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Abstract
Epileptic seizure is one of the most common neurological disorders characterized by sudden abnormal discharge of neurons
in the brain. Automated seizure detection using electroencephalograph (EEG) recordings would improve the quality of
treatment and reduce medical overhead. The purpose of this paper is to design an automated seizure detection framework
that can effectively identify seizure and non-seizure events by discovering connectivity between brain regions. In this work, a
weighted directed graph-basedmethodwith effective brain connectivity (EBC) is proposed for seizure detection. Theweighted
directed graph is built by analyzing the correlation among the different regions of the brain. Then, graph theory-basedmeasures
are used to extract features for classification. Furthermore, we illustrate the ability of the proposed method to achieve seizure
detection for the patient-specific model and the cross-patient model. The results show that the proposed method achieves
accuracy values of 99.97% and 98.29% for the patient-specific model and the cross-patient model in the CHB-MIT dataset,
respectively. These results demonstrate that the proposed method achieves an effective classification performance and can be
used to provide assistance for automatic seizure detection and clinical diagnosis.

Keywords Seizure detection · Graph theory · Machine learning · EEG signal processing

1 Introduction

Epileptic seizure is one of the most common neurologi-
cal diseases caused by abnormal electrical activity in the
brain. Epilepsy is often accompanied by short-term abnor-
mal behavior and cognition. The disease affects nearly 50
million people of the world and causes great distress in the
lives of patients [1]. Epileptic seizures can be diagnosed with
the help of the EEG, which records the wave pattern and
detects electrical activity in the brain [2]. EEG is able to accu-
rately record spike waves or irregular spikes and provides a
guiding function for clinical experts. To collect EEG signals
from patients, long-term continuous monitoring is required
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for server days or weeks. The analysis of long-term EEG
signals produces a huge workload for the expert. Therefore,
automatic seizure detectionmethods that can identify seizure
events from long-term recordings are necessary.

Traditional analysis of EEG signals is based on time
domain, frequency domain, time-frequency, and nonlinear
methods [3]. As EEG is a time series signal, some metrics
from the time domain, such as mean, variance, or peak value,
are computed in a specific time window, without providing
any information regarding frequency. The frequency analy-
sis methods are based on the Fourier transform or wavelet
transform (WT), which transfers the time series into the
frequency domain and extracts frequency patterns [4–6].
Time-frequency domain analysis employed time-frequency
distribution and images of EEG signals to extract features
[7–9]. Nonlinear methods are used to characterize the com-
plexity and fractal nature of EEG signals, including entropy,
correlation dimension, and the largest Lyapunov exponent
[10–12]. However, these methods cannot extract the non-
stationary features of time series signals and suffer from
noisy sensitivity [13]. Due to the limitations of traditional
EEG signal analysis methods, graph theory-based analysis
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provides a key research direction for seizure detection with
the help of graph parameters.

Many researchers have recently used graph theory to ana-
lyze multi-channel EEG signals. Molla et al. [14] used the
graph eigen decomposition-based method to select the fea-
tures for classification in a feedforward neural network. Zhao
et al. [15] constructed a graph according to the correlation
matrix to enhance the feature embedding of EEG signals
without manually designed features. Raeisi et al. [16] pro-
posed a graph convolutional neural network and considered
long-range spatial information to extract features from the
time domain and the frequency domain. The spatial infor-
mation was calculated by the functional connections among
the EEG channels. Jiang et al. [17] constructed functional
brain networks and combined person correlation coefficient
and mutual information to extract feature from a graph for
seizure detection. The results based on two public datasets
were competitive with the state-of-the-art methods. Over-
all, graph-based seizure detection methods show innovative
sights and expected results.

Brain connectivity is the correlation between different
regions of the brain that can reflect the transmission of
information. It includes three different types of connectivity:
structural brain connectivity (SBC), functional brain connec-
tivity (FBC), and effective brain connectivity (EBC). SBC
includes the physical connections between neurons. TheFBC
represents the statistical interdependence between the phys-
iological time series recorded in different regions of the
brain. SBC and FBC cannot measure the causal relation-
ships between brain regions. EBC is determined by sampling
recorded signals at multiple time points, which provides
a better understanding of brain function. Common metrics
used to calculate EBC are directed coherence (DC), par-
tial directed coherence (PDC), generalized PDC (GPDC),
directed transfer function (DTF), and direct DTF (dDTF)
[18, 19].

