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Abstract
Given their small size and low weight, skeleton sequences are a great option for joint-based action detection. Recent skeleton-
based action recognition techniques use feature extraction from 3D joint coordinates as per spatial–temporal signals, fusing
these exemplifications in a motion context to improve identification accuracy. High accuracy has been achieved with the use
of first- and second-order characteristics, such as spatial, angular, and hough representations. In contrast to the and hough
transform, which are useful for encoding summarized independent joint coordinates motion, the spatial, and angular features
all higher-order representations are discussed in this article for encoding the static and velocity domains of 3D joints. When
used to represent relative motion between body parts in the human body, the encoding is effective and remains constant across
a wide range of individual body sizes. However, many models still become confused when presented with activities that have
a similar trajectory. Suggest addressing these problems by integrating spatial, angular, and hough encoding as relevant order
elements into contemporary systems to more accurately reflect the interdependencies between components. By combining
these widely-used spatial–temporal characteristics into a single framework SAHC, acquired state-of-the-art performance on
four different benchmark datasets with fewer parameters and less batch processing.

Keywords Computer vision · Machine learning · Skeleton-based action recognition · Human action recognition · Artificial
intelligence

1 Introduction

Human action recognition is more resilient to background
information and simpler to process, gaining a growing num-
ber of scientific interest due to its many applications in the
domains of health care [1], virtual reality [2], innovation tech-
nology [3], and defense security [4], etc. Recent advances
in Skeleton-based action recognition have contributed to an
increase in the accuracy of human action recognition. By uti-
lizing motion feature detection networks, action recognizers
extract topological information from skeletal sequences with
greater precision. To applymotion features to skeleton-based
action identification, skeletons are regarded as graphs, with
each vertex representing a body joint and each edge repre-
senting a bone. Initially, only first-order features were used to
express the joint coordinates [5]. Subsequently, [6] proposed
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a second-order characteristic: each bone is described as the
vector difference between the coordinate of one joint and
that of its closest neighbor in the direction of the body’s cen-
ter. Experiments indicate that these second-order properties
enhance the accuracy of skeleton-based action recognizers.

Existing approaches, however, have a difficult time dif-
ferentiating between activities that have very similar motion
trajectories. Since the joint coordinates in each frame are
comparable in these motions, determining the source of
differences in coordinates may be difficult. Differences in
body size, movement speed, or the nature of the move-
ments being performed may all have a role. This research
suggests using higher-order representations in the form of
angles to accurately record the relativemotions betweenbody
components while remaining invariant over a wide range
of human body sizes. This new capability, which is called
angular encoding, is intended to be used in the static and
velocity domains of human body joints. For this reason, the
suggested encoding improves the model’s action recogni-
tion accuracy. Adding angular information to state-of-the-art
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action recognition architectures like the SpatioTemporalNet-
work [5] and Decoupling [7] improves the classification of
complex action sequences, even when the actions have iden-
tical motion trajectories, as shown in experimental data. A
wide variety of approaches, including skeletons, skeleton
joints, deep learning, and silhouette frames, have been pro-
posed in the literature to solve human action recognition.
There are advantages and disadvantages to every available
human action recognition method. For instance, techniques
based on the skeleton and the skeleton joint’s points [8] allow
for the elimination of extraneous data such as clothing tex-
ture, lighting, and backdrop while simultaneously having to
deal with less data extraction. Further, the computational
expense and financial commitment involved in implementing
deep learning algorithms [9] are significant. In contrast, sil-
houette images provide a challenging environment for object
detection [10]. Keeping these drawbacks of state-of-the-art
methods inmind, presented an action descriptor calledSAHC
that is based on skeletal joint locations and forms connec-
tions between joints and frames. Since multiple joints are
coupled to one another and frames rely on one another when
completing any action sequence, both linkages are useful
for action recognition. Previously, joints recognized using
straight-line inter of spatial, angular, and hough features SAH
were used to extract spatial information of features, whereas
connection-frames now provide temporal information for the
suggested descriptor. Based on the connections between the
joint and the frame, the proposed system extracts the skeletal
joint-based action recognition features to the representative
frame. As they suggest a hierarchical method using 3D skele-
tal joints, they then use spatial, angular, and hough features
to calculate the spatial and temporal details to form a skeletal
modelingmethod. Thefinal SAHCfeature vector, a classifier,
is used for labeling the human activities after the combination
of spatial, angular, and Hough features is taken into consid-
eration for feature selection and maintaining the previous
data. Four publicly accessible and frequently utilized action
datasets [11–14] are used to assess the proposed SAHC. The
proposed work contributes to the field by making SAHC a
more effective approach than its predecessors by collecting
both the spatial and temporal information between connected
joints. Summarize proposed contributions as follows:

