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Abstract
To solve the problem of difficulty in fault feature extraction for rolling bearings under strong noise conditions, a K-value cal-
culation method of variational mode decomposition (VMD) based on singular value kurtosis difference spectrum is proposed,
which is combined with the improved maximum correlation kurtosis deconvolution (MCKD) to achieve fault diagnosis.
Firstly, the singular value decomposition (SVD) algorithm is used to denoise the strong noise rolling bearing fault signals,
and then, the optimal number of decomposition layers is determined according to the center frequency distance between
the singular value kurtosis spectrum and the decomposed intrinsic modal function (IMF). Filtering IMFs and reconstructing
faulty signals by correlation and kurtosis criteria. Optimizing the filter length L and the number of shifts M of the MCKD
using the dung beetle optimizer (DBO) to enhance the signal characteristics. Finally, the envelope spectrum is used to extract
the eigenfrequencies for fault diagnosis of rolling bearings and to determine the fault location. Experimentally, it is shown
that the method can effectively extract the fault characteristics of rolling bearings and carry out fault diagnosis under strong
noise interference.

Keywords Singular value decomposition · Variational modal decomposition · Maximum correlation kurtosis deconvolution ·
Dung beetle optimization algorithm · Bearing fault diagnosis

1 Introduction

As a very important part of transmission equipment, bear-
ings are widely found in various power transmissions [1].
Bearing failure is an important factor in inducing malfunc-
tions in mechanical transmissions, and periodic friction or
impact is generated when bearings fail. Since its failure is
difficult to diagnose by appearance, it is generally diagnosed
by the vibration signal extracted from the acceleration sensor.
However, the acquired signals are typically non-smooth, non-
linear modulated signals that tend to exhibit modulation of
the slew frequency on the engagement frequency [2]. There-
fore, the extraction and analysis of modulated components
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of these vibration signals have always been a difficult task
for bearing fault diagnosis.

In recent years, signal decomposition algorithms have
made good developments in gear fault feature extraction.
Yang et al. performed local mean decomposition (LMD) on
the collected vibration signals and extracted the characteris-
tics of diaphragm pump check valve fault signals by Hilbert
envelope spectral analysis [3]. Han et al. used the empiri-
cal mode decomposition algorithm (EMD) to decompose the
vibration signal, and the time, frequency, energy characteris-
tic parameters, and box dimensions were calculated from
the time domain, frequency domain, energy domain, and
fractal domain to obtain the gear fault characteristics under
different load excitations [4]. Li et al. proposed a rolling
bearing fault feature extraction method combining ensem-
ble empirical mode decomposition (EEMD) and improved
frequency band entropy (IFBE). A bandpass filter designed
based on the frequency band entropy is used to optimize the
bandwidth parameters according to the maximum envelope
kurtosis principle, and a sensitive IMF reflecting the fault
characteristics is selected [5].Wang et al. combined complete
ensemble empiricalmode decompositionwith adaptive noise
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(CEEMDAN) with time–frequency representation demod-
ulation analysis and proposed a strategy to reweight and
reconstruct the decomposed eigenmodal functions to ensure
fault feature extraction under Gaussian and non-Gaussian
noise [6]. LMD, EMD, and their improvedmethods are adap-
tively decomposed, but the modal mixing problem is still
difficult to solve.