The EBC contributes significantly to characterizing the
influence of one neural region on the rest of the neuronal
regions. The EBC method can measure the directed effects
between each channel via Granger causality (GC) for EEG
signals. Kose et al. [20] used EBC to analyze the dynamic
mental workload condition based on EEG signals. Khan et
al. [21] proposed a novel technique to estimate effective con-
nectivity between EEG channels. The results verified that
the method gave a better estimate of directed causality. The
advantage of effective connectivity is that it can extract the
causal relationship directly without prior knowledge. The
relationship between channels can be used to construct a
graph and extract features for machine learning.

Machine learning methods based on feature extraction
have beenwidely used in seizure detection, such as linear dis-
criminant analysis (LDA), support vector machine (SVM),
random forest (RF), and K-nearest neighbor (KNN) [22].

Wang et al. [23] introduced a novel RF model combined
with grid search optimization for seizure detection based on
multiple time-frequency analysis methods. Li et al. [24] used
empiricalmodedecomposition inEEGsignals to obtain time-
frequency features. Then, a common spatial pattern was used
to reduce the dimension of the features. A classifier con-
sisting of ten SVMs was adopted to identify the onset of
seizures. Wang et al. [25] extracted multi-domain features
and used LDA, SVM, and RF for validation of classification
performance. Tapani et al. [26] validated the neonatal seizure
detection using the SVM-based method. Generalizability,
non-inferiority, and clinical efficacywere tested in their work
to show the performance of the seizure detection algorithm.
Deep learning algorithms can process data directly, learn
feature information automatically from the raw data, and
classify these feature vectors. Cimr et al. [27] designed an
automatic computer-aided diagnosis system to optimize the
complexity of the seizure detectionmethod using a deep con-
volutional neural network.Wei et al. [28] regarded a 12-layer
CNN as baseline model and introduced the merger of the
increasing and decreasing sequences for patient-cross seizure
detection, identifying 90.57% seizure events with the latency
4.68s. Akyol focused on the stacking ensemble based deep
neural network for seizure detection, which is superior to
the base model [29]. Shoka et al. [30] first converted the
EEG signals into a 2D image and then encrypted, and finally
fed to CNN model. Zhao et al.[31] proposed a novel seizure
detection model based on graph convolution network, where
Pearson correlation matrix was calculated. In this work, we
use a graph theory-based approach to convert the raw EEG
signal data into graph form and calculate the weight value of
each edge in the graph. The flowchart of the proposedmethod
is depicted in Fig. 1. The features of the signal are extracted
based on graph metrics. And machine learning algorithms
are used to perform the classification. The performance of
different machine learning algorithms is provided with three
classifiers using graph theory-based feature extraction. Fur-
thermore, we illustrate the ability of the proposed method to
achieve seizure detection for the patient-specific model and
the cross-patient model. The main contributions of this work
are as follows.

1. A weighted directed graph-based method with EBC is
proposed for seizure detection. The weighted directed
graph captures thedirected effect and relationshipbetween
brain regions.

2. Various machine learning algorithms are employed to
classify the extracted features. The selected RF classi-
fier computes feature importance and generates a ranking
of the features based on their significance. Additionally,
RF conducts feature selection, eliminating the need for an
extra feature selection process.
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Fig. 1 The flowchart of the proposed method for automatic seizure detection

3. To validate the effectiveness and generalizability of the
proposed method, it is evaluated in both the patient-
specific model and in the cross-patient model.

The remainder of this paper is organized as follows. In
Sect. 2, the data preprocessing and the proposed method are
provided. In Sect. 3, the experimental results for the patient-
specific model and the cross-patient model are presented. In
Sect. 4, a comparison with the existing literatures related to
this study is discussed. Finally, in Sect. 5, the conclusion is
presented.

