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Abstract
Fabric defect detection has been successfully implemented in the quality quick response system for textile manufacturing
automation. It is challenging to detect fabric defects automatically because of the complexity of images and the variety
of patterns in textiles. This study presented a deep learning-based IM-RCNN for sequentially identifying image defects in
patterned fabrics. Firstly, the images are gathered from the HKBU database and these images are denoised using a contrast-
limited adaptive histogram equalization filter to eliminate the noise artifacts. Then, the Sobel edge detection algorithm is
utilized to extract pertinent attention features from the pre-processed images. Lastly, the proposed improved Mask RCNN
(IM-RCNN) is used for classifying defected fabric into six classes, namely Stain, Hole, Carrying, Knot, Broken end, and
Netting multiple, based on the segmented region of the fabric. The dataset that can be evaluated using the true-positive rate
and false-positive rate parameters yields a higher accuracy of 0.978 for the proposed improved Mask RCNN. The proposed
IM-RCNN improves the overall accuracy of 6.45%, 1.66%, 4.70%, and 3.86% better than MobileNet-2, U-Net, LeNet-5, and
DenseNet, respectively.

Keywords Fabric defect detection · Deep learning · Contrast-limited adaptive histogram equalization · Improved Mask
RCNN · Sobel edge detector

1 Introduction

Fabric defect classification is a crucial step in the quality
declaration process that looks for and identifies fabric flaws
[1]. Fabric issues can be found using hybrid, geometric spec-
tral, model-based learning and structural approaches [2]. The
majority of auto fabric infection systems rely on computer
vision-related algorithms for image capture and error seg-
mentation [3]. In order to apply flaw identification of the
gray cloth and lattice fabric more successfully, the YOLOv3
detection layer is utilized to feature maps of different sizes
[4]. Over 70 different forms of fabric faults are tolerated in
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the textile business. The six common defect types are shown
in Fig. 1 [5].

The image acquisition procedure, which is largely respon-
sible for obtaining digital images of damaged samples, may
often be carried out using a line-scan charge-coupled device
(CCD) [6]. To locate and categorize the defective locations,
the defect detection process is used, and occasionally, it also
incorporates quantitative analysis [7].

After defect detection, all operations that come after it,
such as the classification of defect types and the evaluation
of defect grades, are referred to as the last procedure [8].
To manage flaws of various magnitudes, a Gaussian pyra-
mid creates the inputs into the network at each scale [9].
Automation of inspection procedures within the textile sec-
tor is a topic that has been studied since the mid-1990s. It
is utilized in industry usually and particularly in the textile
sector. In this industry, defect detection is vital for lowering
costs and increasing customer satisfaction [10]. In com-
parison to hand-crafted approaches, the autoencoder offers
significant advantages over the Principal Component Anal-
ysis (PCA) and other cutting-edge deep learning algorithms
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Fig.1 a Stain, b Hole, c Carrying, d Knot, e Broken end, f Netting
multiple

for evaluating the effectiveness of the model on plain, pat-
terned and rotated fabric images [11]. Computer vision-based
AutomaticDefection (ADD) can avoid the limitations of con-
ventional human inspection methods by repeatedly detecting
departure from a pre-defined visual average [12]. In time-
sensitive fashion supply chains, a deep learning system like
CNN may be utilized to decrease the chance of waste and
supply chain interruption [13, 14]. Given its high level of
automation and continued reliance on human labor for qual-
ity control, the textile industry is a prime candidate for the
industry 4.0 transition. A study on the transition of the textile
industry to industry 4.0 predicts a 10–16% improvement in
yield [15]. The major objective of this work was to repre-
sent a revolutionary deep learning approach called enhanced
Mask RCNN that is utilized for fabric defect identification.
This is the key benefit of the recommended technique.

• The first step in pre-processing the collected images is
to utilize the CLAHE method to remove noise from the
images.

• The fully connected (FC) layer uses the regions of inter-
est generated by the region proposal network (RPN) to
generate bounding boxes and segmentation masks for the
targeted regions.

• The categorization is performed by feeding the outcomes
from the fully convolutional network (FCN) which uses
all of the features through the soft-pool layer.

• The quantitative analysis of the recommended approach
uses the attributes of accuracy, specificity, precision, recall,
and F1 score.

The remaining components of this study were categorized
into five categories listed in the following. The literature
review is described in Sect. 2, the proposed method using
the IM-RCNN model is described in Sect. 3, the results and
analysis are described in Sect. 4, and recommendations for
further research are provided in Sect. 5.