The advent of variational modal decomposition has
brought signal decomposition techniques to new heights [7],
and it has achieved success in reducing the complexity of
non-stationary signals and minimizing the effectiveness of
modal aliasing. Xing et al. proposed a particle swarm algo-
rithm based on the joint fitness function of the crag and
power spectral entropy to optimize the number of decompo-
sition layers and the penalty factor of the variational modal
decomposition, select the mode with the highest energy for
signal reconstruction, and apply the Hilbert transform to
obtain the time difference of the echo signal [8]. Ji et al.
proposed the energy difference and correlation coefficient
as the criterion for the number of modal decompositions in
VMD and improved the interval sampling energy operator to
quickly extract the instantaneous amplitude and frequency of
harmonics, realizing the fast and accurate measurements of
non-stationary harmonic time–frequency parameters [9]. In
feature extraction, the envelope entropy of the vibration sig-
nal is an important indicator for determining bearing faults.
Tan et al. proposed a hybrid framework based on Multi-
Envelope Teaching Optimization (METLBO) by combining
parametric optimization variational modal decomposition
with an improved support vector machine (ISVM) [10]. An
improved parametric adaptive variational modal decomposi-
tion is proposed by Miao et al. A new integrated kurtosis
index is constructed by combining kurtosis and envelope
spectral kurtosis. The mean value of the ensemble kurtosis of
all modes is selected as the objective function, and an itera-
tive algorithm is used to extract all potential fault information
[11]. However, there is room for improvement in the deter-
mination of the optimal number of decomposition layers K
for modal decomposition.

To address the problem of fault feature enhancement, in
2012, Mcdonald et al. proposed maximum correlation cliff
deconvolution based on minimum entropy inverse fold prod-
uct, which can significantly enhance the shock component
of the fault signal [12]. In recent years, MCKD has been
widely used for fault diagnosis of gear, bearing, and other
rotating machinery components [13, 14]. Chen et al. used
the MCKD technique for signal noise reduction to enhance
the energy amplitude of components related to planetary
bearing faults and improved the feature optimization map to
improve the envelope spectrum to effectively extract bearing
fault vibration components [15]. He et al. proposed themaxi-
mum correlation kurtosis inverse fold product as an effective
means to identify periodic pulses of fault signals and filter

out bearing fault information using the envelope spectrum
generated by the correlation kurtosis index [16]. Meanwhile,
for the parameter selection problem in MCKD, some intelli-
gent optimization algorithms, including gray wolf optimizer
(GWO) [17], sparrow search algorithm (SSA) [18], and dung
beetle optimizer (DBO) [19], play an important role. Jun et al.
used an artificial fish swarm algorithm to optimize the filter
length L and shift number M in MCKD to achieve a multi-
fault diagnosis of bearings [20]. Song et al. combined the
sample entropy and crag index to construct the minimum
entropy crag ratio and used genetic algorithms to search for
the minimum value of the minimum entropy crag ratio to
determine the optimal parameter combinations of the num-
ber of shifts, filter lengths, and periods, and to realize the
effective extraction of weak fault features [21].

Therefore, to solve the problem that the determination of
parameter K in VMD is too dependent on the a priori knowl-
edge, an optimal decomposition layer calculation method
based on SVD is proposed, and for the problem that it is
difficult to identify the weak fault features in the background
of strong noise, DBO is used to optimize the L,M parameter
of MCKD to enhance the fault features of vibration signals.
Determine the optimal number of decomposition layers of
VMD to decompose the vibration signal using the singular
value kurtosis difference spectrum. The IMF reconstructed
signals are screened according to the correlation coefficient
criterion and the kurtosis index, and the weak pulse features
are enhanced using the MCKD optimized by the DBO algo-
rithm. Fault diagnosis is carried out by analyzing the fault
frequency of the envelope spectrum of the bearing signal,
and simulation and experimental analysis verify the effec-
tiveness of the method in bearing fault diagnosis.

2 Basic theory

2.1 Optimal K-value algorithm based on SVD

VMD is based on the adaptive property of signal decompo-
sition, which depends on the frequency information of the
signal. The real-valued signal is decomposed into K eigen-
mode functions by VMD, and the choice of the value of
K has a great influence on the decomposition result. When
the value of K is too small, it results in incomplete decom-
position. And when the value of K is too large, it results
in over-decomposition. Therefore, the distance between the
center frequencies of adjacent IMF components is calculated
using the following equation:

min

(∣∣∣∣ ωi+1 − ωi

(ωi+1 − ωi )/2

∣∣∣∣
)

≤ γ (1)
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Fig. 1 Flow chart for calculating the optimal number of decomposition
layers

where ωi , ωi+1 are two similar center frequencies, γ is a
constant and is set to 0.1.