2 Methods andmaterials

2.1 Dataset

The dataset used in this work is a public dataset collected
by Children’s Hospital Boston - Massachusetts Institute of
Technology (CHB-MIT). The dataset contains long-term,
multi-channel EEG recordings from 23 neonatal epileptic
patients with refractory epilepsy [32, 33]. Data acquisition is
performed using electrodes placed on the scalp of patients.
And the placement of electrodes on the scalp follows the
international standard 10-20 system. The dataset contains a

total of 24 cases (chb01, chb02,... chb24) of 23 pediatric
patients aged 1.5 to 22 years. The first 23 cases are from 22
patients with 17 women and 5 men. The sex and age of the
24th case are not provided. Each case contains continuous
files in.edf format from a single subject. The sample rate of
the collected EEG signals is 256 Hz with a 16-bit resolu-
tion. In our work 23 channels of EEG signals are used. At
the same time, due to the continuity of the electrode mon-
tages, we could not read the data of some channels in chb15.
Therefore, data from this patient are not used.

2.2 Preprocessing of EEG signals

The fourth-order Butterworth band pass filter was used to
observe the frequency in the range of 0.01–32 Hz for seizure
diagnosis to discard components with high-frequency and
physiological artifacts that confound seizure detection. EEG
signals usually have a long duration, so the original signal
needs to be segmented before the next step. However, long
segments do not effectively remove the artifact. And short
segments are unable to detect epilepsy events. So, a length of
1 s with a non-overlapping window was used to segment the
signals for each channel in this work. To ensure a balanced
distribution of samples across different classes, our approach
in this work involved using all available samples from ictal
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periods and randomly subsampling the interictal samples to
obtain an equal number of positive and negative samples,
with 9023 samples in each category. To avoid large gradient
updates during data training, the normalization method was
used. The normalization method converts the original data
into a distribution with a mean of 0 and a variance of 1.

2.3 Effective connectivity in epilepsy

EEG-based data analysis methods contain single-channel
analysis and multi-channel analysis. Multi-channel analysis
provides more data and information. Single-channel analysis
methods ignore the structure–function relationships between
different regions of the brain, while multi-channel methods
such as EBC use information from all channels. Identifying
these structure–function relationships can effectively char-
acterize the underlying dynamics in EEG signals.

The autoregressive (AR) model is the core of the paramet-
ric GC method. To consider the entire multivariate structure
of the random process with m channels, the multivariate
autoregressive model (MVAR) is introduced [34–36]. For a
signal X(t) = (X1(t), X2(t), ..., Xm(t))T with m channels,
where T denotes matrix transposition. The MVAR model of
order p can be represented as

X(t) =
p∑

r=1

A(r)X(t − r) + E(t) (1)

where A(r) is a p × p matrix of coefficients and E is an
uncorrelated noise vectorwith a covariance of�. TheMVAR
model uses the same framework to obtain the current values
of the variables, using not only past instances of the same
variables but also past instances of the other variables in the
model. The coefficient matrix A and the noise covariance
� can be estimated by solving the Yule–Walker equation
[37]. The model order p is usually estimated by minimizing
the Akaike information criterion (AIC) [38] to achieve the
optimal fitting parameters of the model.

Referring to MVAR in Eq. (1), the relations in the fre-
quency domain can be described as follows:

A( f )X( f ) = E(t) (2)

where

A( f ) =
p∑

r=0

A(r)exp(−i2π f r) (3)

Rewriting Eq. (2),

X( f ) = H( f )E( f ) (4)

H( f ) = A−1( f ) is the transfer matrix. In DTF, the causal
effect of channel j on channel i is represented as follows:

DTF2j→i = |Hi j ( f )|2∑m
l=1 |Hil( f )|2 (5)

The DTF is the ratio of the causal effect of channel j on
channel i to the net effect of all other channels on channel i ,
which has the desirable property of taking a value between
0 (with no causal effect) and 1 (with a strong causal effect).
As a multivariate method, DTF has the advantage that only
a single model fitting is required for all channels. Another
widely used effective connectivity method is PDC.

PDC = |Ai j ( f )|√∑
k |Akj ( f )|2

(6)

where
∑

k is the k
th column of the matrix.

In addition, GPDC is introduced to show the direct influ-
ence between channels. The presentation of GPDC is defined
as

GPDC j→i ( f ) = Ai j ( f )∑m
i=1 |Ai j ( f )|2 (7)

The MATLAB toolbox of eMVAR was used to calculate
DTF, PDC, and GPDC [39]. When calculating PDC, DTF,
and GPDC, the frequency values are set to [1, 32] with a
step size of 0.5. This results in a total of 63 points for f .
Averaging over these frequency points yields a matrix W of
23× 23, where wi j denotes the causal effect of channel j on
channel i . In the next subsection, such an EBC network is
represented in the form of a graph, where W is used as the
weight matrix of the graph. The characteristic information of
the segment signal is extracted according to themeasurement
characteristics of the graph.

