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Abstract
In recent years, the frequent occurrence of smog weather has affected people’s health and has also had a major impact on
computer vision application systems. Images captured in hazy environments suffer from quality degradation and other issues
such as color distortion, low contrast, and lack of detail. This study proposes an end-to-end, adversarial neural network-
based dehazing technique called DC-GAN that combines Dense and Residual blocks efficiently for improved dehazing
performance. In addition, it also consists of channel attention and pixel attention, which can offer more versatility when
dealing with different forms of data. The Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP)
was used as an enhancement method to correct the short-comings in the original GAN’s cost function and create an improvised
loss. Based on the experiment results, the algorithm used in this research can generate sharp images with high image quality.
The processed images were simultaneously analyzed using the objective evaluation metrics Peak Signal-to-Noise Ratio and
Structural Similarity. The findings from our experiment demonstrate that the dehazing effect is favorable compared to other
state-of-the-art dehazing algorithms.

Keywords Image dehazing · Deep learning · Generative adversarial networks

1 Introduction

Digital images are essential for many industries and research
fields, as they serve as the main medium of information
transmission. High-quality digital images provide a reliable
input that effectively guarantees the performance of com-
puter vision systems in image processing. As such, these
images drive the use of various image processing tech-
nologies across multiple applications, including autonomous
driving, intelligent robots, medical devices, and more. By
providing high-quality data input to computer vision systems
used in these areas, digital images play an invaluable role in
advancing technological progress within them [1].

Haze is a natural phenomenon that has become increas-
ingly common due to human-caused water pollution and
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increased industrial and agricultural waste. The presence of
haze significantly impairs visibility, reducing light capture
when taking photos with computer-based imaging devices.
This results in reduced contrast, color distortion, loss of
detailed content, as well as an overall grayish coloration to
images. Additionally, it greatly impedes people’s ability to
travel safely due to decreased visibility caused by the hazy
environment [2].

Atmospheric scattering models (ASM) are mathematical
tools used to simulate the interaction between light and par-
ticles in a given atmosphere. The term "a given atmosphere"
refers to the specific conditions and characteristics of an
atmospheric layer or region, such as its temperature, pressure,
humidity, and optical depth. These models can be applied
to different types of atmospheres, such as Earth’s or Mars’,
depending on the physical properties and composition of the
particles. Different atmospheres can have different effects on
light propagation and visibility.

These models can be used to accurately predict how sun-
light is scattered, absorbed, and reflected by atmospheric
components such as aerosols, clouds, and gases. The haz-
ing effect occurs when sunlight is being scattered by these
particles, resulting in a softening or blurring of distant objects
due to reduced contrast between them and their background.
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The equation used to represent ASM is:

I (x) = J (x)t(x) + A(1 − t(x)) (1)

where I(x) represent the observed hazy image, J(x) is the
original image, A is the global atmospheric lighting, and
t(x) is the transmission. A refers to the natural light of the
atmosphere across the entire scene while t(x) represents the
amount of light that reaches the camera from the object and
is calculated as follows:

t(x) = e−βd(X) (2)

The most common type of atmospheric scattering model
is called Mie Theory which was developed by Gustav Mie
in 1908. Koschmieder’s atmospheric scattering model is a
more suitable approach for describing the optical properties
of haze thanMie theory. Mie theory assumes that the scatter-
ing particles are spherical and homogeneous, which is not the
case for haze particles that have irregular shapes and compo-
sitions. Koschmieder’s model, on the other hand, considers
the effects of multiple scattering and absorption by the par-
ticles, as well as the variation of the particle size distribution
and refractive index with altitude. Therefore, Koschmieder’s
model can better account for the attenuation and coloration
of light by haze in the atmosphere.

The hazing effect caused by aerosol particles has many
practical implications ranging from aviation safety (reduc-
ing visibility) to climate change (affecting solar radiation
balance). It also affects our perception of the environment
since it reduces contrast making it harder for us humans to
perceive details at long distances like mountains and build-
ings. This information is invaluable for applications ranging
from climate change research to predicting air quality levels
or visibility conditions in an area. Atmospheric scattering
models provide a powerful tool for understanding the effects
of our changing environment on both local weather patterns
as well as global climate systems (Fig. 1).

The future of image processing and analysis will be heav-
ily reliant on low-quality images, which have the potential
to affect other related projects and progress in the field.
For instance, when using advanced technologies such as
unmanned aerial photography and autonomous driving sys-
tems there are stringent requirements for image quality that
must be met in order to ensure high accuracy. As a result, it
is essential that researchers continue to develop methods for
effectively utilizing low-resolution images while still achiev-
ing accurate results [3].

Image defogging is crucial for computer vision systems,
as it enables the successful application of image control,
object identification, and tracking. Haze and fog can severely
impede the accuracy of video recordings taken in hazy con-
ditions. Image defogging can use methods such as noise

reduction algorithms or advanced color restoration tech-
niques to enhance the clarity and details of the image, which
are important for computer vision applications. Therefore, it
is essential to study how to obtain better results from photos
taken in hazy environments, as this can improve the perfor-
mance of these technologies.

Currently, image defogging algorithms can be classified
into three main categories based on their theoretical founda-
tions: image enhancement-based, physical model-based, and
deep learning-based methods. Image enhancement-based
methods use image processing techniques to increase the
contrast and sharpen the details of the image. Physicalmodel-
based methods use a physical model of the fog or haze
formation and try to estimate and remove its effect from the
image. Deep learning-based methods use neural networks
to learn the mapping between foggy and defogged images
from a large dataset of images. The image enhancement
method has an advantage over the other two methods due to
its long development time and technological advancement.
When compared to the other two methods, the main dis-
advantages of this method are the loss of details and color
distortion in the generated defogging image.

The second method employs techniques based on phys-
ical models [4]. The basic idea is to develop a physical
model of atmospheric scattering, identify the key variables,
and then derive an image free of fog. The physical model-
based defogging algorithm has an advantage over the other
two methods in that it retains more image structure informa-
tion and has more image details after de-fogging, resulting
in a more natural image without fog. However, due to the
difficulty in establishing physical models and estimating
intermediate variables, the complexity and cost of the phys-
ical model-based defogging algorithm technology are high,
so the physical model-based defogging method is not widely
recognized in the computer vision field at the moment [5].