Singular value decomposition has the ability of noise fil-
tering, interference insensitivity, and high-resolution spectral
decomposition. Singular values in a signal often carry impor-
tant information, and it is one of the important features of the
signal. The difference between neighboring singular values
in a singular value matrix can be defined by the singular
value difference spectrum, and the formula for neighboring
singular value difference is as follows:

bi � σi − σi+1; (i � 1, 2, · · · (n − 1)) (2)

The sequence composed of bi is called the singular value
kurtosis difference spectrum. When the neighboring singu-
lar values are different, a peak appears in the singular value
difference spectrum, i.e., a mutation occurs. The location of
the mutation is used to find out where the original signal is
converted from a useful signal to a noise signal. Kurtosis is
very sensitive to the shock characteristics of the signal, when
the rolling bearing occurs local failure, the vibration signal
will have shock characteristics, so kurtosis can be used as the
basis for selecting the effective singularity.

In summary, an improved SVD-based method for calcu-
lating the optimal K value is proposed in Fig. 1.

2.2 Correlation and kurtosis metrics

After the original signal is decomposed into K IMFs, the
IMFs are often filtered using the correlation principle. The
strength of the correlation between the IMF and the original
signal is determined by calculating the correlation coefficient
between the IMF and the original signal. Assuming that x and
y are two time-domain signals, the correlation coefficient rxy

is calculated as follows:

rxy �
∑N

i−1 (xi − x)(yi − y)√∑N
i�1 (xi − x)2

∑N
i�1 (yi − y)2

(3)

where N is the length of the signal; x and y are the mean
values of signal x and y.

Since the correlation coefficient is greatly affected by
noise, the kurtosis index is added to the screening. According
to experience, the signal kurtosis is close to 3 when the nor-
mal bearing is running, and when the bearing fails, the signal
kurtosis will be larger than 3. In this paper, we calculate the
correlation coefficient and kurtosis value between each IMF
and the original signal and filter out the IMF components
that satisfy the correlation coefficient larger than the thresh-
old value and the kurtosis larger than 3 at the same time for
the reconstruction of the signal.

2.3 Optimization of DBO-based signal enhancement
algorithm

The MCKD algorithm can effectively extract the periodic
shock pulse components, and its solution process is a pro-
cess of solving the optimal solution of the FIR filter. To verify
that the signal recovered by this filter satisfies the periodic
shock characteristics, it is necessary to utilize the associ-
ated cliff metric. The signal is filtered and the filter solved is
the one that satisfies the requirements when the correlation
cliff CKM (T ) is maximized. The algorithm has 3 important
parameters T , L, and M.

In this paper, we use the DBO algorithm to optimize the L
andM parameters ofMCKD, using the sample entropy as the
objective function. Set the population size N � 30, the num-
ber of iterations n� 50, the range of values of L is [100, 500],
and the range of values ofM is [1, 7] in the DBO algorithm.
TheDBOoptimization of theMCKD algorithm is performed
to find the best combination of (L,M) by taking theminimum
value of the sample entropy of the effective component as the
objective function. Where the sample entropy is calculated
as

SampEn(m, r) � ln Bm(r) − ln Am(r) (4)

where Bm(r) is the average value of the ratio of the approx-
imate number of signal sequences to the total number, and
Am(r) is the average value of the ratio of the approximate
number of signal sequences to the total number after adding
1 to the dimension.

2.4 Fault diagnosis process

This paper proposes a bearing fault diagnosis method based
on improved variational modal decomposition and envelope

123



1298 Signal, Image and Video Processing (2024) 18:1295–1303

Fig. 2 Bearing fault diagnosis flow chart

spectral analysis, and the structural flowchart of the fault
diagnosis method is shown in Fig. 2. The main algorithmic
process consists of the following steps: Firstly, the vibration
signals are acquired; the original signals are denoised based
on the singular value kurtosis difference spectrum, and the
optimal number of signal decomposition layers K is deter-
mined; the vibration signals are decomposed by the VMD
and screened; the IMFs that meet the correlation and kurtosis
indexes are used for signal reconstruction; the reconstructed
signals are augmented with the MCKDs optimized by the
dung beetle optimization algorithm; the augmented signals
are demodulated by the envelopes and analyzed for the fre-
quency of the faults.