• The spatial, angular, and hough features, all of which are
higher-order representations, are discussed in this article
for encoding the static and velocity domains of joints.
When applied to the human body, the encoding success-
fully represents relativemotion between body components
while being invariant over a wide range of individual body
sizes.

• Integrating the joints and frame connections into preex-
isting action recognition systems is a straightforward way
to further improve performance. The results demonstrate

that these associations provide valuable further data to the
already extant elements, such as the joint representations.

• To the best of my knowledge, the proposed descriptor is
the first to combine several types of angular characteristics
into state-of-the-art spatial–temporal SAHCs and results
on a number of benchmarks are among the best available.
Meanwhile, the suggested SAHC encoding may provide
even a basicmodelwith a significant boost in performance.
Therefore, the suggested angular encoding enables edge
devices to recognize actions in real time.

2 Related work

Introduce related work to the suggested SAHC action recog-
nition framework in the related work section. Here, separate
the relevant research into two categories: Skeleton-based
ActionRecognition and cutting-edge action recognition tech-
niques.

Many of the earlier efforts at skeleton-based action detec-
tion recorded all joint coordinates of the human body in each
frame as a feature vector for pattern learning [15]. These
models seldom included the interdependencies between bod-
ily joints, resulting in a dearth of action-related data. There
have also been kernel-based algorithms developed for action
recognition [16]. Subsequently, when deep learning became
the norm for video processing [17] and comprehension [18],
RGB-based videos began to address action identification.
Nevertheless, they have difficulties in domain adaptation
[19] due to their diverse topic backgrounds and textures.
Conversely, skeletal data have substantially fewer domain
adaption difficulties. The use of convolutional neural net-
works to skeleton-based action recognition resulted in an
improvement [20]. CNN, however, are built for grid-based
data and cannot utilize the topology of a graph, making
them unsuitable for graph data. Recently, there has been
an increase in interest in deep graph neural networks [21].
Graph neural networks have also begun to garner interest
in skeletal recognition. A skeleton is represented as a graph
in GCN-based models, with joints as nodes and bones as
edges.Methodology proposed in [5] was an early application
that used graph convolution to spatially aggregate joint data
and to convolve successive frames along the temporal axis.
Consequently, an algorithm proposed in [22] was developed
to further enhance the spatial feature aggregation utilizing
a learnable adjacency matrix in its place of a fixed graph
skeleton.Methodology proposed in [23] acquired long-range
temporal relationships using LSTM as its backbone, then
altered every gate operation from the original fully connected
layer to a graph convolution layer, therefore maximizing the
use of the skeleton’s topological knowledge. By applying a
learnable residual mask to the adjacency matrix of the graph
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convolution, as suggested in [6], the skeleton’s topology was
made more malleable, and a second-order feature, the differ-
ence in coordinates between adjacent joints, was proposed
to serve as the bone evidence. A combination of two mod-
els, trained using joint and bone characteristics, significantly
increased the cataloging accuracy. In skeleton-based action
recognition, several graph convolution approaches, such as
SGN [24]with self-attention and shift convolution, have been
suggested. A technique presented in [25], recently obtained
better results by introducing graph 3D convolutions to aggre-
gate characteristics inside a window of successive frames.
Nevertheless, 3D convolutions need a lengthy running time.