Fog removal algorithms based on deep learning can be
classified into two types. The first type uses the atmospheric
scattering physicalmodel to estimate some intermediate vari-
ables and then, reconstructs the fog-free image. The second
type uses an end-to-end learning method to directly learn the
mapping function between the foggy and fog-free images.
Image enhancement-based fog removal algorithms can be
divided into two categories: global enhancement and local
enhancement. These algorithms use image processing tech-
niques to improve the imagequality by enhancing the contrast
and the details [6].

2 Related work

A common challenge in image processing is to reduce the
impact of haze on the quality and clarity of images. Several
approaches have been proposed in the past to enhance or
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Fig. 1 Atmospheric scattering model

remove haze from images, such as image enhancement algo-
rithms or model-based dehazing algorithms. However, these
methods may have limitations in terms of computational effi-
ciency, robustness, or generalization. Recently, deep learning
methods based on convolutional neural networks (CNNs) and
generative adversarial networks (GANs) have shown promis-
ing results for various high-level vision tasks, such as image
classification or deblurring. Therefore, these methods have
also been applied to the problem of image dehazing, achiev-
ing state-of-the-art performance, and overcoming some of
the drawbacks of previous methods.

Deep learning-based approaches are superior to classical
methods because they use deeper features rather than super-
ficial ones when processing an input image or video frame
sequence containing hazy scenes.Deep learning-basedmeth-
ods for dehazing can be divided into two categories: single
image dehazing and video dehazing. Single image dehazing
aims to restore a clear image from a single hazy input, while
videodehazing aims to restore a clear video fromahazyvideo
sequence. Both problems are ill-posed, as there is no unique
solution for dehazing, and the haze parameters are unknown.
However, deep learning-based methods can overcome these
challenges by learning from large-scale datasets of hazy and
clear images or videos, or by generating synthetic data using
physical models of haze formation.

For example, some GAN architectures have been devel-
opedwhich can generate clear images from hazy inputs using
end-to-end training frameworks. GANs can produce realistic
and natural-looking results, as they can capture the high-level
semantic information and the low-level details of the scenes.

CNNs can be trained with paired datasets, where each hazy
image or video is matched with a corresponding clear one, or
with unpaired datasets, where there is no direct correspon-
dence between the hazy and clear samples. CNNs can learn
to estimate the haze parameters, such as the transmission
map and the atmospheric light, or to directly output the clear
images or videos without explicitly modeling the haze [7].

2.1 CNN-based dehazing

Convolutional Neural Networks (CNNs) are increasingly
being used in image dehazing, typically trained on synthetic
data. This is done by finding the dehazed image directly from
the hazy image or by extracting a transmissionmap. By using
CNNs for this task, they can learn to identify and remove haze
from images with high accuracy as compared to traditional
methods like dark channel prior or multi-scale fusion-based
approaches [8].

The Generic Model-Agnostic Convolutional Neural Net-
work (GMAN) [9] has revolutionized the image restoration
process by providing a solution to the problemof lossy recon-
struction of original images from hazy ones. Unlike previous
methods, GMAN does not rely on parameters A and t(x) or
their variants for this purpose, as it is unlikely that these
can be transformed equivalently into an estimation problem
when subject to the same evaluation metric. Parameters A
and t(x) are commonly used in haze removal models based
on the atmospheric scattering model. Other image restora-
tion models may use different parameters depending on the
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degradation they aim to address. For example, some mod-
els for image deblurring use a blur kernel K to model the
motion blur effect. Common parameters in image restora-
tion models include noise level, regularization parameter,
and learning rate, which are not specific to the degradation
model but rather to the optimization or learning algorithm
used to solve the inverse problem. Relations between mod-
els with parameters are not trivial and require assumptions
or approximations.

In addition, GMAN overcomes issues with ASM which
fails to capture complex relationships between the original
and hazy images and produces unsatisfactory results on nat-
urally hazed images despite its effectiveness in restoring
synthetically hazed ones. As such, GMAN provides a much-
needed breakthrough in terms of restoring clear images from
hazy sources without relying heavily on traditional parame-
ters or models.

In [10] demonstrated a highly successful CNN-based
dehazing method that utilizes semantic features extracted
from a single image to derive color priors. This model was
tested on both synthetic and real-world hazy images, result-
ing in superior performance for recovering clear images even
under difficult conditions with high ambiguity. Despite its
success, themodel needs to be further trained on an expanded
set of natural outdoor scenes to improve accuracy and robust-
ness going forward.

Two popular neural networks for calculating the transmis-
sion map from a hazy input image are DehazeNet [11] and
AOD-Net [12]. AOD-Net has the advantage of estimating
both the transmission map and atmospheric light simultane-
ously; however, when applied to videos, this method may
cause flickering artifacts, making it unsuitable for video
dehazing. To address these issues, an alternative approach
was required that employs a deep neural network capable
of learning an atmospheric scattering model to directly opti-
mize haze removal via end-to-end mapping without the need
for explicit estimation of medium transmission maps.

The AOD-Net model has been further extended to EVD-
Net [13], and an additional network used for video dehazing.
This new network seeks to exploit the temporal coherence
property of adjacent video frames, making it more effective
at removing haze from videos than its predecessor. However,
this method also suffers from flicker artefacts when applied
on certain sequences due to the inherent limitations of using
a single frame as input.

GCANet [14] is an effective method for removing grid
artifacts caused by dilated convolution. To achieve this
goal, it takes advantage of the most recent smoothed dila-
tion approach. FFANet (Feature Fusion Attention Network)
developed by [15] provides additional flexibility when deal-
ing with diverse types of information. It uses L1 loss to
compare dehazed images with ground truths, which works

well in most cases; however, in real-world scenarios, it can
produce some flickering artifacts.

CNN-based dehazing methods have achieved remarkable
results in recent years, but they still suffer from some limi-
tations. GAN-based dehazing frameworks have emerged as
a promising solution for restoring clear images from hazy
ones. Unlike CNN-based methods, which have some draw-
backs such as needing paired data, being prone to noise and
artifacts, and lacking perceptual quality, GAN-based meth-
ods can leverage unpaired data, preserve the original details
and colors, and enhance the visual appeal of the results. They
can produce more realistic and natural dehazed images that
are closer to human perception.