2 Literature survey

In recent years, the majority of traditional research projects
on fabric defect identification have been focused on fabrics,
including plain and twill fabrics. A brief summary of some
of those research publications is provided in this section.

Deep learning model-based fabric defect detection was
introduced by Jing et al. [2] in 2020. This method has
been employed to improve product quality and production
efficiency. It has also proven to be an effective tool for
classification and segmentation. Public fabric datasets and
independently created datasets have been used to assess the
MobileNet-2 suggested model. Images are 256 × 256 pixels
in size. Of these, 70% are used as training sets and 30% are
used as test sets.

Huang et al. [16] present a few deep learning neural net-
work approaches based on defect different fabric faults in
2021. Segmentation and detection make up the two portions
of it. To reach segmentation results, they only need to analyze
about 50 faulty samples, and they can detect defects in real
time at 25 frames per second (FPS).

A two-step solution is presented in 2021 by Voronin et al.
[17] using block-based alpha rooting as its initial step and a
domain-based image enhancement technique. A contempo-
rary architecture is based on neural networks in the second
stage. Compared to deep learning and typical machine learn-
ing techniques, this system detects flaws more precisely.

An enhanced convolutional neural network, the CU-net,
was proposed by Rong-qiang et al. in 2021 [18] for the
purpose of fabric detection. This technique enhanced the
traditional U-Net network. The introduction of an attention
mechanism and size compression training are done using this
network. The accuracy scores for the suggested approach are
98.3% and 92.7%, followed by an advance in detectionmeth-
ods of 4.8% and 2.3%.

A learning-based technique for automatically detecting
fabric defects, followed by an enhanced histogram compar-
ison, was proposed by Xiang Jun, et al., in 2021 [19]. After
using a LeNet-5 model, which serves as a voting model to
classify the type of defect in the fabric, the VI-model is used
to expect flaws in the local area. A 96% accuracy rate is
achieved by the trained classification model.

Convolutional neural networks (CNNs) were developed
in 2021 by Samit et al. [20] to classify the faults in fabric
photographs that are acquired from textiles; they were also
compared toVGG,DenseNet, Inception, and Exception deep
learning networks. For automatic defect detection (ADD), a
VGG-based model has been shown to be more beneficial
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than a straightforward CNN model. The CNN model had a
training accuracy of 96% and a validation accuracy of 62%.

In 2021, Parul et al. [21] proposed a unique information
set theory-based approach for detecting faults in fabric tex-
ture.Using information set theory, five innovative features are
implemented: effective information, energy, sigmoid, Shan-
non transform, and composite transform. Fabric samples are
collected and considered for these characteristics. Then, the
closest algorithm is utilized to classify the fabric flaws. With
99% accuracy, the Shannon transform features (STF) are
used.

FengLi et al. [22] used to advance the convolutional neural
network detection technique in 2020. Therefore, it indi-
cates three techniques to further increase precision. Start by
employing multi-scale training. Use the dimension clusters
approach next. Finally, we employ a gentle and conventional
suppression to prevent the scenario in which the same cat-
egories of defects are eliminated due to recurrent detection.
Then, it effectively increased by 9.8% MAP fabric defect
detection precision.

In 2020 [23], Boshan Shi et al. proposed an advanced fab-
ric detect detection based on low-rank gradient information
decomposition and structured graph algorithm. The low-rank
decomposition model is decomposed into a matrix that indi-
cates the probability of defects in the fabric and identifies and
represents defective areas. A structured graph algorithm was
employed in correspondence with the qualities of the image
of the fabric defect. In this method, overall TPR and FPR are
87.3% and 1.21%, respectively.

Tong et al. [24] focus on the issue of fabric defect detection
in 2021 and make an effective deep convolutional neural net-
work (DCNN) architecture. To increase compute efficiency
without lowering image resolution, EDD uses lightweight
materials. In order to identify defects, the L-shaped feature
pyramid network (L-FPN) uses high-level semantic charac-
teristics. It is lower than EDD by 39.8% and 49.0%, with
8.59 M parameters and 31.78B FLOPs correspondingly.

These literature studies served as the basis for the accuracy
value, which was calculated using a range of deep learning
techniques. The suggested technique used an IM-RCNN to
classify the defective fabrics into holes, oil spots, thin bars,
thick bars, tread errors, and broken ends.