Although there are numerous works in downstream video
understanding tasks based on cutting-edge action recogni-
tion techniques. Recent authors have presented self-attention
models that optimize the graph structure dynamically [26].
The authors built a CNN architecture that captures topologi-
cal informationmore effectively [27]. The authors investigate
the skeleton-based action recognition one-shot issue [28].
In a collection of activity reference samples, they relate
the metric learning scenery and transfer the issue to a
nearest-neighbor search. The adversarial assault issue in
skeleton-based action recognition was scrutinized [29]. They
examined a perceptual deficit that renders an assault imper-
ceptible. The black-box assault on skeleton-based action
recognition was examined by the authors [30]. They pre-
sented an attack technique and demonstrated that adversarial
attacks are a concern and that adversarial samples on man-
ifolds are prevalent for skeletal movements. All present
approaches suffer from a lack of discrimination accuracy
between actions with comparable motion trajectories. This
drives to pursue a novel encoding to enable the model to
distinguish between two seemingly identical events. Nearly
all paintings exhibit angle characteristics comparable to
the local characteristics given in this article [31]. In con-
trast, as provided an assortment of angular encoding forms.
Each category has more subcategories. Diverse types of
angular encrypting are intended to represent motion char-
acteristics of diverse kinematic body sections. Approaches
such as motion-driven spatial and temporal adaptive using
graph convolutional networks [32], multi-level spatial–tem-
poral transformer for group activity recognition [33], single
and two-person action recognition based on R-WAA [34],
learning instance-level spatial–temporal patterns for person
re-identification [35], and anomaly detection via motion
exemplar guidance techniques are utilized for the temporal
modeling of the human body for the action recognition [36].

3 Proposedmethodology

The skeleton of the human body is represented as a collection
of joints’ 3D spatial coordinates. Thus, a unique SAHC can

Table 1 Ten distinct connections are beingmade between the joints, and
they are crucial in order to extract all necessary characteristics between
the joints

Joints-connections Among joints connections

c1 Head joint and hip center joint

c2 Neck joint and spine joint

c3 The right shoulder joint and right hand joint

c4 Right elbow joint and right wrist joint

c5 The left shoulder joint and left hand joint

c6 Left elbow joint and left wrist joint

c7 Right hip joint and right foot joint

c8 Right knee joint and right ankle joint

c9 Left hip joint and left foot joint

c10 Left knee joint and left ankle joint

The purpose of joints-connections is to link together the joints’ spatial
velocities in a single representation. Joints-connections help themodel’s
procedures extract crucial motion information

be used to represent the spatial relationship between skeletal
joints. Adding joint node properties with V � { ji} i � 1 to
the total number of skeletal joints, for instance, maymaintain
the original coordinate information. By way of dividing each
i-th joint in the body into its three components, ji (xi yi zi ). By
way of creating an action feature matrix that is then utilized
to extract features. Equally, define the signal of each joint
for bone data along with its 3D spatial coordinates. Briefly
go over some key methods employed in the proposed SAHC
action descriptor in this part. First, the data preprocessing
module is described and the suggested features are formu-
lated. The intended action description is finally constructed
as SAHC. By employing skeleton joint points and joint posi-
tions in the proposed method for human action recognition.

3.1 Joints-connections

A joint is the connection between two bones in the skele-
ton, while an interrelationship is the connection between
and influence among several joints. When a human being
performs a series of movements, the body’s many joints
all work together. Research shows that the magnitude of a
joint’s moment is related to its degree. By establishing con-
nections between the head, arms, legs, and neck, for instance,
joints-connections may be produced. Connections between
the torso and limbs, including the hip and the ankle. Each
joints-connection consists of two joints: the first, denoted by
the letters pi (xp ypz p) and qi (xq yq zq ). Let’s look at Table
1, as shown that ci (i � 1 to 10) is the total number of
joints-connections. Joints-connections is a tool for acquiring
this spatial information; the connections between the various
datasets are shown in Fig. 1. Even by using these simple ten
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Fig. 1 The proposed joints’ point
orientation and detected
joints-connections are
represented. Joint connection is
very important in extracting the
proposed features of SAHC

connection, the action recognition is enhanced a lot even by
using simple features.

Datasets [11, 12] demonstrate joint connections using 20
joint points, whereas dataset [13] uses 15 joints. In con-
trast, the dataset described in [14] has 30 joints split evenly
between two people. Using joints, such as have computed the
aforementioned connections, with the overall orientation of
the joints’ points shown in Fig. 1a and the created connec-
tions shown in Fig. 1b.

