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Abstract
Time series prediction is tough resulting from the lack of multiple time-scale dependencies and the correlation among input
concomitant variables. A novel method has been developed for time series prediction by leveraging a multiscale convolutional
neural-based transformer network (MCTNet). It is composed of multiscale extraction (ME) and multidimensional fusion
(MF) frameworks. The original ME has been designed to mine different time-scale dependencies. It contains a multiscale
convolutional feature extractor and a temporal attention-based representator, following a transformer encoder layer for high-
dimensional encoding representation. In order to use the correlation among variables sufficiently, a novel MF framework
has been designed to capture the relationship among inputs by utilizing a spatial attention-based highway mechanism. The
linear elements of the input sequence are effectively preserved in MF, which helps MCTNet make more efficient predictions.
Experimental results show that MCTNet has excellent performance for time series prediction in comparison with some
state-of-the-art approaches on challenging datasets.

Keywords Time series prediction · Transformer · Multiscale extraction · Multidimensional fusion

1 Introduction

Time series prediction plays a vital role in numerous
domains, including meteorology [1–3], finance [4, 5], engi-
neering [6, 7], and industry [8–10]. It can not only use a large
amount of historical data to make a reasonable analysis of
the past system state space in the fields mentioned above, but
also make a crucial and effective prediction for future series.
However, the actual prediction tasks are often accompanied
by the challenges of long-time series andmultivariate collab-
oration [11, 12]. For example, in meteorological prediction
tasks, pollutant concentration shows a trend of long-term
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accumulation in space with time. At the same time, pollu-
tant concentration is often affected by many factors, such as
season, weather, and factory emissions [13].

A large number of data-drivenmodels have been proposed
to mine the regularities and patterns of the series. Autore-
gressive series models have been utilized for time series
prediction, including auto regression (AR) [14] and ARIMA
[15]. However, this kind of model [14, 15] cannot be applied
to predict future trendswithmultiple variables.With the rapid
development of deep learning, an increasing number of neu-
ral networkmodels have been proposed to predict time series.
Recurrent neural network (RNN) has been used to perform
time series prediction [16, 17]. However, RNN encounters
significant challengeswith gradient vanishing and exploding.
Besides, since themodel does not contain long-termmemory,
it is difficult to achieve significant results on long-term time
series. Somemodels [18–21] have been developed to address
the issue of an unstable gradient. A gated unit has been intro-
duced in [18–21] to constrain the loss of long-termmemory. It
makes the gradientmore stable. In addition, naïveLSTM[19]
added a forget gate to reinforce the importance of short-term
memory. However, the long-term memory loss problem still
exists in the models [18–21]. With the continuous growth of
the sequence, the prediction effect of the model is gradually
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becoming worse [21]. An encoder–decoder architecture has
been designed to predict time series in [22]. It alleviates long-
term dependency loss and enables the prediction of arbitrary
step sizes through an autoregressive architecture. MS-LSTM
[23] adds an attention mechanism to ensure the effectiveness
of the prediction results. Att-LSTM [24] superimposes the
attention mechanism to get global correlation for improv-
ing the performance of the model in long-term prediction.
However, it is impossible to extend the spatial distance of
dependency extraction to infinite lengths in [22–24] due to
their causal architectures.

With the development of deep learning, more and more
transformer-based [25] deep learningmethods have beenpro-
posed for time series prediction, such asTransformer [26] and
ConvTrans [27]. However, transformer-based methods [26,
27] only take atomic time-scale data as input without differ-
ent fine-grained feature fusions. They cannot make accurate
predictions without rich contextual information. At the same
time, themultidimensional input variables are embedded into
the feature representation by a simple linear transformation
[26, 27], which makes them impossible to mine the correla-
tion between variables.