2.4 Themeasures of the graph

Given a graph G = (V , E,W ), V = {i |i is a vertex of
G} represents the set of the vertices of the graph and E =
{ei j |i, j ∈ V } indicates the set of the direct edges. If there
is a directed edge from i to j , ei j = 1; otherwise ei j = 0.
W = {wi j |i, j ∈ V } is the set of the weight, and wi j rep-
resents the weight value of the directed edge ei j . For EEG
signals, the vertices indicate the channels, and the weight of
the edges is the effective connectivity between the channels.

Directed edges indicate that information flows in only one
direction. And the activity of one node depends on the other
(such as the causal effect). However, undirected edges indi-
cate that information flows in both directions along the edge
of the connection. The weight of the edge between the two
nodes reflects the strength of the connection of these nodes,
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which can distinguish between strong and weak connections.
Weak connections can be removed by thresholding. Specifi-
cally, the threshold is varied from 0.1 to 0.9, and the model
achieved its best performancewhen the threshold is set to 0.3.
Consequently, the threshold value is 0.3 in our experimental
setup.

In the graph, given two vertices, the minimum number of
edges connecting the two vertices is defined as the path length
of the two vertices. And the average of the path lengths of all
vertex pairs in the graph is defined as the characteristic path
length (CPL).

CPL = 1

M

∑

i∈V

∑
j∈V , j �=i di j

M − 1

di j =
∑

ei j∈Si→ j

ei j (8)

where di j is shortest path length to measure the integration
of the graph. Si→ j is the shortest path from vertex i to j .

Global efficiency (GE) measures the harmonic mean of
the shortest path of any two nodes, indicating how to transmit
efficient information through the entire network. The GE is
calculated by

GE = 1

M

∑

i∈V

∑
j∈V , j �=i d

−1
i j

M − 1
(9)

Transitivity (T ) is the ratio of triangles to the total number
of triplets in the network. T is defined as

T =
∑

i∈V ti∑
i∈V [(kouti +kini )[(kouti +kini −1)−2

∑
j∈V ei j e ji ]]

ti = 1

2

∑

j,h∈V
(ei j + e ji )(eih + ehi )(e jh + ehj )

kouti =
∑

j∈V
ei j

kini =
∑

j∈V
e ji (10)

where ti is the number of triangles of vertex i ; kouti and kini
are out-degree and in-degree of i , respectively.

Modularity (MD) measures the quality of the network
that can be subdivided into modules or communities. MD is
measured as

MD = 1

l

∑

i, j∈V
[ei j − kouti kini

l
]δ(Ci ,C j )

l =
∑

i, j∈V
ei j (11)

where l is the number of links in a graph. Ci and C j are the
cluster of vertex i and j , respectively. δ() measures whether
the two vertices belong to the same community.

Assortativity coefficient (AC) examines whether nodes
with a similar degree tend to be connected to each other. If
the AC is positive, this means that nodes in the network tend
to be connected to other nodes with similar degrees.

AC=
l−1 ∑

(i, j)∈E kouti kinj − [l−1 ∑
(i, j)∈E 1

2 (kouti + kinj )]2
l−1 ∑

(i, j)∈E 1
2 [(kouti )2 + (kinj )2]−[l−1 ∑

(i, j)∈E 1
2 (kouti +kinj )]2 (12)

The clustering coefficient is a statistical feature of a graph
that measures the degree to which a node is to be grouped.
The average clustering coefficient AvgC is defined as

AvgC=
1

M

∑

i∈V

ti
(kouti + kini )(kouti + kini − 1)−2

∑
j∈V ei j e ji

(13)

The sum of all link weights connected to a node is the
node strength. The average node strength NSi of i is defined
as

NSi =
∑

j∈V
Wi j (14)

Graph entropy can measure the similarity of two graphs,
which is the sum of the vertices in G. Given that a vertex i
belongs to V , the entropy ei of i is calculated by

ei = −
M∑

j=0, j �=i

wi j logwi j (15)

whereM represents the number of vertices andwi j represents
the casual effect from j to i . Thus, the graph entropy of G
with M vertices is formulated as

eG =
∑

i∈V
ei (16)

The directed features are CPL, GE, T, MD AC, and
AvgC. The weighted directed features are NSi , ei , and e(G).
According to the graph theory measures, the extracted fea-
ture vector is [CPL, GE, T, MD, AC, AvgC, NSi , ei , eG ].
NSi and ei are local features, the others are global features.
So, the dimension of the feature vector is 53 (2 × 23 + 7).