3 Simulation signal analysis

To verify the effectiveness of the method, simulated signals
are created and analyzed in this paper. To simulate the strong
noise operating environment of the bearing, a Gaussian noise
signal with a signal-to-noise ratio of − 14 dB is added to the
pulse signal to form the analog signal. The final analog signal
is shown in Eq. (5):

⎧⎪⎪⎨
⎪⎪⎩
x(t) � s(t) + n(t) � ∑

i
Ai h(t − iT ) + n(t)

h(t) � exp(−Ct) cos(2π fnt)
Ai � 1 + A0 cos(2π fr t)

(5)

where s(t) is the periodic shock part; the amplitude A0 is 0.3;
the rotation frequency fr is 30 Hz; the attenuation coefficient
C is 700; the resonance frequency fn is 4 kHz; the inner ring
fault characteristic frequency fi � 1/T � 120 Hz; n(t) is the

Fig. 3 Analog signal waveform diagram

Gaussian white noise component; the sampling frequency fs
is 16 kHz; and the number of analysis points is 4096.

Figure 3a shows the time domain diagram of the simulated
signal, and it can be seen from the figure that the simulated
signal shows an obvious periodic variation.
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Fig. 4 Reconstructed signal waveform diagram

The time domain plot and spectrum of the signal after
adding − 14 dB of random Gaussian white noise are shown
in (b) and (c) in Fig. 3. The signal characteristics are almost
completely drowned out after noise contamination, and the
pulse frequencies are hidden by the noise, the resonant
frequencies are also vaguely visible. Figure 3d shows the
envelope spectrum of the simulated signal after noise stain-
ing. The fault frequencies and their multiples in the figure
are masked by noise and are indistinguishable.

(e) is a time–frequency plot of the dyed-noise signal, with
a large number of noise points in the plot.

The optimal number of decomposition layers K � 10 for
the analog signal is determined using themethod proposed in
Sect. 2.1. IMF3, IMF6, IMF7, IMF9, and IMF10 that satisfy
a crag greater than 3 and a correlation coefficient greater than
the mean value of 0.33 were screened for signal reconstruc-
tion.

The time domain plot spectrum and the time–frequency
analysis spectrum of the reconstructed signal are shown in
Fig. 4a and b. Compared with the original analog signal, the
burr and noise bands in the reconstructed signal are much
reduced, and the noise reduction effect is obvious. To visual-
ize the noise reduction effect, a time–frequency analysis of
the signal is shown in Fig. 4c. Comparing with Fig. 3e, it is
found that the noise in high and low frequencies has been
eliminated substantially. That is, most of the high and low-
frequency noise is eliminated, but a small amount of noise
still exists. Figure 4d shows the envelope spectrum of the
reconstructed signal. The fault frequencies and their mul-
tiples can already be seen in the figure, but they cannot be
clearly extracted and there aremany interfering spectral lines.

The time-domain and envelope spectra of the signals pro-
cessed by themethod of this paper are shown in Fig. 5a and b.
The frequency at the maximum peak in the plot is chosen as

Fig. 5 Time domain and envelope spectra of the signal processed by
this method

Fig. 6 Envelope spectrum after changing MCKD parameters

the characteristic frequency fi , so fi � 120. The DBO algo-
rithm is used to optimize the parameters L andM of MCKD.
The population number of the DBO algorithm is set to 100,
the maximum number of iterations is 10, and the objective
function of parameter optimization is the minimum value of
sample entropy. At the 6th iteration, the optimal parameters
are found to be [243, 1]. Therefore, the parameters L � 243,
M � 1, andT � 75 are set for theMCKDalgorithm.The char-
acteristic spectral lines in the figure are very prominent, and
the characteristic frequency fi of the fault and its multiples
can be easily identified, thus confirming the effectiveness of
the proposed diagnosis method.