3.2 Spatial features

First extract spatial information in order to use cutting-
edge SAHC features. Because they indicate where the joints
are physically located, spatial characteristics are crucial for
encoding the results of boundary analysis on joints [37]. The
distance between two real-valued vectors is defined by the
Euclideandistance. If the data rows includenumbers (floating
point or integer values), you will probably utilize Euclidean
distance to determine how far apart they are. After a Joints-
connections are made in Table 1, the distance between any
two places in the joint may be determined. Using the 3D
distance relation in Eq. 1, can determine the spatial character-
istics (µ f ) between any i th joints pi (xp ypz p) and qi (xq yq zq )
by using ci . The distance feature is crucial in developing
the action descriptor since it reveals the separation between
the joints. By concatenating joints-connections, a skeletal
joint distance descriptor that describes relationships between
distances of skeletal joints, spatial features are extracted.
Ten different joint connections are tested, which aids in the
extraction of features and the selection of input joints and

bones.

μ f �
√((

xq − xp
)2 + (

yq − yp
)2 + (

zq − z p
)2) (1)

3.3 Angular features

As input joint data, now sent the motion joint’s angular
data into the recognition algorithm [38]. One way to depict
movement is by the use of "joint motion". All of an actor’s
trajectories may be seen plotted out on the 3D coordinates.
It is possible to make changes to the uploaded trajectory and
identify the distinctive features of the movements. 3D coor-
dinates allow for the interpretation of the trajectory at p and q
angles. Those angular measurements served as the basis for
the recognition algorithm. By solving Eq. 5, can convert the
input angle data into feature vectors that include both spatial
and temporal information. Now by using connection joints, it
may use them to extract angle characteristics. Angle features
for SAHC are first computed using the cosine angle (θa), as
indicated in Eq. 1. Using Table 1 ci , may depict the relation-
ship between two i th joints by labeling their respective joint
points pi (xp ypz p) and qi (xq yq zq ), with the angle feature
between them denoted by θa . The angle feature is computed
so as to reveal the precise angular relationship between the
two joints in a three-dimensional space. As shown by Eq. 2,
this is a crucial metric that has to be computed. In order to
learn an effective representation of complicated actions, a set
of body joint connections are connected to calculate effec-
tive angular characteristics. Due to the 3D representation,
the system may learn specific information that distinguishes
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between nearby joints’ angular values that correspond to var-
ious body part pairs.

θa � cos−1

⎛
⎜⎜⎝

(
xpxq + yp yq + yp yq

)
√((

x2p + y2p + z2p
)(

x2q + y2q + z2q
))

⎞
⎟⎟⎠ (2)

3.4 Hough features

The Hough transform can be used to detect lines, circles or
other parametric curves [39]. The Hough transform is a fea-
ture extraction technique used in image analysis, computer
vision, and digital image processing. The Hough transform
is a technique that can be used to isolate features of a par-
ticular shape within an image. Joint’s sine relation feature
is the most important part of the proposed SAHC descrip-
tor. In this part of the feature vector, as have two i th joints
pi and qi taken from Table 1, are individually transformed
using the joint’s sine relations. Each coordinate of joint
pi (xp ypz p)andqi (xq yq zq ) is represented by a difference of
π
2 using calculated θ f , by means of ci . The reason behind
using a difference of π

2 is that each coordinate is placed in
a particular quadrant. Hough features are used to represent
joint pi by εp, similarly, joints qi by εq using Eq. 3 and Eq. 4,
respectively. The appearance and patterns of the motions in
video sequences serve as the basis for human action label-
ing in action recognition systems, but the majority of current
research and most conventional methodologies either ignore
or are unable to use the individual monitor of each joint
motion that is placed in a separate phase difference. In a
sine angle relation, a mapping between densely sampled fea-
ture patches and the votes assigned to them is learned using
Hough features. The suggested system performs skeletal
joints-based action recognition more successfully by utiliz-
ing low-level features like Hough features.