Ghost Net’s high level of accuracy is demonstrated by the
feature extraction methods using Sobel edge.

3 Mask RCNN

In order to classify the various flaws in a single image, seman-
tic segmentation is proposed and executed in this section
using a Mask RCNN model. An attention-fused lightweight
CNN module was engaged in this instance to take the role
of the Mask RCNN backbone. The Max pool is replaced

with a layer of soft pooling to increase detection rates. Data
preparation is a virtual procedure that improves the numer-
ous changes in input pictures while eliminating noise. The
noise in the photographs is reduced using the CLAHE fil-
ter. Additionally, it is utilized to enhance the qualities of the
incoming data and lessen undesired distortions. Schematic
representation of the Mask RCNN is shown in Fig. 2.

3.1 Dataset description

TheHBKU fabric images database can be found in the Indus-
trial Automation Research Laboratory, Research Associate.
There are 50 images of cloth with a star design and 60 images
of cloth with dots in the book. The two types of images are
divided into halves that are defect-free and halves that are
flawed. The box-patterned fabric data collection comprised
50 images, 30 of which were non-defected fabric. The size
of every image is 256 × 256 pixels. In every flawed image,
there are ground truths; the erroneous are shown as white,
while the flawless areas are shown as black.

3.2 CLAHE filter

Thepre-processingdata help to enhance thenumerous adjust-
ments to the input images by lowering noise. The CLAHE
filter method was primarily created for medical imaging, and
it aims to reduce the noise produced by homogeneous areas.
When pre-processing digital photographs, the procedure can
be used to improve the image by removing noise. Rather than
using the complete image, CLAHE works on discrete areas
of the picture called tiles.

CLAHE is an improved form of HE (histogram equal-
ization), a quick and efficient technique for enhancing
photographs that can improve the contrast by reducing the
gray scale. Figure 3 displays the results of HE and CLAHE
processing on images. The most common image pixel sizes
from the datasets are 2560*1920*or1984*1488, which were
recommended in open CV. In the case of colored images,
the three channels are suggested by CLAHE, and the input
images are grayed out.

After defect detection, all operations that come after it,
such as the classification of defect types and the evaluation of
defect grades, are referred to as the last procedure.MSCDAE
architecture is used.

Defect recognition is frequently sensitive to changes in
illumination, and when it is excessively bright or dark, some
information may be lost. CLAHE, which prevents informa-
tion loss causedby extremebrightness anddarkness, provides
a solution to this issue. Figure 4 displays the CLAHE illus-
tration. Reflected light is what is to blame for the image’s
excessive brightness in the upper left corner, as shown in the
figure. Furthermore, the CLAHE-normalized image’s defect
information is important.
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Fig. 2 Schematic representation of the Mask RCNN

In this study, features from the gray-level co-occurrence
matrix (GLCM) are retrieved. Co-occurrence, matrix P, and
M × M are defined as follows:

P(a, b) �
M∑

a�1

M∑

b�1

⎧
⎪⎨

⎪⎩

1 if I (y, z) � i and
I (y + �y, z + �z) � j
0 otherwise

⎫
⎪⎬

⎪⎭
(1)

The features of a digital image are offered and reviewed
using GLCM in the sections that follow. The four of them

are homogeneity, energy, contrast, and correlation (features
vector). The angular second moment energy is referred as:

Energy :
M∑

a�1

M∑

b�1

P(a, b)2 (2)

Compare thegray level’s varianceor texturemetrics. If this
feature grayscale contrast is considerable local fluctuation of
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Fig. 3 The difference between HE and CLAHE

the gray level, the difference is likely to be high in a common
texture. It is calculated mathematically as follows:

Contrast :
1

(M)2

M∑

a�1

M∑

b�1

(a, b)2 p(a, b) (3)

The linear connection between the gray levels of nearby
pixels is quantified by texture correlation (1). This attribute
was determined as follows:

Correlation :

∑M
x�1

∑M
y�1 xyp(x , y) − μyμz

σ yσ z
(4)

where, μy �
M∑

x�1

X
M∑

y�1

P(x , y), μz �
M∑

x�1

Y
M∑

Y�1

P(x , y)

σ y �
M∑

x�1

(x − μy)2
M∑

y�1

P(x , y)

σ z �
M∑

y�1

(y − μx)2
M∑

x�1

P(x , y)