A novel time series predictionmethod has been developed
in themultiscale convolutional neural-based transformer net-
work (MCTNet). It is composed of multiscale extraction
(ME) and multidimensional fusion (MF) frameworks. The
ME framework contains both a multiscale convolutional fea-
ture extractor and a temporal attention-based representator.
It can be used to mine different time-scale dependencies.
In order to use the correlation among variables sufficiently,
the MF framework has been designed to capture the rela-
tionship among inputs in a spatial attention-based highway
mechanism. The linear elements of the input sequence are
effectively preserved in MF. Experimental results demon-
strate that the MCTNet has distinguished performance for
time series prediction in comparison with some state-of-the-
art methods. Some of the main contributions are summarized
as follows: Firstly, a ME framework has been proposed to
mine the context dependency over different time lengths. It
contains both amultiscale convolutional feature extractor and
a temporal attention-based representator. It can be applied
to extract context dependence for different timescales. Sec-
ondly, a MF framework has been developed to capture the
relationship among inputs by utilizing a spatial attention-
based highway mechanism. It can be used to learn patterns
among different variables. The linear elements of the input
sequence are effectively preserved inMF. Finally, and impor-
tantly, MCTNet can learn the sequence representations
at different timescales and adaptively fuse representations
based on each contribution level. Experiments highlight that
MCTNet has outstanding performance for time series pre-
diction based on comparisons with some state-of-the-art
methods on challenging datasets.

Fig. 1 A workflow of MCTNet for time series prediction

The rest of this paper is as follows: MCTNet-based time
series prediction is described in Sect. 2. Experimental anal-
yses and discussions are introduced in Sect. 3 and followed
by conclusions in Sect. 4.

2 MCTNet-based time series prediction

In terms of common sense, deep learning models contain
a large number of nonlinear activation functions. It makes
them able to deal with sophisticated tasks. However, the large
superposition of nonlinear transformations results in models
that often struggle to capture linear dependencies in time
series. MCTNet has been designed with the idea of parallel
architecture with both nonlinear and linear extractors, which
makes the different dependencies not discarded by the model
as shown in Fig. 1. It provides a brief MCTNet architecture,
including both ME andMF in parallel. MCTNet profits from
highly parallelized computations of the transformer encoder
[25] with much lower run-time overhead, which is unlike
the autoregressive generation method [21] with turgid time
complexity.

SinceMEhas adopted the transformer encoder [25] to cap-
ture the information in different time steps globally by the
self-attention mechanism, the problem of long-term depen-
dencies ambiguity can be solved. MF has been used to
preserve linear dependencies from the time series data, which
is different from theMEblock used to catch nonlinear depen-
dencies from the data. A highway network in MF has been
applied to add linear elements from input time series data for
the final prediction. A spatial attention mechanism has been
added to enhance the correlationship among different vari-
ables.MCTNet can efficiently perform time series prediction
on different timescales by combining ME and MF together.

Themulti-step prediction result ofMCTNet canbedefined
as:

Y � Lo +Go +Ho (1)

where Y ∈ RN×F is the output of the MCTNet, N stands for
the length of the predict output sequence, and F stands for
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Fig. 2 a Scaled dot-product attention, bMulti-head attention

the dimension of the predict output sequence. The sum of Lo

∈ RN×F and Go ∈ RN×F represents the output of the block,
and Ho is the output of MF block.

2.1 Multiscale extractionmechanism

A novel feature extraction structure has been designed to
mine the nonlinearity in multiscale time series data. It com-
bines a transformer encoder [25] with a multiscale feature
fusion block. At first, the ME has been used to extract dif-
ferent ranges of dependencies from the input sequence. The
transformer encoder [25] has been selected to further process
some high-dimensional features.

2.1.1 Transformer

The canonical transformer model utilized an encoder–de-
coder framework as seq2seqmodel [28]. The encoder ismade
up of encoding layers that process the input recursively,while
the decoder is made up of decoding layers that process the
encoder’s output recursively. Both the encoder and decoder
process input tensors layer by layer.

A transformer-based natural language processing model
has been proposed inspired by BERT [29], that only uses the
encoder to learn the representations from a bulk of natural
language datasets. We chose the transformer’s encoder as the
backbone of MCTNet for time series dependency extraction.
As a result, the computational cost is reduced, and the results
of multiple time step predictions can be obtained by only one
inference.

The self-attentionmechanism serves as the encoder’s cen-
tral component. Each self-attention block is composed of
multiple scaled dot-product attention mechanism, as illus-
trated in Fig. 2a [25].

However, when encoding information at the current posi-
tion by single scaled dot-product attention, the model will

excessively focus on its own position and ignore other posi-
tions’ information. Therefore, the model with multi-head
attention jointly attends to information fromseveral represen-
tation subspaces at different locations, as shown in Fig. 2b.
Meanwhile, the multi-head self-attention mechanism sup-
ports parallel computing.