εp �xp sin
(
π
/
4 − θa

)
+ yp sin

(
π
/
2 − θa

)
+ z p sin(π − θa) (3)

εq �xq sin
(
π
/
4 − θa

)
+ yq sin

(
π
/
2 − θa

)
+ zq sin(π − θa) (4)

3.5 Frames-connections

Unlike joints-connections, which discussed the interrela-
tionships between joints, frames-connections analyzed the
interrelationships between the frames. Frames-connections
capture the temporal information of a frame. It is constructed
using the relationships between three frames: the specific

current frame (sc), the initial frame (s1), and the subsequent
frame (sc+1). Frames-connections include three connections:
1) First frame connection is present in sc, as are pi and qi .
The second frame connection is located between sc and s1;
pi resides in sc while qi resides in s1. The third frame con-
nection is the relationship between sc and sc+1, where pi
resides in sc and qi resides in sc+1. In the event that sc is the
final frame, the succeeding frame becomes the first frame, so
sc+1 � s1. The first frames-connection is used to calculate
object deviation relative to the first frame; the first frame is
essential for descriptor generation [9]. Additionally, empha-
size the significance of utilizing first frames-connection and
third frames-connection when performing skeletal joints-
based action recognition tasks. Modeling temporal data seek
to identify methods of symbolically describing time-based
situations for eventual computer depiction and replication.
By linking together successive frames of a 3D skeleton,
density rendering may include and make sense of tempo-
ral information. Multiple sequences may be used to build
up a comprehensive picture of a video’s temporal dynamics,
allowing for things like efficient scalar feature field recogni-
tion. The time spent on making flow animations of motion
joint fieldsmay be drastically cut down by using the proposed
frames-connections, which also provide the added benefit
of amassing the efficient characteristics discovered. With-
out increasing their computational cost, frames-connections
solve the issue of capturing temporal information for video
classification in 3D networks. Existing approaches concen-
trate on transforming the architecture of 3D networks by
using filters in the temporal dimension, or by using optical
flow, etc., which raises the cost of computation. Instead, in
order to capture quick frame-to-frame changes, the proposed
skeletal-based action recognition system SAHC suggests a
novel sampling strategy that involves rearranging the chan-
nels of the input video. The proposed sampling strategy
enhances performance on numerous SAH-based architec-
tures, as seen without any ornamentation (Fig. 2).

3.6 Action feature, SAHC

As per established connections between joints and between
frames, and have tested the connectivity between joints
in various frames. The feature vector may then be con-
structed using this accumulated data. Dimensions of space
and angles between joints are calculated, revealing the rela-
tionship between two joints (µ f ). For Hough features, pi
and qi are used to separately represent the two associated
joints, while θa is used to represent the whole group. As pro-
pose a new action descriptor, which is called SAHC, that
takes into account the unique characteristics of each human
and their environment to offer both temporal and geograph-
ical details about the skeleton’s joint points. The correlation
between SAHC is seen in Eq. 2. Each frames-connections
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Fig. 2 Three spatial–temporal feature detection blocks, including a
spatial multiscale, an angular multiscale, and a hough multiscale staio-
temporal features unit, make up the backbone of proposed system. The
suggested method makes use of the information contained in 3D struc-
tural skeletons, namely the extracted joints and frame connections.

SAHC, a multiscale unit-based skeletal joint descriptor, is suggested
and correlated with four functional categories. For more explanation of
the suggested methodology, please refer to Sect. 3

Table 2 Proposed action descriptor, SAHC algorithm

Algorithm 1: SAHC Algorithm 
Use 3D skeleton joint's 

for frame = 1 to n  do 
Using current frame ( )

Spatial features 
Angular features
Hough features

Using current and initial frame ( 1 ) 
  Spatial features 
  Angular features 
  Hough features 

Using current and subsequent frame ( ) 
  Spatial features 
  Angular features 
  Hough features 
 SAHC Features
 end for
Apply a classification 
Return the best solution 