2.2 GAN-based dehazing

Generative Adversarial Networks (GANs) are a deep learn-
ing and unsupervised machine learning technique first intro-
duced by [16]. It ismade up of a generator and a discriminator
that compete against each other in a zero-sum game. Both
blocks, which are based on deep neural network architec-
ture, are designed to simplify the generative and adversarial
processes and can be trained using forward and backward
propagation. GANs have made significant strides since they
were first introduced. Numerous noteworthy advancements
have been made to enhance system performance and the
learning process, which include Deep Convolutional GAN
(DCGAN) [17], Wasserstein GAN (WGAN) [18], Condi-
tionalGAN(cGAN) [19], andCycle-GAN[20].ManyGANs
have recently been demonstrated to be quite successful at
image dehazing. One such network is the All-in-One Dehaz-
ing Network, or AOD-Net (All-in-One Dehazing Network)
[12], a lightweight CNN architecture based on a revised
atmospheric scattering model. De-Haze and Smoke GAN
(DHSGAN) [21] is another dehazing network that does not
require any post-processing or atmospheric model inversion.
Yang et al. [22] used a cycle-consistency loss to demonstrate a
disentangled dehazing network (DDN). It uses only one gen-
erator to remove haze; however, this model replaces the other
generator with the atmospheric scattering model to generate
hazy images. The cycle-consistency loss is then computed
using both the input and reconstructed hazy images.

Engin et al. [23] proposed Cycle-Dehaze, a method that
enhances the visual quality of dehazed images by combining
perceptual loss and cycle-consistency loss. They designed a
network that does not rely on the Koschmieder model, unlike
DDN. Wei et al. [24] presented a Cycle-GAN-based end-
to-end learning system for dehazing. On the other hand, Li
et al. [25] developed an encoder–decoder architecture based
on a cGAN (conditional generative adversarial network) to
learn dehazed scenes. They used unpaired training images
that are both haze-free and hazy and removed the haze using
an adversarial discriminator that enforces cycle consistency.
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FD-GAN [26] employs GANs with a fusion discriminator
for single image dehazing. HIDeGAN [27] introduced an
image dehazing architecture that takes a blurry RGB image
as input and converts it to a hyperspectral image (HSI).
Because of its enormous ability to generate realistic images,
GANhas been employed in a variety of vision-based applica-
tions such as image denoising [28], de-raining [29, 30], and
super-resolution [31–33]. Because these approaches do not
use physical scattering models, they do not provide dehazed
images with adequate contrast and color. In this paper, we
propose a uniqueGAN-based image dehazing network called
DC-GANwith feature attention that can dehaze both real and
synthetic images.

GAN-based dehazing methods have shown promising
results in removing haze from images without relying on
prior knowledge or assumptions about the atmospheric con-
ditions. However, most of these methods suffer from some
limitations, such as low resolution, color distortion, or arti-
facts. To address these issues, we propose a novel densely
connected GAN with feature attention for image dehazing.
Our method leverages the advantages of dense connections
and feature attention to enhance the quality and diversity of
the generated images. We also introduce a new loss function
that combines adversarial, perceptual, andWGAN-GP losses
to guide the learning process. We also evaluate our method
on several benchmark datasets.

3 Methodology

The paper presents a novel GAN-based dehazing method
that uses densely connected networks and feature attention
to generate realistic and clear images. This method addresses
limitations of conventional GANs, such as mode collapse,
lack of diversity, and artifacts. It enhances information flow
and feature reuse among layers, improving performance.
The method adaptively emphasizes important features and
suppresses irrelevant ones, preserving details and contrast.
However, it may not remove thin or dense haze regions or
introduce color distortion or noise. Future work will incor-
porate advanced techniques likemulti-scale feature fusion. In
this section, the dataset, preprocessing procedures, the archi-
tecture of the proposedDC-GANnetwork for dehazing along
with detail on the loss functions that were used during the
training stage are discussed.

3.1 Dataset

The New Trends in Image Restoration and Enhancement
(NTIRE) 2018-Dehazing challenge and REalistic Single
Image DEhazing (RESIDE) [34] datasets are utilized to train
the proposed network. Unlike previous methods that use

video sequences or multiple images as input, our method
can handle single images.

NTIRE is one of the recent datasets to be used as a bench-
mark for the most advanced image dehazing methods and to
encourage additional study in the area. The Indoor dataset
[35] of the NTIRE-Dehazing contains 25 training images, 5
validation images, and 5 test images, whereas the Outdoor
dataset [36] contains 40 training images, 5 validation images,
and 5 test images. Both the indoor and outdoor datasets con-
tain two classes, namely the ground truth (GT) and hazy.
Because the ground truth of the test data set has not been
released,wepresent thefindings and evaluate themodel using
the validation set. The images had a high resolution of about
3000 × 3000 pixels each. A specialized haze/fog generator
was used to produce the haze effect, which simulates the
realistic conditions of foggy scenarios.

The RESIDE dataset is a large-scale dehazing benchmark
dataset composed of single images and an empirical and
experimental expansion known as RESIDE-β. The RESIDE
datasetwas created by researchers from theUniversity of Sci-
ence and Technology of China, and it consists of more than
30,000 images with different levels of haze. The dataset cov-
ers various scenarios, such as indoor, outdoor, natural, urban,
and synthetic. The dataset also provides ground truth images
without haze for evaluation and comparison. It is divided into
five subsets: synthetic large-scale Indoor Training Set (ITS),
Synthetic Objective Testing Set (SOTS), Hybrid Subjective
Testing Set (HSTS), an Outdoor Training Set (OTS), and a
Real-world Task-driven Testing Set (RTTS).

For our experiments, we focused on the SOTS sub-
set, which is one of the most commonly used benchmarks
for dehazing methods. This subset contains 1560 synthetic
images with haze and their corresponding ground truth
images. The images are divided into two categories: indoor
(500 images) and outdoor (1060 images). The indoor images
are from the same source as ITS, while the outdoor images
are from the Middlebury Stereo Dataset and the Make3D
Dataset. The images in this subset are used for objective eval-
uation of dehazing methods.

This dataset was split into training and validation sets in
the same manner as the NTIRE 2018 dataset. Since the 10
indoor images of the haze class were synthetically generated
from each ground truth image, only the image with the high-
est noise was selected to address the class imbalance issue.
As a result, the training set for the indoor dataset contains 45
images per class, whereas the validation set has 5 images for
each class (Fig. 2).

For the outdoor dataset, 470 images were assigned to
each class for the training set and 20 images per class were
assigned to the validation set. The train-test split is summa-
rized in Table 1.