3 Results

The preprocessing and feature extraction of EEG signals are
performed usingMATLAB 2020a. The classification work is
implemented using PYTHON 3.9 on a Thinkpad T14, Intel
i5 10th, and RAM 16G.
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3.1 Metrics

The evaluation metrics used in this work are accuracy
(Acc), specificity (Spe), sensitivity (Sen), and area under
curve (AUC). Moreover, statistical analysis is also provided.
The receiver operating characteristic (ROC) curve does not
specify a fixed threshold, but tries all possible thresholds
(cutoff points) and computes multiple pairs of sensitivity and
(1-specificity) at each possible threshold. The model is mea-
sured by comparing the AUC. The higher the AUC value,
the higher the correct rate of the classifier. The performance
metrics are defined as follows:

Acc = TP + TN

TP + FN + TN + FP
∗ 100% (17)

Spe = TN

TN + FP
∗ 100% (18)

Sen = TP

TP + FN
∗ 100% (19)

where TP denotes the number of positive samples correctly
predicted. TN denotes the number of negative samples cor-
rectly predicted. FN denotes the number of positive samples
predicted as negative. FP denotes the number of negative
samples predicted as positive.

3.2 Experimental results

In this work, we convert the EEG signal into the form of
a graph for each patient. The nodes of the graph represent
the channels, and the edges represent the directed influence
between the channels. EBC can capture the effective influ-
ence between different channels. The analysis of EEG signals
includes the single-channel method and the multiple chan-
nel method. The single-channel analysis method neglects the
structural information between channels and cannot char-
acterize the underlying dynamics. Bhattacharyya et al. [40]
selected five channels for multivariate analysis. Amiri et al.
[41] used a set of optimal channels to discriminate seizure
events. Multi-channel analysis can consider the interaction
between channels and provide more information for the
classification of seizures. To compare the recognition per-
formance of different EBC methods for EEG signals, DTF,
PDC, and GPDC are used to determine the directed influence
between the nodes in the graph, as well as the weights of the
edges. To obtain a reliable and stable automatic seizure detec-
tion model, fivefold cross-validation is used. A summary of
the classification results is provided for the 23 patients. The
classification results of the proposed method are given in
Table 1. For the extracted graph-based features, three classi-
fiers, SVM, RF, and KNN, are used to identify seizure and
non-seizure signals. The sklearn library is utilized for exper-
imentation. The radial basis function (RBF) is used as the

kernel function for SVM. The number of trees in the RF is
set to 25. As for the KNN classifier, the value of K is set to
5. All other parameters are kept at their default values. The
results show that all three classifiers have a good effect on
the identification of seizure and non-seizure signals for the
DTF method. Among them, RF has the best classification
with 99.97% accuracy of classification. The RF classifier
achieves the highest classification accuracy of 99.72% for
the PDC method. The KNN classifier has the highest sen-
sitivity with 100%. The RF classifier achieves the highest
classification accuracy of 99.78%, and the KNN classifier
has a sensitivity of 99.97% for the GPDC method. Among
these results of the EBC methods, the seizure ictal state is
successfully identified from the interictal state. According
to the results, the RF classifier performed the best average
accuracy with 99.97%, 99.72%, and 99.78% for DTF, PDC,
and GPDC, respectively. This is because the RF classifier
randomly selects a portion of the feature vector per decision
tree to identify seizure events and then selects the optimal
set of features among these randomly selected features. The
diversity of the system is enhanced by constructing multiple
decision trees, thus improving classification performance. It
also indicates that the DTF method can achieve better results
than the others.