SAHC is computed using joints-connections (Table 1), as
seen in the system diagram (Fig. 5). In the instance of the
provided descriptor, the SAHC characteristics are computed
bydrawingon thefirst, second, and third frames-connections.
Table 2 and Eq. 5 depict the suggested SAHC action descrip-
tor method. Since a single feature-based representation is
insufficient to accurately describe the perspective and faction
movement of joints, the fusion of numerous characteristics

is crucial for understanding actions. As the suggested action
descriptor SAHC incorporates spatial, angular, and hough
information to compute the spatial and temporal details to
construct a skeletal modeling approach, by leveraging the
connections between the joint and the frame to extract tak-
ing into consideration actions of 3D joints. In this paper,
propose a unique descriptor that may accurately character-
ize human activities and events by using just 3D skeleton
joints. By statistically evaluating the motion patterns of the
3D joint locations of the human body, may extract the sug-
gested SAHC descriptor (ϑSAHC), a low dimensional vector
from each sequence. The suggested descriptor has been opti-
mized for detecting events and activities that include humans.
Recognition strategies based on 3D skeleton joints have
gained popularity because of the proliferation of inexpensive
action descriptors like the SAHC. Human skeletal informa-
tion is stored as three-dimensional coordinates of landmarks
on a person’s body. The major benefit of this 3D data format
is the size savings it offers over color/gray pictures or depth
maps. When dealing with enormous datasets for the pur-
poses of classifier training, this makes a tremendous impact.
Although there has been substantial development in human
action identification, current algorithms are far from ideal,
particularly if any actor is doing activities. Thus, the sug-
gested action descriptor incorporates all necessary data.
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Table 3 An overview of spatial, angular, and Hough feature assembling
evaluations

Approach Accuracy (%)

Du et al. [42] 94.49

Chen et al. [43] 94.90

Xu et al. [44] 96.10

Jin et al. [40] 96.50

Luo et al. [41] 97.26

SAHC 99.8

Joints-connections, and Frames-connections, both of which are ensem-
bles, are especially noteworthy since they achieve the best prediction
accuracy. The suggested technique is shown to improve performance
when compared to other methods, and these methods are all evaluated
for their correctness. Analysis of SAHC in relation to the other methods
used on the dataset [11]

ϑSAHC �
[
[µ f θaεpεq ]s f , [µ f θaεpεq ]sc&s1

,

× [µ f θaεpεq ]sc&s f +1

]∣∣∣ f �F−1

f �0
(5)

4 Results and discussion

In the following, by way of evaluate proposed models’ accu-
racy in comparison to the current standard. Here, such as
contrast SAHC with state-of-the-art methods and investigate
the synergy between the two sets of representations by fusing
them together later on, using the SAHC’s suggested vector-
ized features to achieve state-of-the-art performance. Here,
while compare the proposed SAHC’s performance outcomes
in terms of accuracy (%) utilizing Datasets [11–14] to those
of other state-of-the-art techniques. Using low-level features
known as the SAHC, which are made up of spatial, angu-
lar, and hough features, it is shown that SAHC not only
achieves state-of-the-art performance on multiple datasets
covering a wide range of action-recognition scenarios but
also performs real-time processing because the proposed sys-
tem works with minimal information.

Table 3 shows the top performance on the skeleton joint-
based action recognition dataset [11]. Keep in mind that
cross-validationwas used to choose themodel parameters for
the test. These factors led to a % accuracy while linearizing a
sequence compatibility kernel. There was a 99.8% improve-
ment in accuracy with the recommended action description.
With respect to performance, Jin et al. [40] were successful
96.50% of the time. However, Luo et al. [41] achieved some-
what better results, with 97.26% accuracy. Table 3 shows
the complementary nature of the proposed technique SAHC,
which combines [40, 41] to enhance accuracy by 2.54%
above the state-of-the-art on this dataset.