123



2172 Signal, Image and Video Processing (2024) 18:2167–2182

Fig. 2 a and e are sample indoor hazy and ground truth images, while
b and f are sample outdoor hazy and ground truth images of the NTIRE
2018 dataset, respectively, and c and g are sample indoor hazy and

ground truth images while d and h are sample outdoor hazy and ground
truth images of the RESIDE SOTS dataset, respectively

Table 1 The train-test split for
NTIRE 2018 and SOTS datasets Name of the subset Types of images Classes Training images Testing images

NTIRE 2018 Indoor Ground truth 25 5

Hazy 25 5

Outdoor Ground truth 40 5

Hazy 40 5

SOTS Indoor Ground truth 45 5

Hazy 45 5

Outdoor Ground truth 470 20

Hazy 470 20

3.2 Pre-processing

Because of the high resolution of the images in the NTIRE
2018, it is difficult to use the entire image for training. A pos-
sible approach is to resize the images to a lower resolution;
however, this may result in the loss of important high-level
features. A patch-based training technique is utilized to over-
come this issue, in which the entire image is split into smaller
sized patches. Even if the memory issue is handled using the
cropping technique, the network’s receptive field is reduced,
resulting in the loss of global context information.

To train our model, we applied a multi-scale cropping
technique, where we extracted patches of varying sizes that
were 1024 × 1024, 1024 × 2048, and 2048 × 2048 pixels.
These patches were then resized to 512 × 512 pixels before
feeding them to the network. However, for the SOTS dataset,
which contained smaller images, we did not use the patch-
based approach. Instead, we simply resized all the images to

512 × 512 pixels without cropping. This way, we ensured a
consistent input size for our model across different datasets.
Resizing images can have an impact on the hazing and pic-
ture quality of the dehazed results. On one hand, resizing can
reduce the noise and artifacts in the original images, which
can help the network to learn better features and produce
clearer outputs. On the other hand, resizing can also intro-
duce some distortion and blurring, which can degrade the
quality of the dehazed images. Therefore, it is important to
balance the trade-off between resizing and preserving the
original details of the images. In our experiments, we found
that resizing to 512 × 512 pixels did not significantly affect
the performance of ourmodel on different datasets, and it also
reduced the computational cost andmemory usage.However,
for some applications that require high-resolution images,
resizing may not be desirable. In that case, our patch-based
approach can be applied to handle large-scale imageswithout
compromising the quality.
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The data augmentation technique that was used during the
experiment is random rotation. The rotation augmentation
randomly rotates the images in the training set clockwise by a
given number of degrees from 0 to 270 before being fed to the
model. This helps in artificially increasing the dataset since
there are not a lot of images, especially in the NTIRE 2018
dataset. Random rotation can improve the model without us
having to collect and label more data. A possible justification
for using random rotation as a data augmentation technique is
that it canmake themodelmore robust to orientation changes
in the input images, whichmay occur in real-world scenarios.

3.3 Network architecture

In this section, we present the details of our method, which
includes the generator, discriminator, and experiments on dif-
ferent GAN Loss functions. The dehazing model has two
main parts—a generator that produces dehazed images from
hazy inputs, and a discriminator that evaluates the quality and
realism of the generated images. During training, the gener-
ator learns to construct a mapping from an input hazy image
I to its corresponding ground truth J . The generated output
G(I) is then given as input to the discriminator along with its
ground truth for comparison. Adversarial learning between
these two components is used in order to extract informa-
tion from I , by minimizing their respective loss functions
Ld and Lg during training, while ignoring one when updat-
ing parameters for another component, respectively. This
means that during training, if either component misclassifies
or fails at creating realistic outputs, respectively (i.e., gener-
ating fake images), it will be penalized accordingly through
their respective losses which can help improve performance
overall. The overall architecture is shown in Fig. 3.

3.3.1 Generator

The aim of the generator is to produce sharp images from
hazy inputs without predicting intermediate factors. The gen-
erator must keep the image content and recover the details
while removing the haze in order to accomplish this goal.
Many studies have shown that dense connections have the
potential to improve feature extraction and utilization, par-
ticularly for low-level vision tasks. We propose a novel
encoder–decoder architecture for the generator that lever-
ages dense connections and feature attention to enhance the
performance of image dehazing. The main components and
contributions of the proposed network architecture for image
dehazing are presented below.

1. The use of dense blocks instead of convolutional layers
to enhance the feature extraction and convergence of the
encoder–decoder network by allowing more information
flow across feature maps.

2. Our encoder consists of the first convolutional layer and
the first three dense blocks with their corresponding tran-
sition blocks from a pre-trained DenseNet-121 model.

3. The use of a multi-level pyramid pooling module to cap-
ture global context information at different scales and
fuse it with the encoder features.

4. The up sampling blocks are connected to the encoder
features through skip connections.

5. Our decoder is composed of a series of up sampling
blocks, each containing a dense bottleneck layer and a
transition layer.

6. The use of a group layer structure based on FFANet to
combine residual learning and dense connections in the
decoder, which improves the reconstruction quality and
preserves fine details.

7. The use of feature attention to adaptivelyweight the chan-
nel and pixel features according to their relevance for
dehazing, which enhances the contrast and visibility of
the output image. By combining channel and pixel atten-
tion, our network can effectively handle various types of
haze distributions and enhance the visibility and contrast
of the dehazed images.

Encoder Dense blocks are used to improve convergence
by maximizing information flow along features. A multi-
level pyramid pooling module is utilized to refine the learned
features. The first Conv layer and the first three Dense Blocks
with their related down sampling Transition-Blocks from a
pre-trained dense-net 121 are utilized as an encoder structure
to exploit the pre-defined weights.

Skip-Connection The proposed densely connected
encoder–decoder structure integrates different features
within the network; however, it lacks the "global” structural
information of objects at various scales. A multi-level pyra-
mid pooling block is used to capture additional global context
information between different objects to overcome this issue.
This ismotivated by using global context information in clas-
sification and segmentation tasks.Hence, a four-level pooling
operation with pooling sizes 1/16, 1/8, 1/4 and 1/2 is adopted
to down sample the input image. Then, all four-level fea-
tures are concatenated into the corresponding feature maps
in the up sampling and down sampling layers. Following the
last up sampling operation, the original image is additionally
concatenated before the final estimation.