A multi-head attention process is defined as follows:

MultiHead(Q, K, V) � Concat(head1, . . . , headh)Wo

(2)

where Q, K, V denote query, key, and value matrix, respec-
tively. Each of these matrices represents a high-dimensional
input embedding. Wo ∈ Rd×d is the self-attention output
matrix used as a linear transformation after concatenating the
individual heads. And d represents the embedding dimension
of the input sequence.

The attention score of each head is defined as:

headi � Attention
(
QWq

i , KWk
i , VW

v
i

)
(3)

Attention(Q, K, V) � softmax

(
QKT

√
d

)
V (4)

whereW i
q ∈Rd ×d ,W i

k ∈Rd×d ,W i
v ∈Rd×d are the param-

eter matrices that can be learned to map Q, K, V into the
high-dimensional representation space, respectively. And the
square root of d is used to linearly scale to ensure the stable
propagation of the gradient.

The softmax nonlinear function is defined as:

softmax(xm) � exm∑
n e

xn
, (5)

Due to theover-the-horizon advantageof transformer [25],
correlation links for all time steps can be established with-
out the restriction of distance. However, it also makes itself
unable to learn causal temporal trends. Therefore, the posi-
tional embedding is added to capture temporal information
for the model.

2.1.2 Local and global dependency extraction

Time series context dependency at different scales is typically
presented in distinct time series datasets. A novel multiscale
sequence dependency extraction strategy has been proposed
to improve the generalization performance of the model with
different dependency scales. The structure of ME is shown
in Fig. 3a.

The ME module consists of a local dependency extrac-
tion convolution kernel and a global dependency preadaptive
extraction convolution kernel. Local convolution kernel and
global preadaptive convolution kernel are used to capture
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Fig. 3 aThe structure ofME,bLocal and global feature attention fusion

short-term and long-term dependency, respectively. The size
of each convolutional filter is not identical. Their parameter
weights are not shared. The results of these two kernels will
be fused by the attention fusion shown in Fig. 3b.

The local feature extractor uses convolutional kernel of
moderate size and short stride, which are sufficient to col-
lect comprehensive time series data to mine dense context
dependencies. On the contrary, the global feature preadaptive
extractor has a wide receptive field, which takes advantage
of the sparse convolutional kernel to acquire latent long-term
dependencies. The filter size and slide stride of the global fea-
ture preadaptive extractor are more than twice those of the
local feature extractor. The input series are encoded as high-
dimensional global features after being distilled by the global
feature preadaptive extractor. Then, maxpool is used to keep
the local and global feature lengths consistent. In order to
enhance the strong correlation and attenuate the weak corre-
lation within different periods, the global feature preadaptive
extractor utilizes a temporal attention mechanism to con-
strain feature expression. After the local extraction outputs
are superimposed on the global extraction outputs, the ME
block finally obtains dependency at different timescales.

The output of local convolution kernel is defined as fol-
lows:

Lc � Wl · X + bt , (6)

where Lc ∈ Rd*f_len is the output of local convolution ker-
nel, X ∈ Rd*f_len, f_len is the temporal length of the input
sequence, W l is a parameter matrix of local convolutional
kernel, and bl is a bias vector.

The output of local feature extractor process is described
as follows:

Lo � maxpool(Lc), (7)

where Lo ∈ Rd*(f_len/2) is local output, and the maxpool
operation makes the Lo become half of Lc in the temporal
dimension.

The global feature preadaptive extractor process is
described as follows:

Gc � Wg · X + bg , (8)

G′
o � maxpool(Gc), (9)

where Gc ∈ Rd*(f_len/4) is the output of global preadaptive
convolution kernel, G’o ∈ Rd*f_len is defined as the tran-
sitory globally output, Wg is a parameter matrix of global
convolutional filter, and bg is a bias.

The temporal attention mechanism in Fig. 3b is described
as follows:

α � tanh(upsample(G′
o)), (10)

St � softmax(α · Wa + ba), (11)

Go � G′
o � St , (12)

where the matrix multiplication result from twomatricesWo

and X is not identical in shape to the first one, so it is upsam-
pled to ensure that both have the same dimension, α is the
transitory output. St stands for attention scores at different
time steps.Wa is a learnable parameter matrix, ba is preadap-
tive output, which is the result of Hadamard productG’o with
St .