A pair of pixels’ local correlation is measured by homo-
geneity. The homogeneity should be substantial if the gray
levels between each pair of pixels are comparable. Using this
computation as a basis,

Homogeneity :
M∑

x�1

M∑

y�1

P(x , y)

(1 + |x − y|) (5)

3.3 ImprovedMask RCNN

Mask RCNN extends faster RCNN. Mask RCNN features
a second branch that predicts segmentation masks for each
ROI pixel-by-pixel. The network inputs and outputs of faster
RCNN are not intended to be aligned pixel-for-pixel. It
produces two outputs: the candidate window and the classi-
fication. The difference the classification label and candidate
window, the third output requires the extraction of a more

Fig. 4 The examples of CLAHE
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Fig. 5 Architecture of Mask
RCNN

precise partial layout. In order to achieve pixel-level clas-
sification, Mask RCNN follows faster RCNN with a fully
convolutional network.

A set of image augmentation and enhancement tech-
niques that have been empirically selected are included. The
enhanced Mask RCNN, which was created by utilizing the
best-performing network, is also shown in this study together
with the proposed defect detection process.

For each of the feature maps, regions of interest with
anchors were created using the region proposal network.
Finally, the layer produces bounding boxes and a segmen-
tation mask for the targeted regions, using the regions of
interest produced by theRPN layer. For target box regression,
categorization, and instance segmentation, the related char-
acteristics of each RoI (Region of Interest) must be collected
from each image and then sent to the fully convolutional. The
fully convolutional layer network layer employs all of the
features and output of the soft-pool layer to conduct the cat-
egorization. Architecture of Mask RCNN is shown in Fig. 5.

3.3.1 Feature extraction network

Feature extraction using deep learning is an important step
used to extract relevant features in fabric images. The feature

pyramid network model called ResNet-50 is applied to all of
the fabric images. ResNet-50 extracts the features and mixes
theMaskRCNNwith the region recommendations. To create
futuremaps, the input datawere fed into theCNN.ResNet-50
convolutional layers are supplied, a pooling layer is added,
and residual associations are maintained. The network con-
sists of five convolutional blocks, with the first block using
a convolution layer size of 7 × 7, and the second through
fifth blocks using 1 × 1, 3 × 3, and 1 × 1 convolutional
layers correspondingly. Accordingly, from various sizes of
cloth photographs, the schematic and spatial informationmay
be consequent. As the activation function, cross-entropy is
employed. The cross-entropy activation function is expressed
as follows:

Hc
(
fi ,C

) � −
N∑

n

P(v, c) log
(
P(v, c)

)
(6)

where V is the observations over the class n, the probability
N is the number of classes, and C is the class labels.

Exactly, gradient descent is defined as,

θ � θ − η ∗ ∇θ J (θ) (7)
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θ � θ − η ∗ ∇θ J
(
θ ; y( j : j+n); z( j : j+n)

)
(8)

where η is the learning rate, y( j)and z( j) are the training
examples, and n is the size of the mini-batch. Following, the
layers are known as the pooling layer and the fully convolu-
tional layer obtained was applied

3.3.2 Region proposal network

The region of interest and anchors for each feature map
were created using the region proposal network (RPN). Then,
depending on the size of the target object, theRPNcan extract
the RoI features from various layers of the feature pyra-
mid.The straightforwardnetwork structure changes, severely
enhancing the detection performance of small objects and
producing significant improvements in accuracy and speed
without considerably increasing the calculation amount.
Convolutional feature maps are layered with a tiny network
to provide a sequence of rectangular point recommendations
with a score. In this manner, the foreground and background
values of the fabric images are recognized. RPN is similar to
a classless target detector with a sliding window. It is based
on the convolutional neural network’s architecture. Anchor
frame anchors may be produced by sliding frames. In order
to avoid image or filter pyramids, the anchor box concept
is produced. The sizes and positions in the RPN predictions
are adjusted based on the bounds of the fabric image. The
layer eventually creates bounding boxes and segmentation
masks for the targeted regions of the fabric pictures using the
regions of interest produced by the RPN layer.