Decoder The decoder structure is carefully designed with
a set of residual and dense blocks. It is designed to improve
the image quality by increasing the spatial resolution and
enhancing the feature diversity. As shown in Fig. 3, each
up sampling block in the decoder is composed of a dense
bottleneck layer (DenseBlock D) and a transition block
(TransBlock D). The dense bottleneck layer consists of two
ReLu and Conv layers applied one after another, which is
then concatenated with the input. This allows the network
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Fig. 3 Network architecture

to learn more diverse and complex features. While the tran-
sition layer consists of a ReLU followed by a Conv layer
which is then followed by a 2D transpose convolution for up
sampling. The transition block reduces the number of chan-
nels and increases the spatial resolution by using a transpose
convolution, which is a convolution that swaps the input and
output dimensions.

Before being passed on to the group layer, the output from
each up sampling block is concatenated with the correspond-
ing feature maps from the down sampling layer and pyramid
pooling layer. The pyramid pooling layer is a module that
captures global context information by applying different
levels of pooling and up sampling operations. The purpose of
the pyramid pooling layer is to aggregate features from dif-
ferent regions of the image, which can help to preserve the
details and avoid losing information due to down sampling.

The group layer structure is based on FFANet [15] and
combines two basic residual block structures with a skip con-
nection. Themotivation behind the residual blocks is residual
learning in ResNet [37], in which network layers learn resid-
ual functions with reference to the layer inputs rather than
learning unreferenced functions. The residual blocks learn
residual functions that are easier to optimize than unrefer-
enced functions, and the skip connection helps to preserve
the low-level information and avoid gradient vanishing.

A basic residual block structure, as shown in Fig. 4,
consists of local residual learning and a Feature Attention
(FA) module. Local residual learning allows less significant
information to be transferred across several local residual
connections, such as a low-frequency zone.

Pixel and Channel Attention Feature Attention is made up
of channel attention and pixel attention, which can offer you
more versatility when dealing with different forms of data.

The concept of channel attention assumes that each chan-
nel feature has its own weighting regarding its importance
in the data set. This is accomplished by gathering global
spatial information from each individual channel and uti-
lizing global average pooling to create a feature descriptor.
The weights for these channels are then calculated using two
convolution layers, followed by sigmoid or ReLu activation
functions before being multiplied elementwise against the
input features themselves. Pixel attention is a powerful tool
for analyzing images that can provide more accurate results
than traditional channel-wise analysis. By focusing on indi-
vidual pixels, it allows us to identify important areas of an
image with greater precision. This is especially useful when
dealing with uneven haze distribution in an image, as the PA
module enables the network to focus on thicker hazed pixels
and high-frequency regions which contain more information
about the scene or object being captured.

3.3.2 Discriminator

The discriminator in this model plays an important role in
guiding the generator to generate more realistic dehazed
results. Our discriminator is similar to that of [38], which
consists of four convolutional layers with a stride of two and
determines whether each N × N patch in an image is from
the ground truth or the generator. Each convolutional feature
map is fed into the next convolutional layer for regulariza-
tion after passing through a group normalization layer and a
Leaky-ReLu. The discriminator model is shown in Fig. 5.

As shown in Fig. 5, the discriminator is a simple archi-
tecture that alternates between several layers. The first and
the layer before the last conv layer are comprised of a Conv
and Leaky-ReLu operations. The first layer is followed by
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Fig. 4 Building blocks explanation

Fig. 5 Discriminator

four layers that contain Conv, Batch Norm and Leaky-ReLu
layers. The last Conv layer is followed by a sigmoid layer.
The variables at the bottom of the figure, denoted by k, n and
s, represent the kernel size, number of channels and stride,
respectively.

3.4 Losses and evaluationmetrics

When training a CNN-based reconstruction network, it is
important to choose the correct loss function because more
conventional techniques like L2 error can result in hazy out-
put. This problem has been addressed in recent works that
makes use of new loss functions. During the experiment,
we used an improvised loss to train the network on the two
datasets and compare the results.

3.4.1 Improvised loss

For our improvised loss, we can start by denoting our dehaze
image as Î . Igt and Ihazy are, respectively, the ground truth
image and hazy image. G and D represent the generator and
discriminator respectively.

Smooth L1 Loss The smooth L1 loss is a robust version
of the mean squared error (MSE) loss, which penalizes large

errors less than small errors. This helps to avoid outliers and
gradient explosion. The smooth L1 loss measures the pixel-
level difference between the dehazed image and the ground
truth image. The smooth L1 Loss can be described as:

Lsmooth−L1 = 1

3N

∑

i=1

∑

c=1

α
(
Îc(i) − I gtc (i)

)
(3)

where,

α(e) =
{
0.5e2, if |e| < 1
|e| − 0.5, otherwise

(4)

Here, Îc (i) and I gtc (i) denote the intensity of the c-th chan-
nel of pixel i in the dehazed image and in the ground truth
image, respectively, and N is the total number of pixels.

Perceptual Loss The perceptual loss is based on the fea-
turemaps extracted froma pre-trainedVGG-19 network. The
perceptual loss measures the semantic similarity between the
dehazed image and the ground truth image, by comparing
their high-level features. This helps to preserve the content
and structure of the image. In addition to pixel-wise super-
vision, we utilize the VGG16 loss network pre-trained on
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ImageNet to evaluate perceptual similarity.

Lper =
3∑

j=1

1

C j HjW j
φ j

∥∥∥∥
(
I gt

) − φ j

(
Î
)2
2

∥∥∥∥ (5)

whereHj,Wj, andCj represent the height,width, and channel
of the feature map in the j-th layer of the backbone network,
and finally, φj is the activation of the j-th layer.