The results obtained by the above process are inputted
into the transformer encoder [25] layer to further mine the
nonlinear correlation in the time series for thefinal prediction.

2.2 Multidimensional feature fusionmechanism

While ME has advantages in extracting nonlinear depen-
dencies in sequences, it ignores some insignificant linear
information. MF mechanism has been proposed inspired by
[30, 31], which combines highway mechanism [31] with
spatial attention to enhance the representation of linear fea-
tures. Similar to the temporal attentionmechanism of theME
component, the calculation is the same. However, while the
former adaptively weights different time steps in the tempo-
ral dimension, the latter adaptively weights the importance of
input multivariate covariates in the feature dimension. The
weighted high-dimensional vectors are compressed into a
single dimension by adding them. To preserve the linear ele-
ment of the representations to a great extent, only linear layers
without nonlinear activation functions are used to transform
the representations. The output of MF is as shown in Fig. 4.
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Fig. 4 The structure of MF

Take Fig. 4 as an example, the feature dimension of the
input sequence is 4. It means that there are four separated
feature sequences as input. Define the input vector at the ith
time step as Fi � [f 0i, f 1i, f 2i, f 3i]. The spatial attention
process is described as follows:

s � tanh(Fi ), (13)

Ai � softmax(s · W f + b f ), (14)

hi � Fi · Ai , (15)

where s is the transitory output, Ai ∈ R4*1 stands for the
attention score of Fi,W f is a learnable parameter matrix, bf
is an attention bias vector, and hi is the output representation
at ith time step.

3 Experimental analyses and discusses

In order to verify the effectiveness of the MCTNet, exper-
iments have been done on some challenging time series
datasets with different dependency scales and covariate
dimensions. The experiment is conducted in a server with
Ubuntu 20.04 LTS operating system, an Intel(R) i7-7700
CPU, a Nvidia(R) Geforce RTX 4070ti GPU, and PyTorch
1.11.0.

3.1 Datasets

ElectricityTransformerTemperature [12] (ETT) contains
1 h-level and 15 min-level electrical transformer data. The
ETT [12] dataset contains seven attributes with six power
load features and an oil temperature as the prediction target.
The variation trend of electrical load often shows a certain
recent dependency, it has a strong correlation with recent
historical data. Electrical data tests the ability of the model
to extract short-term dependencies.

BeijingMulti-Site Air-Quality Dataset [32] (AQI) con-
tains hourly air pollution data with 18 attributes and 420,768
time steps. It reflects seasonal trends to some extent. The
variation tendency of air quality has an obvious periodicity,
and the change of season will affect the weather and air qual-
ity to a large extent. At the same time, the temperature and
humidity show significant periodicity in the short term on the
scale of days. Besides, the proportion ofmissing values in the
AQI dataset [32] is as high as 25.67%. Such predictions with
strong long short-term correlations are a test for the model.

Grottoes Physics Properties (Grottoes) is another
dataset that is significantly different from the above ones
[12, 32]. It is collected from the Yungang Grottoes in China,
UNESCOWorld Heritage site. TheGrottoes dataset contains
six attributes including mass, rock stress, chromatic aberra-
tion, ultrasonic conduction velocity, hardness, and magnetic
susceptibility with 14,400 time steps. The changes in the
physical properties of the Grottoes are accumulated over a
long period of time, which is observably different from the
previous two datasets [12, 32]. The predicted values strongly
correlate with extremely long-term historical data. It requires
the model to capture extremely long-time dependencies.

3.2 Metrics and parameters discusses

In order to get a fair comparison with some state-of-the-art,
the first 128 time steps of each sequence at the mentioned
above datasets are used to forecast the next 16 time steps.
Mean square error (MSE), mean absolute error (MAE), and
Pearson’s correlation coefficient (CORR) are selected to
evaluate the models. A stronger prediction performance is
indicated by a higher CORR as well as lower both MSE and
MAE values.

MSE � 1

n

i�1∑
n

(yi − ŷi )
2, (16)

MAE � 1

n

i�1∑
n

|yi − ŷi |, (17)

CORR �
∑i�1

n (yi − Y)(ŷi − Ŷ)√∑i�1
n (yi − Y)2

√∑i�1
n (ŷi − Ŷ)2

, (18)
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where yi is the output value of the model, ŷi is the target
value of time step i, and n is the quantity of samples in the

sequence. In F, Ŷ and Ŷ stand for the mean of the predicted
sequence and the mean of the target sequence.

