes about 10, 35, 150s
to process a blurry image with a size of 200×200, 400×400,
800×800, respectively. As the image and blur kernel size
increases, the time required also increases accordingly.

4.1 Sun et al.’s dataset

We first evaluate the proposed method on the dataset of [24],
this dataset contains 640 blurry images that are generated
by 80 natural images and 8 blur kernels [38]. For fair com-
parisons, we use the provided codes of methods [1, 9, 36]
to estimate blur kernels and the same non-blind deblurring
method [41] to obtain the deblurring results, the results of
methods [10, 24, 27, 28] are duplicated from [24]. We mea-
sure the quantitative performances of all methods with Error
Ratio, which is defined by Levin et al. [38],

r = ||I − Ik̂ ||22
||I − Ik ||22

,

where I denotes the ground-truth clean image, Ik and Ik̂ are
the restored images generated by the ground-truth blur ker-
nel k and the estimated kernel, respectively. The smaller r
means the better result. Figure 5 reports the success percent
of all methods with different Error Ratios, and the Success
Percent refers to fractions of images that can be restored
within a given r . From this figure, one can see that the pro-
posedmethod consistently outperforms these state-of-the-art
methods. We further introduce the mean PSNR, mean SSIM,
mean Error Ratio, and the Success Percent with r ≤ 5, in
Table 1. The proposed method is superior to all competing
methods in all measures. Figure 6 shows three qualitative
examples of challenging cases. Compared with other algo-

rithms, the proposed method achieves more robust results
with fewer artifacts.

4.2 Lai et al.’s dataset

Then the proposed method is tested on a challenging dataset
[42], which consists of 100 blurry images made by 25 high-
quality clean images (including 5 categories: Man-made,
Natural, People, Saturated, and Text images) and 4 large-
scale blur kernels. We compare the proposed method with
seven other algorithms [1, 9, 10, 18, 20, 34, 36]. For a fair
comparison, the same blur kernel sizes and the non-blind
deblurring method [39] are adopted for all methods. Table 2
shows the comparisons of the methods in terms of average
PSNR. It can be seen that our method outperformed other
methods in all categories. As shown in Fig. 7 and Fig. 8,
images restored by the proposed method contain sharper
edges and are visually more satisfying compared with other
methods.

4.3 Pan et al.’s dataset

To further illustrate the superiority of the proposed method,
we evaluate on the text dataset of Pan et al. [20], and com-
pare it with state-of-the-art methods [1, 9, 10, 18, 20, 34,
36]. This text dataset contains 120 blurry images generated
by 15 ground-truth document images and 8 blur kernels from
[38]. We adopt the same non-blind deblurring method [20]
to generate final clean images for a fair comparison. Table 3
shows the average PSNR and SSIMof eachmethod. The pro-
posed method performs favorably against all these methods.
As shown in Fig. 9, our result has fewer residual blur and
ringing artifacts than other methods.

4.4 Real-world blurry images

For real blurry images, the blur cases of themare usuallymore
complicated, thus it is challenging to handle real images for
most deblurring methods. Finally, besides synthetic datasets,
we evaluate the performance of the proposed method on real
blurry images gathered by [42], and compare it with state-of-
the-art methods [9, 18, 34, 36]. Figure 10 and Fig. 11 show
two examples, i.e., “postcard” and “boat2,” respectively, and
it can be seen that the deblurring results of the proposed
method in general have better visual quality. Note that the
same non-blind deblurring method [39] is applied to restore
the final results. As shown in Fig. 10, methods [18, 34, 36]
fail to generate valuable results, in contrast, the method [2]
generates generally satisfactory result and our result is even
better than that of [9]. Combined with Fig. 11, the proposed
method tends to recover more robust and clearer results with
better visual quality.
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Table 1 Quantitative
comparisons of state-of-the-art
methods in terms of mean
PSNR, mean SSIM, mean Error
Ratio, and the Success Percent
with r ≤ 5 over the entire
dataset [24]

PSNR SSIM Error Ratio Success Percent (r ≤ 5)