MS-SSIM Loss The MS-SSIM loss measures the contrast
and luminance similarity between the dehazed image and the
ground truth image, by comparing their local statistics atmul-
tiple scales. This helps to preserve the contrast and brightness
of the image. Let’s use the terms O and G to represent two
windows with a common size that are each centered at pixel
i in the haze-free image and the dehazed image, respectively.
After using a Gaussian filter to O and G, we can compute
the resulting means μO,μG, standard deviations σO, σG and
covariance σOG. After defining the terms, the SSIM for pixel
i can be defined as:

SSIM(i) = 2μOμC + C1

μ2
O + μ2

G + C1
· 2σOG + C2

σ 2
O + σ 2

G + C2

= l(i) · cs(i) (6)

where l(i) represents luminance, and cs(i) represents contract,
and structure measures,C1,C2, are two variables to stabilize
the division with weak denominator. Finally, MS-SSIM loss
is computed using M levels of SSIM, which is defined as:

LMS − SSIM = 1 − MS − SSIM (7)

where

MS − SSIM = lαM (i) ·
M∏

m=1

csβmm (i) (8)

with α and βm being default parameters. In the Multi-Scale
Structural Similarity Index (MS-SSIM) formula, the param-
eters α and βm play a significant role in determining the
weights of different components of the index. The α param-
eter controls the influence of the luminance comparison on
the overall index. A higher value of α gives more weight to
the luminance component, making it more important in the
final score. The βm parameters control the influence of the
contrast comparison at different scales on the overall index.
Each βm value corresponds to a specific scale, with m rang-
ing from 1 to M. Higher values of βm give more weight to
the contrast component at that scale, making it more impor-
tant in the final score. By adjusting these parameters, you can
customize the MS-SSIM index to emphasize certain aspects
of image quality over others.

Adversarial Loss The adversarial loss ladv is defined using
the discriminator.

D(G(Ihazy)) probabilities across all training samples. It is
described as:

Ladv =
N∑

n=1

−logD
(
G

(
I hazy

))
(9)

where D(G(Ihazy)) is the probability of reconstructed image
G(Ihazy) to be a haze-free image.

WGAN-GP Loss The WGAN-GP loss is an enhanced
version of the Wasserstein GAN (WGAN) loss, utilizing a
gradient penalty term to enforce a Lipschitz constraint on
the discriminator, thereby minimizing the Wasserstein dis-
tance between real and fake image distributions. This helps
to stabilize the training process and avoid mode collapse. To
obtain the WGAN value function, the Kantorovich–Rubin-
stein duality is used.

min
G

max
D∈D E

x∼Pr

[D(x)] − E

X̃∼Pg

[
D(x̃)

]
(10)

where D is the collection of 1-Lipschitz functions, and Pg

is once more the distribution of the model that is implicitly
specified by x̂ = G(z). Because the gradient of the critic
function produced by the WGAN value function behaves
better with regard to its input than that of the GAN counter-
part, it is simpler to optimize the generator. The interaction
between the weight constraint and the loss function compli-
cates WGAN training and results in exploding or vanishing
gradients. Gradient Penalty works by enforcing a constraint
that requires the gradients of the critic’s output with regard
to the inputs to have a unit norm.

Lwgan - gP

= E
x̃∼Pg

[
D(x̃)

] − E
x∼Pr

[D(x)]

︸ ︷︷ ︸
Original critic loss

+ λ E
x̂∼Px

[(∇x̂D
(
x̂
)
2 − 1

)2]

︸ ︷︷ ︸
Gradient penalty

(11)

Total Loss To supervise the training of our dehazing net-
work, we integrate the smooth L1 loss, perceptual loss,
MS-SSIM loss, adversarial loss, and WGAN-GP loss.

L improv = Lsmooth−L1 + αLMS−SSIM + βLper

+ γ Ladv + φLwgan−gp (12)

where α = 0.2, β = 0.5 and γ = 0.0005, and φ = 1
are the hyperparameters weighting for each loss functions.
The hyperparameters weighing for each loss function in the
Limprov equation are selected based on the specific require-
ments of the dehazing network and the training data after
performing several experiments. In general, these weights
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are chosen to balance the contribution of each loss function
to the overall objective of the network. A lower value of α

means that its associated loss has less impact on the final
score. A higher value of β means that its associated loss has
more impact on the final score. A lower value of γ means
that its loss has less impact on the final score. It is important
to note that these values are not fixed and can be adjusted
based on your specific use case and requirements. The main
motivation for combining these different loss functions is to
leverage their complementary strengths and overcome their
limitations. By usingmultiple criteria to evaluate the dehazed
image, we can ensure that it has high quality in terms of
pixel-level accuracy, perceptual similarity, structural simi-
larity, realism, and diversity. Moreover, by balancing these
criteria with appropriate weights, we can avoid overfitting or
underfitting to any specific aspect of the image.

3.4.2 Evaluation metrics

Peak Signal-to-Noise Ratio (PSNR) and Structural Similar-
ity Index (SSIM), which are typically used as a criterion to
evaluate image quality in the image dehazing task, are the
evaluation metrics we adopt to evaluate the performance of
our method.

PSNR PSNR is defined as the ratio of a signal’s maximum
possible power to the power of corrupting noise that influ-
ences the fidelity of its representation. It is commonly used
to regulate the quality of digital signal transmission. In the
case of images, each pixel can be thought of as a component
of an 8-bit RGB signal. It is described as:

PSNR = 10 · log10
(
MAX2

I

MSE

)
(13)

Here, MAXI is the maximum valid value for a pixel, and
MSE represents the Mean Squared error between the output
image and the target image.

SSIM SSIM is a metric that attempts to emulate the oper-
ation of the human visual system (HVS color model). It is
built around three components: correlation, luminance distor-
tion, and contrast distortion. Instead of a direct pixel-by-pixel
comparison, this index is generated on several image win-
dows. If x, y are windows of size N × N in images:

SSIM(x , y) =
(
2μxμy + c1

)(
2σxy + c2

)
(
μ2
x + μ2

y + c1
)(

σ 2
x + σ 2

y + c2
) (14)

whereμx is the average of x;μy is the average of y; σ x
2 is the

variance of x; σ y
2 is the variance of y; σ xy is the covariance of

x and y; c1 = (k1L)2, c2 = (k2L)2 are two variables to stabilize
the division with weak denominator; L is the dynamic range

Table 2 List of hyperparameters used to train the model

Hyperparameters Values

Input size 512 × 512 × 3

Learning rate 1.00E−04

Weight decay 1.00E−02

Batch size 1

Hidden layer activation ReLu for Gen./Leaky-ReLu for disc

Normalization layer Group norm

Optimizer Lion

Loss function Improvised loss

Metrics PSNR and SSIM

No. of epochs 200

Generator output size 512 × 512 × 3 Discriminator output
size 2

of the pixel-values (typically this is 2#bits per pixel—1); and k1
= 0.01 and k2 = 0.03 by default.