The proportional segmentationmethod is applied to gener-
ate the train dataset and test dataset, to ensure their causality.
Thefirst 80%of the time series is used as the train dataset, and
the last 20% is used as the test dataset to evaluate the per-
formance of different models. The learning rate and batch
size are set to 0.001 and 512, respectively. The model has
undergone 5000 training iterations.

3.3 Prediction performance analyses in different
feature dimensions

Low embedding dimension has superior generalization per-
formance for reasoning the test dataset though, it will lead
to poor performance for learning nonlinear patterns from
complex massive data. Conversely, both generalization and
learningperformances exhibit an opposite trend as the dimen-
sion increases. In order to get a reasonable embedding
dimension for transformer encoder layer d in (1), d changes
from 64 to 384 at interval 64. Some experimental results for
different ds are given in Figs. 5, 6, 7, respectively.

One can find from Figs. 5, 6, 7 that the prediction perfor-
mances are the best at the chosen datasets [12, 32], and the
Grottoes dataset when the embedding dimension is 128 as
a whole. The model does not achieve optimal performance
when d is 64. When d increases to 128, the prediction per-
formance on each dataset tends to be optimal. As the value
of d increases, the model overfits on each dataset, and the
prediction performance deteriorates sharply. It can be seen
that the performance level of the same indicator on different
datasets is not completely consistent, even under the con-
dition of keeping the embedding dimension constant. The
reason is that the data distribution and feature correlation of
different datasets are inconsistent, which leads to uncertainty
in performance. The embedding dimension d in (1) is set to
128 and kept the subsequent experiments.

3.4 Transformer self-attention analyses

To investigate the contribution of different locations in the
sequence contribute to the final prediction, the heatmaps of
the self-attention scores for different time steps are shown in
Fig. 8.

Thehorizontal andvertical axes represent keys andqueries
at different time steps in Fig. 8, respectively. The shade of
color represents the attention score, that is, the contribution
of different time steps to the final prediction. Locus with
lighter colors represents higher contributions, and vice versa.

It shows the self-attention scores on the ETT [12], AQI [32],
and Grottoes datasets from left to right, respectively.

The highlights are mainly distributed in the interval
112–128 for ETT [12] dataset. It indicates that the predic-
tion of its trend depends on recent data. However, the model
is not interested in the short-term data for AQI [32] dataset.
On the contrary, the model prefers the relatively long-term
historical data, and its brightness distribution shows a certain
period of superposition. The contribution degree of different
time steps increases with time for the Grottoes dataset with
long-time dependencies. It indicates that the weight of each
time step requires to be balanced in the model.

Among them, the prediction of MCTNet for ETT [12]
dataset is strongly correlated with the recent historical data,
while the contribution of the distant historical data is weak.
The MF compensates for the historical data over a period of
time in the prediction output. This enables the model to learn
the trend of data change in the recent period. The model
is more dependent on distant historical data for AQI [32]
dataset. The importance degree also reflects a certain period-
icity from Fig. 8. Multiscale convolution filters and attention
fusion in ME enable MCTNet to mine the correlation of
its different periods. It improves the prediction’s effective-
ness. For the Grottoes dataset with a slow trend, the scores of
different time steps also exhibit a smooth change. The self-
attention mechanism in MCTNet captures the dependencies
of long-termwith adaptive weighting for different time steps.

3.5 Ablation study

To further test the performance of MCTNet, ablation experi-
ments have been done on the ETT [12] andAQI [32] datasets,
respectively. Some experimental results are shown in Table
1. The optimal results in Table 1 are highlighted in boldface.