Table 4 A overview of spatial, angular, and Hough feature assembling
evaluations

Approach Accuracy (%)

McNally et al. [47] 90.0

Islam et al. [48] 91.8

Chikhaoui et al. [49] 92.67

Mengyuan et al. [45] 94.51

Tasnim et al. [46] 95.1

SAHC 96.5

Joints-connections, and Frames-connections, both of which are ensem-
bles, are especially noteworthy since they achieve the best prediction
accuracy. The suggested technique is shown to improve performance
when compared to other methods, and these methods are all evaluated
for their correctness. Analysis of SAHC in relation to the other methods
used on the dataset [12]

The uppermost performance on the skeletal joint-based
action recognition dataset [12] is shown in Table 4. Keep in
mind that cross-validationwas used to choose the appropriate
values for the evaluation model’s parameters. The lineariza-
tion of a sequence compatibility kernel using these settings
yielded a certain percentage of correctness. The proposed
system achieved a 96.5% success rate with a planned action
description. To compare, Mengyuan et al. [45] had a suc-
cess rate of 94.51%. Tasnim et al. [46] achieved somewhat
better results, with an accuracy of 95.1%. Table 4 displays
the comparative strengths of the suggested methods SAHC
providing a 1.4% accuracy gain above the state-of-the-art on
this dataset.

The suggested techniquewas compared to five othermeth-
ods using the accuracy index of the dataset [12] in Table 4.
According to the data, the lowest accuracy was attained by
Chen et al. [11] at 79.1%, while the highest accuracy was
achieved by Chikhaoui et al. [25] with 92.67%. However, for
dataset [12], suggested SAHC achieved 99.2%, which was
an increase of 3.33% above the previous highest efficiency.

Table 5 summarizes the results of a comparison between
the suggested SAHC technique and the five currently used
approaches to assessing dataset [13] precision. Based on
the provided values, the highest accuracy was reached by
Papadopoulos et al. [11] with 96.3 & 97.41%, while the
lowest accuracy was obtained by Gaglio et al. [9] with 84.8
& 84.5% across all methodologies tested. The efficiency of
the suggested SAHC, on the other hand, was 97.6% for the
dataset [13], which was a substantial improvement over the
prior best. However, for the dataset [13], the recommended
SAHC reached 97.6%, an improvement of 0.19% above the
maximum efficiency previously reported.

With respect to the accuracy index of the dataset [14],
Table 6 compares the suggested technique to the 10 cur-
rent methodologies. Researchers in the approaches [53–57]
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Table 5 An overview of spatial, angular, and Hough feature assembling
evaluations

Approach Accuracy (%)

Gaglio et al. [50] 84.8 & 84.5

Cippitelli et al. (P � 7) [51] 94.0 & 93.7

Cippitelli et al. (P � 11) [51] 95.1 & 95.0

Cippitelli et al. (P � 15) [51] 95.0 & 94.8

Papadopoulos et al. [52] 96.3 & 97.41

SAHC 97.6

Joints-connections, and Frames-connections, both of which are ensem-
bles, are especially noteworthy since they achieve the best prediction
accuracy. The suggested technique is shown to improve performance
when compared to other methods, and these methods are all evaluated
for their correctness. Analysis of SAHC in relation to the other methods
used on the dataset [13]

Table 6 An overview of spatial, angular, and Hough feature assembling
evaluations

Approach Accuracy (%)

Qiuhong Ke et al. [53] 93.47

Qiuhong Ke et al. [54] 93.57

Jun Liu et al. [55] 94.1

Fabien Baradel et al. [56] 94.1

Jun Liu et al. [57] 94.9

SAHC 97.7

Joints-connections, and Frames-connections, both of which are ensem-
bles, are especially noteworthy since they achieve the best prediction
accuracy. The suggested technique is shown to improve performance
when compared to other methods, and these methods are all evaluated
for their correctness. Analysis of SAHC in relation to the other methods
used on the dataset [11]

obtained accuracies of 93.47, 93.57, 94.1, 94.1, and 94.9%
using the aforementioned values. However, for dataset [14],
suggested SAHC achieved 97.7% accuracy, which is an
enhancement above the previous best.

The effectiveness of a classification method may be sum-
marized in a table called a confusion matrix. A confusion
matrix provides a visual representation and summary of a
classification algorithm’s efficiency. In Figs. 3, 4, 5, 6, see
a confusion matrix where action classification and misclas-
sification are taken into account, and where various degrees
of intensity are shown. The 20 classes in the dataset [11] are
as follows: high arm wave, horizontal arm wave, hammer,
hand catch, forward punch, high throw, draw cross, draw
tick, draw circle, hand clap, two-hand wave, side-boxing,
bend, forward kick, side-kick, jogging, tennis swing, tennis
serve, golf swing, and pick-up and throw. Figure 3 displays
the confusion matrix of the dataset [11] as a measure of indi-
vidual class performance. An excellent class performance

was attained with the suggested action description. Every
action motion is recognized except for the side-kick class.
While the performance of the sidekick class exhibits some
bit errors, overall, the description has a net performance of
99.80%.