3.4.3 Implementation details

The proposed model was implemented using the Python
programming language and PyTorch Version 1.12.1 as its
backend. Due to constrained memory and computational
resources, the model was trained for 200 epochs with a
batch size of 1. Due to this reason, each layer of the net-
work was normalized and made more stable by using group
norm instead of batch norm. Lion (EvoLved Sign Momen-
tum) optimizer with a learning rate of 0.0001 and weight
decay of 0.01 was used to replace Adam. It is a new opti-
mizer discovered by Google Brain that is purportedly to be
better thanAdam(w), in Pytorch.We used StepLR as a sched-
uler to adjust the learning rate. StepLR is a scheduler used
to adjust the learning rate of each parameter group. It works
by decaying the learning rate every 20 epochs, with a decay
factor of gamma = 0.5. This decay can happen in addition
to any other changes made to the learning rate from outside
sources. The detailed information about the hyperparameter
values that were provided during the training of the model is
given in Table 2.

3.5 Results and discussion

In this section,we conduct a series of experiments on two syn-
thetic datasets (NTIRE 2018 and SOTS) to demonstrate the
effectiveness of the proposed methodology. These datasets
are artificially generated, so we have access to the ground
truth images for the validation sets, which enable us to assess
the performance both qualitatively and quantitatively. This
is a valuable tool for determining how well our proposed
methodologies can be applied in real world scenarios.
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Thefirst experiment conductedwas done using theNTIRE
2018 dataset where we trained and tested both the indoor and
outdoor datasets, using our own novel approach with impro-
vised loss. The second experiment was performed using the
SOTS dataset where again we trained and tested both the
indoor and outdoor datasets using the proposed model.

One possible reason to use SOTS and NTIRE 2018
datasets instead ofmore recent ones likeNTIRE 2021 to train
our image dehazing model is that they have more diverse
and realistic images of hazy scenes. SOTS contains both
indoor and outdoor images, while NTIRE 2018 covers var-
ious weather conditions and haze levels. These datasets can
help our model learn more generalizable features and avoid
overfitting to a specific domain or scenario. On the other
hand, NTIRE 2021 focuses on extreme weather conditions,
such as heavy fog, snow, and rain, which may not be repre-
sentative of the common cases of image dehazing.Moreover,
NTIRE 2021 has fewer images than SOTS and NTIRE 2018,
whichmay limit the amount of data available for training and
testing our model.

Table 3 shows the quantitative performance results (SSIM
and PSNR) using both datasets. As can be observed from the
table, our proposedmethod achieves best performance for the
outdoor images and comparable performance in the indoor
images on the NTIRE 2018 dataset. The model achieved a
PSNR and SSIM of 14.7 and 0.54 for the indoor images
and 16.54 and 0.54 for the outdoor images, respectively. For
the SOTS dataset, the model achieved a PSNR and SSIM of
23.98 and 0.87 for the indoor images, and 19.88 and 0.83 for
the outdoor images, respectively. Figure 6 shows the dehazed
results of indoor and outdoor images from the NTIRE 2018
and SOTS datasets, respectively.

As shown in Fig. 6, the performance of the method
varies depending on the type of hazy image. Specifically, the
method works better on outdoor hazy images than on indoor
hazy images. This can be explained by the fact that outdoor
hazy images have more homogeneous and uniform haze dis-
tribution. On the other hand, indoor hazy images have more
complex and varying haze distribution. Therefore, the pro-
posed method may introduce artifacts or over-enhancement
on indoor hazy images, while preserving the naturalness and
details of outdoor hazy images. To improve the method, one
possible direction is to use a deep learning model to learn
the transmission map from a large dataset of hazy and clear
images.

3.6 Ablation study

To conduct an ablation study, we compare our full model
with different variants that remove one or more components
of the improved loss function. We also compare our model
with some baseline models that use different architectures or
loss functions. The following table summarizes the results of

our ablation study on two benchmark datasets: NTIRE 2018
and SOTS.

From this Table 4, we can see that our full model achieves
the best performance on both datasets in terms of PSNR and
SSIM, which demonstrates the effectiveness of our network
and our improved loss function. We can also see that each
component of the improved loss function contributes to the
performance improvement, as removing any of them leads
to a drop in the metrics. Among the five components, the
WGAN-GP loss has the most impact, as it improves the sta-
bility and convergence of the GAN training and prevents
mode collapse. The perceptual loss and the MS-SSIM loss
also have significant effects, as they capture the high-level
features and the structural details of the images. The smooth
L1 loss and the adversarial loss have less influence, but they
still help to reduce the pixel-wise and feature-wise errors.

We can also see that our model outperforms the base-
line models that use different architectures or loss functions.
Baseline 1 uses a U-Net architecture and a L2 loss function,
which is a common choice for image restoration tasks. How-
ever, this model produces blurry images with low contrast
and saturation. Baseline 2 uses a U-Net architecture and a
Smooth L1 loss function, which is slightly better than L2 in
preserving edges and details. However, this model still suf-
fers from color distortion and haze residue. Baseline 3 uses
a U-Net architecture and a perceptual loss function, which
is based on the features extracted by a pre-trained VGG-
19 network. This model improves the perceptual quality of
the images, but it also introduces some artifacts and noise.
Baseline 4 uses a U-Net architecture and a MS-SSIM loss
function, which is based on the structural similarity between
images at multiple scales. This model enhances the struc-
tural details of the images, but it also amplifies some haze
and reduces the contrast. Baseline 7 uses a U-Net architec-
ture and our improved loss function, which is a combination
of L1, perceptual, MS-SSIM, adversarial, and WGAN-GP
losses. This model achieves better results than the previous
baselines, but it still has some limitations in terms of image
quality and diversity. Baseline 8 uses a ResNet architecture
and our improved loss function, which is similar to ourmodel
except for the generator architecture. This model produces
clearer images than baseline 5, but it still lags behind our
model in terms of PSNR and SSIM.