One can find from Table 1 that our proposed model and
mechanism including ME-Conv, ME-Att, MF, and MCTNet
help to improve thepredictionperformance, andMCTNet has
the best predictionperformance. Some reasons are as follows:
ME preadaptive feature extractor is mainly composed of a
multiscale convolution filter and an attention fusion block.
ME degrades to a naive linear encoder after removing the
convolution filters, namely ME-Conv. ME degenerates to
a simple local information extractor after removing multi-
scale convolution filter and temporal attention-based fusion,
namely ME-Att. MF is composed of a spatial attention-
based highway network. The introduction of the MF settles
the problem of missing linear elements and strengthens the
extraction of short-term information. BothME andMF lever-
age multiscale and multidimensional information to make
more precise predictions. To verify that maxpool operation
in the attention fusion block has optimal performance, max-
pool has been replaced by avgpool and power-average pool
for ablation study, corresponding to ‘(w/) AvgPool’ and ‘(w/)
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Fig. 5 Prediction performances in different ds at the ETT dataset [12]

Fig. 6 Prediction performances in differentds at the AQI dataset [32]

Fig. 7 Prediction performances in differentds at the Grottoes dataset

Fig. 8 Self-attention score heatmaps at disparate datasets
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Table 1 Ablation experimental
results with different models at
different datasets

Method ETT [12] AQI [32]

MSE MAE CORR MSE MAE CORR

MCTNet 0.374 0.458 0.715 0.346 0.319 0.832

(w/o) ME-Conv 0.418 0.493 0.711 0.466 0.397 0.807

(w/o) ME-Att 0.392 0.472 0.709 0.428 0.371 0.788

(w/o) MF 0.436 0.501 0.702 0.401 0.352 0.806

(w/) AvgPool 0.384 0.469 0.711 0.359 0.328 0.817

(w/) PAPool 0.396 0.472 0.706 0.377 0.339 0.812

PAPool’ in Table 1, respectively. Experimental results show
that the performance of MCTNet is worse than that of max-
pool when avgpool is used. As a result, every portion of the
suggested model contributes in a specific way to overall per-
formance.

3.6 Comparisons with some state-of-the-art
methods

To further evaluate the prediction performance for MCTNet,
some state-of-the-art methods have been chosen for a fair
comparison across different datasets including LSTM [33],
Att-BLSTM [34], Transformer [35] ,and ConvTrans [27].
To get a fair comparison, all the corresponding parameters
used are the authors’ recommended ones for each method.
The experiment has been done with six different prediction
lengths of data with an input time series length of 128 at ETT
[12], AQI [32], and the Grottoes datasets. Some prediction
performances at different lengths are shown in Figs. 9, 10,
and 11, respectively.

It can be found that MCTNet has the best performance
among the investigated methods [27, 33–35] from Figs. 9,
10, 11, respectively. MCTNet has the lowest MSE, MAE,
and the highest CORR in different lengths as a whole. To
further demonstrate the MCTNet has the best prediction per-
formance, we calculate the average MSE, MAE, and CORR
for six different prediction lengths from Figs. 9, 10, 11.
Some comparative results are given in Table 2. The opti-
mal results in Table 2 are highlighted in boldface. One can
find from Table 2 that MCTNet has the best prediction per-
formance among the investigated approaches [27, 33–35].
Some reasons are as follows: Sequential dependency extrac-
tion is achieved by a causal approach in LSTM [33] and
Att-BLSTM [34]. The pattern learned at the current time
stepmust depend on the previous historical time steps, which
makes the prediction error steadily accumulate. As the length
of the sequence increases, the results predicted byLSTM[33]
and Att-BLSTM [34] are more and more deviated from the
actual target. It can be shown in Figs. 9, 10, 11, respectively.
Transformer [35] and ConvTrans [27] can ignore the dis-
tance information in space and overcome the problemof error

accumulation. Transformer [35] and ConvTrans [27] have
superior predictionperformance for different time-dependent
tasks.However, Transformer [35] andConvTrans [27] cannot
mine efficient representations from sequences with differ-
ent timescales and dimensions. MCTNet takes advantage of
information at different timescales, which can efficiently pre-
dict outcomes by accounting for covariate relationships.

To verify the robustness of the MCTNet, we conducted a
variety of experimentswith different inputs and different out-
put lengths. The results are shown in Table 3. Among them,
the values of the length index: ‘16 ≥ 8,’ ‘32 ≥ 16,’ ‘64 ≥ 32’
represent the input length of 16, 32, 64 and the output length
of 8, 16, 32, respectively. The results show that MCTNet can
maintain great prediction performance even when the length
of input and output of time series data changes. It is proved
that the model has optimal robustness.