To verify the rationality of using the DBO algorithm
to optimize the parameters L and M of MCKD, we now
change the parameters of M and keep L constant to observe
the results. The signal envelope spectrum analyzed by the
MCKD algorithm with random order M � 7 and L � 243
is shown in Fig. 6a. As can be seen in Fig. 6a, compared to
the optimal combination of L andM, when only L is guaran-
teed to be at the optimal value, the amplitude of the envelope
spectrum of the signal processed by the method in this paper
is small and reduced to about one percent of the original
one. Then keeping the value ofM constant and changing the
value of L, that is, taking L � 300 andM � 1 randomly, the
signal envelope spectrum analyzed by the MCKD algorithm
is shown in Fig. 6b. In Fig. 6b, there are numerous inter-
ference spectral lines, which make it difficult to identify the
fault frequency and its multiplication information. It shows
the reasonableness of the results of parameters L and M of
MCKD optimized by DBO in this paper.
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Table 1 Bearing failure information

Fault location Fault frequency
calculation formula

Theoretical value
of fault frequency

Bearing inner
ring

fir � N
2

(
1 + d

D cos θ
)
fr fir � 162.19 Hz

Bearing outer
ring

for � N
2

(
1 − d

D cos θ
)
fr for � 107.30 Hz

Fig. 7 Bearing failure signal waveform diagram

4 Measured signal analysis

4.1 Data source

To verify the effectiveness of the method in this paper, the
test data from the publicly available rolling bearing fail-
ure simulation platform at Case Western Reserve University
were used for analysis. The EDM technique was used to
set the fault, the motor speed was 1797 r/min, the sampling
frequency was 12 kHz, and 7800 points were selected for
analysis in this paper. The structural parameters of the rolling
bearing are shown in Table 1.

4.2 Signal decomposition and screening

Taking the inner ring fault data as an example, the waveforms
of the fault signal are shown in Fig. 7a–d. In the time-domain
diagram, the signal waveform is relatively noisy, and there is
no obvious shock signal. In the spectrogram, there is an obvi-
ous modulation phenomenon in the range of 2000–5000 Hz.
The time–frequency diagram of the fault signal is densely
populated with noise, indicating that it contains more noise.
In the envelope spectrum, the characteristic frequency and its
multiplier are covered by the rotary frequency and its mul-
tiplier as well as the noise interference band, and the weak

Fig. 8 Correlation coefficients and kurtosis values for IMFs

Fig. 9 Bearing reconfiguration signal waveform diagram

pulse characteristics are almost completely ignored, which
makes it impossible to carry out fault diagnosis.

Using the method proposed in this paper, the signal is
first denoised by SVD, and the optimal number of decom-
position layers K � 8 is determined based on the singular
value kurtosis difference spectrum. The histograms of corre-
lation coefficient r and kurtosis bk for each IMF are shown in
Fig. 8. The mean value of the correlation coefficient is 0.36,
and the sub-signals IMF3, IMF4, IMF5, IMF6, and IMF7
with r greater than 0.36 and bk greater than 3 are screened
for reconstruction.

4.3 Signal reconstruction and enhancement

The waveforms of the reconstructed signals are shown in
Fig. 9a–d. In the figure, it can be observed that the shock
signal features covered by noise have been revealed after
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Fig. 10 DBO optimization curve

Fig. 11 The envelope spectrum of the inner ring fault signal processed
by this method

processing, and the noise in the time–frequency diagram
has been reduced significantly, indicating that the proposed
method is effective in noise reduction, and it can be seen from
the envelope spectrum that the octave of the eigenfrequency
is difficult to distinguish.

MCKD is optimized using DBO, the population size of
the DBO algorithm is set to 100, and the maximum number
of iterations is 15. The fitness curve of DBO is shown in
Fig. 10, and the parameters reach the optimum at the 12th
iteration, and the optimal parameter combination is [132, 1].
The reconstructed signal is subjected to the MCKD algo-
rithm, and the optimal parameters are set L � 132 and M �
1 according to the optimal parameters.