In order to determine the source of categorization inac-
curacies, researchers often turn to a confusion matrix. The
columns show what the expected results would have been
in each class. The columns, meanwhile, show the forecasts.
This table makes it clear which assumptions were incorrect.
In Fig. 4, it can be seen the confusion matrix represents the
performance of each class on the dataset [12]. As suggested
action description outperformed the rest of the class signif-
icantly. Class "Baseball swing from the right" has the worst
performance overall, while "Tennis serve" and "Two-hand
push" do better. Using SAHC, the proposed model can get
an interclass performance of 97.6% overall.

Confusion matrix for the dataset [13] is shown in Fig. 5
using a confusion chart, which includes eighteen distinct
actions: horizontal armwave, high armwave, two-handwave,
high throw, draw X, draw tick, forward kick, side kick, bend,
and hand clap, catch cap, toss paper, take umbrella, walk,
phone call, drink, sit, and stand up. Performance is lowest in
the "Walk" class and highest in the "Draw X" class. As by
the use of SAHC to measure performance across classes, as
find that it is 97.6% effective.

On the Dataset [14], which includes eight classes such as
"approaching," "departing," "exchanging," "hugging," "kick-
ing," "punching," and "pushing," DAP-JF achieved 99.6%
[13]. This confusionmatrix [58]was created using the SAHC
descriptor and is shown in Fig. 6. Class "Departing" indicates
the desired outcome, whereas class "Exchanging" reveals the
undesirable outcome with slightly less wrong misclassifica-
tion.

5 Conclusion

To extend the capacity of skeleton joints-based extraction in
human body, by recognizing representations at a higher level
using motion features, The suggested angular characteris-
tics are resilient against subject fluctuations and represent
relative motion between body components in a compre-
hensive way. Therefore, they propose a joints-connections,
which creates issues for preexisting models but allows them
to distinguish between difficult actions with similar motion
trajectories. Experimental results show that the proposed
SAHC features are complementary to existing features, i.e.,
the joint and bone representations. By incorporating frames-
connections and accommodating all aspects of temporal
details to achieve action recognition. The article’s key contri-
bution is the estimation of full-body human postures using an
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Fig. 3 The proposed SAHC’s accuracy in recognizing skeleton-based activities is improved by the use of encoding several types of motion
characteristics [11]. Joints’ steady state and kinetic domains are analyzed, with the optimal accuracy for each domain marked along the diagonal

Fig. 4 The proposed SAHC’s accuracy in recognizing skeleton-based activities is improved by the use of encoding several types of motion
characteristics [12]. Joints’ steady state and kinetic domains are analyzed, with the optimal accuracy for each domain marked along the diagonal

SAHCarchitecturemodified for an action recognition regres-
sion issue. SAHC is made up of Spatial, Angular, and Hough
characteristics that were retrieved utilizing Joint and frame
connections in order to obtain skeleton-based action detec-

tion features. To enable real-time action detection on edge
devices, though accomplish state-of-the-art accurateness on
many benchmarks despite the fact keeping computational
costs to a minimum. Future work will focus on enhancing
the efficacy of the system itself and applying it to the field of
improving health through human action recognition.
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Fig. 5 The proposed SAHC’s accuracy in recognizing skeleton-based activities is improved by the use of encoding several types of motion
characteristics [13]. Joints’ steady state and kinetic domains are analyzed, with the optimal accuracy for each domain marked along the diagonal

Fig. 6 The proposed SAHC’s
accuracy in recognizing
skeleton-based activities is
improved by the use of encoding
several types of motion
characteristics [14]. Joints’
steady state and kinetic domains
are analyzed, with the optimal
accuracy for each domain
marked along the diagonal
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