3.7 Comparison with state-of-the-art studies

In this section, we will quantitatively evaluate the perfor-
mance of DC-GAN with previous state-of-the-art image
dehazing techniques. Table 5 compares the quantitative per-
formance of the proposed technique to other recent methods
on indoor and outdoor images from the NTIRE 2018 dataset.
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Table 3 Performance of
DC-GAN on the two datasets Dataset Indoor Outdoor

PSNR SSIM PSNR SSIM

NTIRE 2018 14.7 0.54 16.54 0.54

SOTS 23.98 0.87 19.88 0.83

Fig. 6 Qualitative results of DC-GAN on NTIRE 2018 and SOTS datasets. a and b represent indoor and outdoor images from NTIRE 2018 dataset,
whereas c and d represent indoor and outdoor images from SOTS dataset, respectively

Table 4 Ablation study using
NTIRE 2018 and SOTS datasets
for different losses on outdoor
images

Method NTIRE 2018 SOTS

PSNR SSIM PSNR SSIM

Baseline 1 (U-Net + L2) 14.70 0.28 16.18 0.57

Baseline 2 (U-Net + Lsmooth L1) 15.10 0.31 16.22 0.59

Baseline 3 (U-Net + Lper) 15.22 0.36 17.34 0.64

Baseline 4 (U-Net + LMS-SSIM) 16.01 0.42 17.68 0.69

Baseline 5 (U-Net + Ladv) 16.08 0.44 17.73 0.74

Baseline 6 (U-Net + Lwgan-gp) 16.12 0.47 18.53 0.76

Baseline 7 (U-Net + Limprov) 16.26 0.49 19.03 0.80

Baseline 8 (ResNet + Limprov) 16.40 0.51 19.45 0.81

Ours—Lsmooth L1 15.67 0.45 19.23 0.79

Ours—Lper 15.55 0.38 17.64 0.74

Ours—LMS-SSIM 15.10 0.35 17.42 0.71

Ours—Ladv 15.92 0.42 18.80 0.78

Ours—Lwgan-gp 14.50 0.31 16.72 0.65
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Table 5 Quantitative
comparisons on NTIRE 2018 for
different methods

Method Indoor Outdoor

PSNR SSIM PSNR SSIM

He et al. (CVPR’09) 14.43 0.75 16.78 0.65

Zhu et al. (TIP’15) 12.24 0.61 16.08 0.59

Ren et al. (ECCV’16) 15.22 0.75 17.56 0.64

Berman et al. (CVPR’16) 14.12 0.65 15.98 0.58

Li et al. (ICCV’17) 13.98 0.73 15.03 0.53

Ours 14.7 0.54 16.54 0.54

The method proposed by Ren et al. (ECCV’16) achieves
the highest PSNR and SSIM values for both indoor and out-
door images. Their method achieves a PSNR of 15.22, SSIM
of 0.75 for indoor images and PSNR of 17.56, SSIM of 0.64
for outdoor images, while our model achieves PSNR of 14.7,
SSIM of 0.54 for indoor images, PSNR of 16.54 and SSIM
of 0.54 for outdoor images on the NTIRE 2018 dataset. How-
ever, the difference between their method and our model is
not very large, especially for outdoor images. Table 5 shows
that the performance of different methods varies depending
on the type and quality of the images. Therefore, it is not
possible to draw a definitive conclusion about which method
is superior to the others for all kinds of images. One of the
main limitations of ourmethod is that it relies on a fixed set of
parameters that are tuned for a specific dataset. This makes
it difficult to generalize to new images that have different
characteristics or noise levels. Another limitation is that our
method does not explicitly handle occlusions ormissing data,
which can degrade the quality of the reconstructed images.
Furthermore, our method does not incorporate any semantic
information or prior knowledge about the scene, which could
potentially improve the results.

The quantitative comparisons using the SOTS dataset are
shown in Table 6. In terms of PSNR and SSIM metrics, our
proposed DC-GAN outperforms the majority of the state-of-
the-art methods.

As shown in Table 6, our model outperforms the existing
methods on the indoor images, achieving the highest PSNR
and SSIM values. This indicates that our model can effec-
tively remove the haze and preserve the details and colors
of the indoor images. We evaluated our model on the SOTS
dataset, which is a benchmark dataset for image dehazing.
The dataset contains indoor and outdoor images with dif-
ferent levels of haze. We initially compared our model with
several benchmarks, such as DCP, DehazeNet, AOD-Net,
GFN. However, all the approaches are very old. To fur-
ther demonstrate the effectiveness of our model, we also
compared our model with some newer methods that have
been presented in recent years, such as MSPCNN, DCPDN,
FPCNet, and GCANet. These methods are based on more

advanced techniques, such as multi-scale processing, dense
connections, feature pyramid fusion, andgraph convolutional
networks. Our model still achieves the best performance on
the indoor images, surpassing the newer methods by a large
margin in termsofPSNRandcomparableSSIMvalues.How-
ever, on the outdoor images, our model falls significantly
behind the newer methods, indicating that our model has
some limitations for outdoor scenes. We attribute this gap to
two main reasons: first, our model does not exploit multi-
scale information or feature fusion techniques, which may
help to capture more details and context information from
different scales; second, our model does not incorporate any
prior knowledge or physical constraints, which may help to
reduce the ambiguity and noise in outdoor scenes. To address
these issues, we plan to extend our model in future work by
incorporatingmulti-scale processing and feature fusion tech-
niques into our network architecture, as well as introducing
some prior knowledge or physical constraints into our loss
function or regularization term.

4 Conclusion

In this paper, a Densely Connected-GAN with feature atten-
tion was proposed for the task of image dehazing. Dense
blocks offer the benefit of reducing network parameters,
deepening network layers, improving feature propagation,
avoiding the vanishing-gradient problem, and expanding
receptive fields. They also handle the issue of decreasing
network performance as network depth increases. We also
proposed feature attention units, which use inter-spatial and
inter-channel feature correlations to generate spatial and
channel attention. Channel attention is based on the assump-
tion that each channel feature has its own weighting, and
pixel attention is a useful approach for studying images that
can providemore accurate results than conventional channel-
wise analysis. Finally, an improvised loss-basedWGAN-GP
was utilized to train the model using the NTIRE 2018 and
SOTS datasets. Our model has a considerable advantage in
restoring image detail and color fidelity, and it is expected
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Table 6 Quantitative
comparisons on SOTS for
different methods

Methods Indoor Outdoor

PSNR SSIM PSNR SSIM

DCP 16.62 0.81 19.13 0.81

AOD-Net 19.06 0.85 20.29 0.87

DehazeNet 21.14 0.84 22.46 0.85

GFN 22.30 0.88 21.55 0.84

MSPCNN 22.63 0.88 21.76 0.86

DCPDN 23.15 0.89 22.47 0.87

FPCNet 23.45 0.90 22.66 0.88

GCANet 23.67 0.91 22.83 0.89

Ours 23.98 0.87 19.88 0.83

to address a wide range of low-level vision issues such as
super-resolution and denoising.
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