Thevisualization of the classification resultswith theDTF,
PDC, and GPDC methods using three classifiers is provided
in Fig. 2. TheRF classifier has superior performance to others
(Fig. 2b). FromFig. 2c,we can see that theDTFdemonstrated
the highest accuracy among the three types of EBC meth-
ods. We also obtained sensitivity and specificity of 99.95%
and 99.99%withRF classifier, respectively. Furthermore, the
statistical analysis of the proposed method is depicted. ROC
curves are drawn on the basis of RF classifier. The ROCs
of three EBC methods are given in Fig. 2, and the respec-
tive curves have a better classification performance. Among
them, seizure events are accurately classifiedwith high speci-
ficity and sensitivity by the proposedmethod. TheROCof the
DTF used to obtain the directed relationship of the channels
has a significantly larger AUC than others with AUC=100%.

Extracting graph features can capture the relation of nodes
in the network at both global and local levels. Global features
measure the shortest paths within the network, representing
the degree of integration in the network’s communication.
On the other hand, local features quantify the interactions
between neighboring nodes. Specifically, they are based on
the shortest paths between each node’s neighbors, reflecting
the efficiency of communication between the node’s immedi-
ate spatial neighbors.Modularity reflects how the global node
network is partitioned into highly connected subnetworks or
modules, which often correspond to underlying neural pro-
cesses. In highly modular networks, nodes within the same
module are considered to play a role in common processes.
The RF classifier ranks the importance of the features. From
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Table 1 The classification
results of the proposed method

SVM RF KNN
Method Acc Spe Sen Acc Spe Sen Acc Spe Sen

DTF 99.86 99.99 99.67 99.97 99.99 99.95 99.38 100 98.22

PDC 98.43 97.25 99.59 99.72 99.86 99.56 98.59 97.17 100

GPDC 98.52 97.45 99.63 99.78 99.94 99.56 98.05 96.12 99.97

Fig. 2 Classification results for the EEG signals with the graph the-
ory method. a A graph was constructed with DTF, PDC, and GPDC
methods. b The classification performance of the three classifiers. c
Classification performances for the DTF, PDC, and GPDC methods.

d The ROC curve for the classification result of the DTF. e The ROC
curve for the classification result of the PDC. f The ROC curve for the
classification result of the GPDC. The AUC is presented for each ROC
curve

Fig. 3, we can see that the features with a score above 0.1 are
node strength, graph entropy, and characteristic path length.
The node strength has a relatively high importance score and
contributes more to the classification of the EEG signals. The
sorting results also reveal that the features considering both
weight and direction have relatively high importance, and
other directed features also contribute to the classification.

The graph structures of seizure and non-seizure events are
given in Fig. 4, where at least one short path exists between
most of the node pairs. The presence of high-degree nodes
(hub nodes) in the graph shortens the path length between the
nodes. The number of these nodes is small while the other
nodes have a low degree. There have been numerous studies,
showing that neural networks exhibit small-world properties.
From the experimental results, it can be seen that the brain
neural network built usingEBC in thiswork has a lowaverage
shortest path length and a high clustering coefficient, which
is consistent with the property of small-world network.

Fig. 3 The importance of the selected features with the RF classifier

To improve the performance of the seizure detection
method and guarantee that the model has good generaliza-
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Fig. 4 Degree rank and degree histogram of non-seizure a and seizure b signals

tion. The experimental results of the cross-patient analysis
are provided in Fig. 5a–c. We use the leave-one-patient-out
(LOO) model to train and evaluate the presentation method.
The metrics using the DTF, PDC, and GPDC methods
for each patient are given in Fig. 5. Generally, all meth-
ods achieve 100% specificity without false positive during
the classification. The average accuracy for DTF, PDC, and
GPDC is 98.28%, 95.37%, and 95%, respectively. The sen-
sitivity of the three methods varies greatly. For the DTF
method, almost all sensitivity results are greater than 91.95%
except patient 12. About 43% of patients have a sensitivity
of less than 90%. The average accuracy for the cross-patient
model with LOO evaluation is inferior to the patient-specific
model. Due to differences in brain wave patterns between
patients, the construction of a patient-specific model can
obtain high performance. However, more data are used to
train the machine learning algorithm in the cross-patient
model, obtaining good classification results as well. So, the
proposedmethod has the capacity to detect seizures in unseen
patients.