Blurry images 24.8560 0.7843 6.3645 39.22%

Cho and Lee [10] 26.2319 0.8824 8.7072 65.47%

Sun et al. [24] 29.5216 0.9400 2.3794 93.44%

Michaeli and Irani [28] 28.6210 0.9249 2.5669 95.94%

Lai et al. [27] 29.6081 0.9376 2.1250 97.34%

Li et al. [1] 30.6833 0.9533 1.8390 97.81%

Wen et al. [36] 30.7013 0.9540 1.6996 97.66%

Chen et al. [9] 30.6866 0.9500 1.6589 98.12%

Ours-FP(p = 0.1) 30.9273 0.9517 1.6536 98.12%

Ours-GFP 31.1512 0.9551 1.4131 99.53%

Fig. 6 Qualitative comparison
on deblurred image regions (red
rectangle) from the dataset [24].
There are three blurry images on
the left side, and each blurry
image is tested on 8 methods.
From top to bottom and from
left to right, these methods are
Cho and Lee [10] (20.72dB,
21.30dB, 22.67dB), Sun et al.
[24] (25.66dB, 28.46dB,
30.15dB), Michaeli and Irani
[28] (31.61dB, 30.26dB,
30.42dB), Lai et al. [27]
(32.51dB, 28.99dB, 32.79dB),
Li et al. [1] (22.84dB, 31.58dB,
31.78dB), Wen et al. [36]
(25.96dB, 32.47dB, 31.61dB),
Chen et al. [9] (27.82dB,
31.13dB, 31.50dB), and our
method (35.01dB, 34.26dB,
35.16dB), respectively

Table 2 Quantitative
comparisons of state-of-the-art
methods in terms of PSNR over
the dataset [42]

Man-made Natural People Saturated Text Average

Blurry images 16.8506 19.9622 20.9920 15.2755 15.5261 17.7213

Cho and Lee [10] 16.2001 19.9898 19.6081 14.9050 14.7000 17.0806

Krishanan et al. [34] 15.5261 19.2405 21.1043 14.4609 15.3110 17.1286

Pan et al. [20] 16.6533 20.7499 23.2114 15.1198 16.7177 18.4904

Zuo et al. [18] 18.2579 22.1144 25.2088 15.8603 16.6792 19.6241

Li et al. [1] 19.2855 24.0733 26.2486 17.1633 18.6857 21.0913

Wen et al. [36] 18.8768 23.5636 25.6056 17.3447 16.9739 20.4729

Chen et al. [9] 19.2548 23.8209 26.2388 17.7017 19.6215 21.3275

Ours-FP(p = 0.6) 19.8965 24.3411 26.5914 17.5699 19.6612 21.6120

Ours-GFP 20.2641 24.4797 27.2791 18.3306 21.1052 22.2917
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Fig. 7 Visual comparison of the
results from different methods
over a challenging people image
in dataset [42]

Fig. 8 Visual comparison of the
results from different methods
over a challenging saturated
image in dataset [42]
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5 Analysis and discussion

5.1 Effectiveness of the proposedmodel

In this section, we conduct an ablation study on datasets [20,
42] to show the effectiveness of the proposed model (20).
Considering different data fidelity terms (4) and (5), and
sparse regularizations such as l0, l1, l p, le and lP on image
gradients, we develop a total of 10 combinations as listed in
Table 4 and show quantitative comparisons in Table 5. We
use the same parameters on different models for fair compar-
isons, i.e., ω1 = 4e − 3, ω2 = 4e − 4, α = 4e − 3, β = 2
and p = 0.6.

In the view of the data fidelity term, (5) is not always
superior to (4), for example, the performance of the Model5
is better than that of the Model6. But in most cases, (5) con-
tributes to improving the effectiveness of models. For the
regularizations on image gradients, we can see that enforc-
ing more sparsity constraints on image gradients can achieve
better performance. In the end, the proposed model achieves
the best results among different combinations. The success
mainly stems from two aspects: constraining the second-
order derivative of noise focuses more on high frequencies
erased in the blurry image, and constraining the lP -norm of
image gradients helps to recover a sharper latent clean image,
favoring the estimation of the blur kernel.

5.2 Convergence property analysis

The proposedmodel is highly non-convex due to the involve-
ment of l0 and l p-norm, one may want to know whether our
overall optimization scheme is convergent or not. Unfor-
tunately, the theoretical proof of convergence property is
intractable. We instead explain the convergence of the pro-
posed algorithm by carrying out experiments on the dataset
[20], which contains 120 synthetic blurry images. We record
the average values of the energy function (21) and the ker-
nel similarity [25] over iterations at the finest image scale as
shown in Fig. 12, it can be seen that the proposed algorithm
converges after less than 30 iterations, which demonstrates
the effectiveness of our optimization algorithm.