Figure 12 shows the prediction curves of multiple meth-
ods [27, 34, 35] on the ETT dataset. The average deviation of
MCTNet in thewhole prediction timewindow is smaller than
that of other models. Profit from the over-the-horizon ability
of the self-attention architecture, MCTNet can still maintain
stable prediction results with the growth of the prediction
time step. The experimental results from Tables 2 and 3 fur-
ther show that MCTNet outperforms some state-of-the-art
methods by comparisons on different challenging datasets.

4 Conclusions

A novel method has been developed for time series predic-
tion in MCTNet. It is composed of ME and MF frameworks.
TheME framework contains both a multiscale convolutional
feature extractor and a temporal attention-based representa-
tor. It can be used to mine different time-scale dependencies.
The MF component simultaneously mines the correlation
between different covariates to improve the model’s capac-
ity for linear expression. The relationship among inputs can
be captured by utilizing a spatial attention-based highway
mechanism in MF. Experimental results demonstrate that
MCTNet has outstanding performance for time series pre-
diction in comparison with some state-of-the-art methods at
challenging datasets.
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Fig. 9 Prediction performance in different lengths at the ETT dataset [12]

Fig. 10 Prediction performance in different lengths at the AQI dataset [32]

Fig. 11 Prediction performance in different lengths at the Grottoes dataset

Table 2 Some comparative results in different methods

Method ETT [12] AQI [32] Grottoes (× 10–1)

MSE MAE CORR MSE MAE CORR MSE MAE CORR

LSTM [33] 0.588 0.582 0.554 0.639 0.494 0.715 0.236 0.988 9.996

AttBLSTM [34] 0.576 0.579 0.554 0.679 0.513 0.688 0.175 0.742 9.995

Transformer [35] 0.533 0.553 0.568 0.562 0.463 0.712 0.184 0.848 9.996

ConvTrans [27] 0.525 0.547 0.577 0.551 0.455 0.720 0.187 0.847 9.996

MCTNet (ours) 0.496 0.528 0.604 0.522 0.438 0.738 0.146 0.732 9.997
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Table 3 Some comparative results with different methods in multiple sequence lengths

Length Method ETT [12] AQI [32] Grottoes (× 10–1)

MSE MAE CORR MSE MAE CORR MSE MAE CORR

16 ≥ 8 LSTM [33] 0.446 0.491 0.662 0.468 0.382 0.807 0.128 0.692 9.998

AttBLSTM [34] 0.439 0.488 0.664 0.516 0.425 0.769 0.154 0.634 9.997

Transformer [35] 0.452 0.502 0.626 0.426 0.373 0.788 0.107 0.628 9.999

ConvTrans [27] 0.421 0.483 0.673 0.408 0.362 0.806 0.131 0.661 9.999

MCTNet (ours) 0.374 0.445 0.706 0.358 0.322 0.829 0.072 0.537 9.999

32 ≥ 16 LSTM [33] 0.646 0.623 0.511 0.627 0.493 0.752 0.219 0.953 9.996

AttBLSTM [34] 0.629 0.615 0.511 0.676 0.517 0.718 0.173 0.733 9.996

Transformer [35] 0.581 0.592 0.535 0.563 0.472 0.733 0.156 0.776 9.997

ConvTrans [27] 0.572 0.575 0.534 0.556 0.461 0.743 0.194 0.899 9.997

MCTNet (ours) 0.567 0.578 0.551 0.519 0.442 0.774 0.178 0.883 9.998

64 ≥ 32 LSTM [33] 0.657 0.628 0.511 0.742 0.562 0.663 0.298 1.117 9.991

AttBLSTM [34] 0.648 0.621 0.511 0.770 0.569 0.642 0.208 0.816 9.993

Transformer [35] 0.598 0.597 0.532 0.651 0.524 0.672 0.192 0.868 9.995

ConvTrans [27] 0.585 0.586 0.535 0.644 0.518 0.675 0.177 0.796 9.994

MCTNet (ours) 0.579 0.583 0.547 0.648 0.521 0.679 0.183 0.808 9.994

Bold values are represent the optimal predict results, at different “length” experimental parameter settings

Fig. 12 Predict curves of multiple methods

In feature, we will expand the covariate prediction dimen-
sion so that we can handle time series data with a large
number of input dimensions. At the same time, the compu-
tational structure is optimized to ensure low computational
overhead even in the case of sharp data growth.
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