4 Discussion

The proposed method based on weighted directed graph and
EBC is evaluated using the publicly accessible CHB-MIT
scalp EEG database for seizure detection. In recent years,
many promising automatic EEG analysis techniques have
been used for seizure detection. To demonstrate the superi-
ority of the proposed technique, Table 2 compares themethod

proposed in this workwith other seizure detection algorithms
using the same EEG database. A comparison of the metrics
reported in Table 2 shows that the proposed algorithm out-
performs most previous work due to the directed influence of
EBC and the graph theory-based methods. As shown in the
table, the patient-specific model and the cross-patient model
are all covered. The contribution of the proposed methods is
superior to the existing work for the patient-specific model
[17, 27, 30, 31, 40–42]. The results obtained by our method
are 99.94%, 99.99%, and 99.97% for sensitivity, specificity,
and accuracy, respectively. For the cross-patient model, the
classification results are inferior to the patient-specificmodel
[5, 43]. And among these cross-patient methods, the results
of [5] achieve a higher sensitivity of 96.81% than others.

Mutual information between channels can help to obtain
a valid relationship. Jiang et al. [17] presented a seizure
detection method with the functional brain network. The
correlationbetween channels is characterizedbyPearson cor-
relation coefficient and mutual information. The results they
obtained demonstrated that the method is competitive with
others. In this work, correlation is considered using the EBC
method to represent the connectivity of noisy data. Then, the
feature extraction method based on graph theory is used to
obtain the network topology and detect the seizure events.
This work captured the abnormalities of the network and
connected the brain network characterized by the occurrence
of seizures. Although the proposed method effectively real-
izes seizure detection, the limitations and future work of this
work are as follows
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Fig. 5 Results for the LOOmodel with the RF classifier. Patients in the x-axis are sorted by decreasing accuracy (red star marker). a LOO evaluation
of DTF. b LOO evaluation of PDC. c LOO evaluation of GPDC

1. The proposed model can detect seizures from EEG sig-
nals, but it also has a weakness in predicting seizures
without delay. The next step is to accurately identify the
characteristics of a preictal signal to give early warning
before a seizure occurs.

2. The experiments were performed with a small amount of
data. To verify the clinical importance of the automatic
seizure detection algorithm, a larger dataset and various
epilepsy syndromes are required.

5 Conclusion

In this work, an automatic seizure detection method based
on EBC and graph theory is proposed, which built a directed
weighted graph by discovering the relationships among the
multi-channel EEG signals. Three classifiers are used to dis-
tinguish the seizure and non-seizure events. Furthermore,
the patient-specific model and the cross-patient model are
provided to test the generalization of the seizure detection
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Table 2 Comparisons with state-of-the-art seizure detection methods using the same dataset. NR stands for not reported values

Authors Methodology Type of model Sen-Spe-Acc

Bhattacharyya et al. [40] Empirical wavalet transform (EWT), RF Patient-specific 97.97-99.57-99.41

Wu et al. [42] Multi-view features, RF Patient-specific 82.98-99.41-99.36

Aayesha et al. [43] DWT, Fuzzy rough nearest neighbor Cross-patient NR-NR-92.79

Zhao et al. [30] Linear graph convolution network, focal loss patient-specific 98.82-99.43-99.30

Zarei et al. [5] Orthogonal matching persuit, SVM Cross-patient 96.81-97.26-97.09

Shoka et al. [31] Chaotic Baker Map and Arnold Transform algorithms, CNN patient-specific 88.89-NA-86.11

Amiri et al. [41] Sparse CSP, adaptive short-time Fourier transform, linear classifier Patient-specific 98.44-99.19-98.81

Cimr et al. [27] Normalization, CNN Patient-specific 97.06-96.89-96.99

Jiang et al. [17] Personal correlation coefficient, SVM Patient-specific 97.72-95.62-96.67

This work EBC, DTF, RF Patient-specific 99.94-99.99-99.97

EBC, DTF, RF Cross-patient 96.15-100-98.29

method. The results demonstrated that the DTF method
with RF can achieve high-performance classification. The
proposed method is superior to the existing work on the
same dataset in terms of accuracy, specificity, and sensitiv-
ity. Therefore, the directed effect is essential for automatic
seizure detection methods of multi-channel signals. Our
method can reduce the workload of reading EEG signals and
help assess the strategy for seizure detection.
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