5.3 Relations with other deblurringmethods

Asdiscussed in Sect. 3.1, one can obtain the solution of the le-
minimization problem [9] through the proposed Algorithm 1
by setting p = 1. Therefore, our method with p = 1 and
reduces to the deblurring method of Chen et al. [9]. Previous
methods [15–18] usually assume the l p sparsity on image
gradients, and a nature question is how to set p value dur-
ing the iterations. For this problem, methods [16, 17] used a
fixed p value throughout the process, and [15] experientially
set a series of decreasing p values. Moreover, the method

Table 3 Quantitative comparisons of state-of-the-art methods in terms
of average PSNR and SSIM over the dataset [20]

PSNR SSIM

Blurry images 18.1968 0.6711

Cho and Lee [10] 24.6501 0.8727

Krishanan et al. [34] 22.0906 0.8094

Pan et al. [20] 29.1361 0.9525

Zuo et al. [18] 24.6331 0.8709

Li et al. [1] 28.2424 0.9297

Wen et al. [36] 28.8097 0.9463

Chen et al. [9] 29.3281 0.9450

Ours-FP(p = 0.6) 29.6892 0.9533

Ours-GFP 30.3398 0.9583

[18] automatically learned p values via an iteration-wise
learning method. Although our method achieves competi-
tive results on commonly-used datasets [20, 24, 42] and real
blurry images, we can only set a fixed p value by experience
rather than theoretical guidance.

5.4 Analysis of some key parameters

The proposed method has four key parameters in addition
to p, i.e., ω1, ω2, α, and β. To analyze the effect of these
parameters to the experiments, we carry out experiments on
the dataset from [20] by varying one of them and keeping oth-
ers fixed. Average PSNR is adopted as the evaluation metric.
As shown in Fig. 13, the proposed method is not very sensi-
tive to changes in these parameters within reasonable ranges.
Andwe empirically select parameters that result in better per-
formance as default parameters.

5.5 Limitations of the proposedmethod

As mentioned earlier, there are practical limitations to our
method, specifically related to the selection of the param-
eter p. In our experiments of Sect. 4, p ranged from 0.1
to 1 with a step of 0.1, and we choose the best p value
basedon the experimental results. For example, Fig. 14 shows
the performance of different p values on datasets [20, 24,
42], and we, respectively, choose p as 0.1, 0.6, and 0.6. In
fact, there is a relationship between the choice of p and the
semantic information of the blurred image. In most deblur-
ring methods [12–14], the gradient of natural clean images
is considered to obey a heavy-tailed distribution (commonly
modeled by a hyper-Laplacian priorP(∇1 I ) ∝ e−α|∇1 I |p

with 0.5 ≤ p ≤ 0.8), which is used as regularization in
the process of image restoration to help recover clean and
accurate images. Therefore, there must exist a p that best
recovers a blurry image, and our future work can focus on
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Fig. 9 Visual comparison of the results from different methods over a text image in dataset [20]

how to derive p from the given blurred image. According
to abundant deblurring results in our work, we believe that
setting p to 0.6 can achieve satisfactory results in most cases.

6 Conclusion

In this paper, we have proposed an improved sparse regu-
larization, namely lP -norm, and a flexible model for blind
image deblurring. The lP -norm is a combination of l0 and
l p(0 < p ≤ 1). Our model can be seen as a generaliza-

tion of the enhanced sparse model. In order to solve the
lP -minimization problem, we present an effective method
based on the generalized iterated shrinkage algorithm and
further combine this algorithm with the half-quadratic split-
ting method to develop an optimization scheme for the
proposedmodel. Experimental results show that the proposed
method performs favorably against state-of-the-art methods
on commonly-used synthetic datasets and real blurry cases.
The proposed model has limitations to select the p values,
but in practical applications, we can set the value of p to 0.6.
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Fig. 10 Visual comparison of
the results from different
methods over the “postcard”
from [42]

Fig. 11 Visual comparison of
the results from different
methods over the “boat2” from
[42]

Table 4 Different regularization combinations

l2 + ∇1le l2 + ∇1le + ∇2le

l0 Model1 Model2

l1 Model3 Model4

l p Model5 Model6

le Chen et al. [9] Model7

lP Model8 Ours-FP
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Table 5 Quantitative comparisons of different models in terms of aver-
age PSNR over the datasets [20, 42]

Lai et al. [42] Pan et al. [20]

Model1 21.1962 28.7251

Model2 21.3705 28.9896

Model3 18.5549 23.5729

Model4 18.5666 23.3971

Model5 19.9886 25.9782

Model6 19.7477 25.9613

Chen et al. [9] 21.3275 29.3281

Model7 21.5013 29.3749

Model8 21.6145 29.3353

Ours-FP 21.6120 29.6892

Fig. 12 Convergence property analysis of the proposed algorithm

Fig. 13 Analysis of key parameters in the proposed method
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Fig. 14 The performance of different p values on datasets [20, 24, 42]
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