3.3.3 Fully convolutional layer (FCN) network

For target box regression, categorization, and instance seg-
mentation, the relevant features of eachRoImust be retrieved
from each image and sent to the fully convolutional. Before
beginning the entire convolution, RoI Align was used to
change each RoI dimension in order to conform to the FC
layer parameters. The leveling process of RoI pooling in
Mask RCNNwas replaced by RoI Align, which used bilinear
interruption to extract the related properties of each RoI on
the feature maps. The target mask is created using a multi-
branch computation phase and consists of three prediction
branches: FC layer for classification prediction, a regression
layer for bounding box modification, and an FCN for classi-
fication and segmentation.

Mask RCNN computes the nonlinear error rate as the total
of different losses at each stage of the network. The loss is
related to the requirement that each step be allotted. The
bounding box Head, the mask head, and the Bounding Box
Head all used the characteristics of ROI Align as inputs to

perform classification, bounding box analysis, and segmen-
tation. The results from the FCN layer, which makes use of
all the features, are fed to the soft-max layer to do the cate-
gorization.

3.3.4 Sobel edge detection algorithm (SED)

The SED algorithm operates on the estimated gradient of
an image’s gray scale using a discrete differential operator;
the higher and gradient, the more probable an edge is to be
present. The Sobel operator may enhance the surface tex-
ture and form elements of various building roof types while
reducing background noise interference by smoothing out
the building boundaries in the filtered images. Two sets of 3
× 3 matrixes structure the Sobel method, which is convolved
from top to bottom on the picture along the y-axis and from
left to right along the z-axis. In order to estimate the hori-
zontal and vertical brightness differences, Sy and Sx denote
the gray values of the horizontal and vertical edge detection
of the image, respectively. If the image’s (y, z) coordinate
point’s gray value is f (y, z), the grayscale values are deter-
mined as follows:

Sy �
⎡

⎢⎣
−1 0 −1
2 0 −2
−1 0 −1

⎤

⎥⎦ × f (y, z) (9)

Sx �
⎡

⎢⎣
1 2 −1
0 0 0
−1 −2 −1

⎤

⎥⎦ × f (y, z) (10)

The estimated horizontal and vertical grayscale values at
each pixel point in the image are added, and the square root
is used to obtain the estimated gradient M and grayscale
gradient direction q at each point.

M �
√
Sy2+

√
Sz2 (11)

θ � arctan

(
Sz
Sy

)
(12)

If the approximate slope M exceeds a certain threshold,
then point (y, z) is considered a limit point.

4 Results and discussion

This section evaluates the suggested for IM-RCNN using
several metrics, including recall, accuracy, specificity, and
precision. The efficiency of the suggested paradigm is
assessed from a variety of perspectives. The block diagram
fabric classification is shown in Fig. 6.
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Fig. 6 Classification of six classes in the fabric defect detection

Table 1 Performance analysis of
the proposed fabric defect
detection model

Class Accuracy Precision Recall F1 score Specificity

Stain 98.29 98.64 98.22 96.29 95.28

Hole 97.98 96.93 97.62 96.72 96.51

Carrying 97.02 97.65 97.33 95.58 96.83

Knot 98.10 97.44 98.66 97.05 95.75

Broken end 98.24 98.20 96.53 96.48 95.02

Netting multiple 95.66 98.74 97.57 96.29 96.49

The figure displays the six different kinds of common
defects, namely Stain, Hole, Carrying, Knot, Broken end,
and Netting multiple, based on the segmentation region of
the fabric using the Sobel edge detection algorithm.

4.1 Performance analysis

The following statistical metrics, such as accuracy, precision,
recall, specificity, and F1 score, are used to evaluate the suc-
cess of the classification technique.

Accuracy � TP + TN

TP + TN + FP + FN
(13)

Precision � TP

TP + FP
(14)

Recall � TP

TP + TN
(15)

Specificity � TN

TN + FP
(16)

F1 score � 2

(
Precision*Recall

Precision + Recall

)
(17)

where TN and FN represent true- and false-negative results
and TP and FP represent true and false fabric samples.

Table 1 provides an illustration of the classification of dif-
ferent classes in fabric defect detection with specific parame-
ters. The accuracy, F1 score, precision, recall, and specificity
of the proposed improved Mask RCNN are 95.98%, 96.8%,
95.56%, 94.5%, and 95.29%, respectively. Figure 7 shows
the six-class categorization receiver operating characteris-
tic (ROC) curve that was produced. The dataset that can be
evaluated using the TPR and FPR parameters yields a higher
accuracy of 0.978 for the proposed improved Mask RCNN.
The classes of fabric defects are accurately classified by the
ghost net model with high accuracy.