4.4 Envelope comparison

The envelope spectrum of the signal processed by theMCKD
algorithm with optimized parameters is shown in Fig. 11a,
and the time-domain diagram shows that the frequency of
the largest value in the diagram is the eigenfrequency of fi
� 161.538 Hz, which can be seen in the figure, the eigen-
frequency of the fault and its multiplier frequency is obvious
and fi corresponds to the theoretically calculated fault fre-
quency of the inner ring of the bearing, therefore, it can be
determined that the fault location of the rolling bearing is
in the inner ring of the bearing. To emphasize the effect of
noise reduction, random white noise with a signal-to-noise
ratio of − 3 dB is added to the fault signal of the inner ring
of the bearing fir, and the envelope spectrum processed by

Fig. 12 The envelope spectrum of the outer ring fault signal processed
by this method

Fig. 13 PE-MCKD processing inner ring fault signal envelope

the method of this paper is shown in Fig. 11b, and it can be
seen that the characteristic frequency and its multiplicative
frequency are also clearly extracted.

The envelope spectra for the outer bearing signals using
the method proposed in this paper are shown in Fig. 12.
Where Fig. 12a shows the unstained outer bearing signal and
(b) shows the stained signal with− 3 dB randomwhite noise
added. The MCKD optimized by DBO enhances the weak
impulse fault, and the optimization combinations are [235, 1]
and [309, 1], respectively, and the frequency opposite to the
largest magnitude in the figure is taken as the eigenfrequency
fi � 107.629 Hz. The eigenfrequency and its multiplier fre-
quency in the figure are extracted in an orderly manner, with
almost no sideband effects, and correspond to the theoretical
value of the bearing outer ring fault frequency for, so it is
possible to determine the location of rolling bearing faults in
the bearing outer ring.

4.5 Comparison with the PE-MCKDmethodology

Liu et al. used an improved MCKD method using the maxi-
mum alignment entropy value to determine the optimal filter
length L and the optimal fault period T [22]. To verify the
superiority of the method in this paper, their proposed PE-
MCKD method was used to diagnose the inner ring faults
of Case Western Reserve University bearings. Figure 13a
shows the untainted noise envelope spectrum processed by
the method, and the optimization combination of L and T
is [279, 74], in which the fault frequency fi � 161.538 Hz,
and its 2–5 octave frequencies can be seen; (b) shows the
tainted noise envelope spectrum with the addition of a −
3 dB Gaussian white noise, and the optimization combina-
tion of L and T is [264, 11], and in which the fault frequency
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and its octave frequencies have been masked by the noise
and are not recognizable. The fault frequency and its octave
have been obscured by noise and cannot be recognized in the
graph. This indirectly proves the superiority of the method
proposed in this paper.

5 Conclusion

The algorithm proposed in this paper realizes the fault diag-
nosis of rolling bearing, introduces the SVD to get the
singular valuematrix of the vibration signal, locates the posi-
tion of the mutation of the singular value peak difference
spectrum todetermine the effective order of the singular value
matrix, to denoise the vibration signal. In addition, the peak
singular value difference spectrum mutation is set as the ini-
tial K-value of VMD, and a reasonable K-value is searched
according to the optimal K-value algorithm proposed in this
paper, which improves the status quo of the K-value setting
relying too much on empirical values. The IMF components
are screened and signal reconstruction is performed using
the principles of kurtosis and correlation. For the first time,
the DBO algorithm and the MCKD algorithm are combined
to search for the optimal values of the parameters L and M
in the MCKD, and the optimized MCKD algorithm is used
to enhance the reconstruction of weak pulses in the signal.
The experimental results show that the proposed method can
effectively remove the noise in the vibration signal, and the
K value calculated by the optimal K value algorithm can
effectively decompose the signal under the premise of ensur-
ing that no modal aliasing occurs. The DBO optimization
algorithm can jump out of the local optimum to find the
optimal combination of L and M of the MCKD algorithm,
and the experiments verified the reasonableness and valid-
ity of the optimization of the MCKD algorithm using the
DBO algorithm. Comparison with the PE-MCKD algorithm
also confirms that the algorithm proposed in this paper has
good noise immunity, effectively extracts the bearing fault
characteristics, and determines the fault location in a strong
background noise environment.
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