In order to achieve the highest level of testing accuracy, the
study first calculated the number of training epochs required.
The classification accuracy of the IM-RCNNwas, according
to the results, attained at 10 and 100 epochs with a testing
accuracy of 95.98%, respectively. Figure 8 depicts the train-
ing and testing accuracy graph, and Fig. 9 shows the loss
graph.

4.2 Comparative analysis

In this section, the suggested model and the current deep
learning models are contrasted and examined. Precision,
specificity, recall, accuracy, and F1 score were used to com-
pare the performance of current approaches in order to show
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Fig. 7 ROC of improved Mask RCNN for six-class classification

Fig. 8 Training and testing accuracy curve of improved Mask RCNN

that the proposed strategy’s results are more effective. Table2
shows the comparison of the proposed model and deep neu-
ral networks such as MobileNet-2, U-Net, LeNet-5, and
DenseNet.

Fig. 9 Training and testing loss curve of improved Mask RCNN

The proposed IM-RCNN improves the overall specificity
of 7.14%,1.36%,4.89%, and3.47%better thanMobileNet-2,
U-Net, LeNet-5, and DenseNet, respectively. The proposed
IM-RCNN improves the overall precision of 11.88%, 6.96%,
9.61%, and 8.77% better than MobileNet-2, U-Net, LeNet-
5, and DenseNet, respectively. The proposed IM-RCNN
improves the overall recall of 12.19%, 7.21%, 12.12%,
and 10.61% better than MobileNet-2, U-Net, LeNet-5, and
DenseNet, respectively. The proposed IM-RCNN improves
the overall F1 score of 7.06%, 4.74%, 6.03%, and 7.59%
better than MobileNet-2, U-Net, LeNet-5, and DenseNet,
respectively. The proposed IM-RCNN improves the over-
all accuracy of 6.45%, 1.66%, 4.70%, and 3.86% better than
MobileNet-2, U-Net, LeNet-5, and DenseNet, respectively.
Based on the particular parameters of the networks as indi-
cated in Fig. 10, the effectiveness of the proposed network is
evaluated.

In the experimental analysis, the proposed model was
compared with the existing based on HBKU fabric images
database. According to Table 3, the proposed IM-RCNN
system improves the overall accuracy of 6.26%, 7.4%, and
11.4% better than U-Net, CNN, and DCNN, respectively.
Compared to the existing methods, the proposed IM-RCNN
system yields higher accuracy.

Table 2 Comparison between the
suggested model and deep
learning networks

Networks Accuracy Specificity Precision Recall F1 score

MobileNet-2 94.41 92.56 89.27 86.75 88.75

U-Net 93.21 90.47 86.34 85.86 88.89

LeNet-5 95.67 93.64 87.47 83.78 92.87

DenseNet 93.57 91.24 88.45 85.28 90.24

IM-RCNN 97.91 95.68 94.37 92.65 93.58
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Fig. 10 Comparison of existing deep learning networkswith IM-RCNN

Table 3 Comparison of existing versus proposed defect detectionmodel

References Methods Accuracy (%)

Rong-Qiang [18] U-Net 92.7

Samit [20] CNN 91.5

Tong [24] DCNN 87.6

Proposed IM-RCNN 97.8

From the above results, it is justified that the proposed
fabric defect detection technique classifies six classes such
as Stain, Hole, Carrying, Knot, Broken end, andNettingmul-
tiple with better accuracy level.

5 Conclusion

In this study, a deep learning-based IM-RCNNwas proposed
for sequentially identifying image defects in patterned fab-
rics. Firstly, the images are gathered from theHKBUdatabase
and these images are pre-processed using CLAHE for elimi-
nating the noise artifacts. The Sobel edge detection algorithm
is utilized to retrieve relevant features from the pre-processed
images. Lastly, the proposed IM-RCNN is used for classi-
fying defected fabric into six classes, namely Stain, Hole,
Carrying, Knot, Broken end, and Netting multiple, based
on the segmentation region of the fabric. The experimen-
tal findings on a HKBU datasets reveal that the proposed
technique has better and better detection outcome than other
approaches. The proposed IM-RCNN improves the overall
accuracy of 6.45%, 1.66%, 4.70%, and 3.86% better than
MobileNet-2, U-Net, LeNet-5, and DenseNet, respectively.
In future work, we will accumulate more fabric images from
the textile sector and create sizable databases to validate the
proposed technique for practical applications.
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