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Abstract
In order to suppress noise and artifacts in low-dose computed tomography (LDCT), various deep learning techniques, especially
encoder-decoder networks, have been introduced to improve the quality of LDCT images. However, in the encoder-decoder
convolutional neural network, fixed-size convolution kernel, continuous down-sampling operation, and the mean square error
(MSE) objective function are used, which cause problems such as low utilization of image information, image information
loss, and over-smoothing of denoised image. To improve the quality of reconstructed CT images, in this paper, a LDCT image
denoising network based on residual multi-scale feature extraction and hybrid loss function is proposed. On the one hand, the
multi-scale feature extraction module is designed and introduced into the residual connection to improve the utilization of
image feature information; on the other hand, zero padding is used to solve the information loss problem caused by continuous
down-sampling operations, and batch normalization (BN) layer is used to alleviate the over-fitting problem caused by network
deepening. In addition, a hybrid loss function consisting of MSE loss, structural similarity (SSIM) loss, and perceptual loss is
introduced to generate denoised images with high relevance to human perception. Experimental results show that the proposed
algorithm can not only improve the quality of denoised images, but also greatly improve the computational speed compared
with the state of the art algorithms.

Keywords Image denoising · Low-dose CT · Convolutional neural networks · Residual multi-scale feature extraction ·
Hybrid loss

1 Introduction

Due to its fast imaging speed and non-invasive, X-ray com-
puted tomography (CT) plays an important role in modern
medical diagnosis [1]. Meanwhile, the radiation exposure
and radiation hazard have gained considerable attention [2].
Low-dose computed tomography (LDCT) technology is one
of the most common ways to reduce radiation hazard. How-
ever, with the decrease of X-ray radiation dose, serious
artifacts and noise appear in reconstructed CT images, which
directly caused difficulties in disease diagnosis [3].

Over the past few decades, researchers have proposed a
number of excellent post-processing methods to improve the
LDCT image quality, such as non-local mean method [4,
5] and block matching (BM3D) method [6]. However, due
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to the complexity of noise distribution, the effectiveness of
these algorithms is limited.

The rapid development of deep learning provides a new
research direction for image processing. Chen et al. proposed
a LDCT residual encoder-decoder convolutional neural net-
work (RED-CNN) [7], which combines a deconvolutional
network [8–10] and fast connection [11–13] into a con-
volutional neural network (CNN) to improve the network.
RED-CNN achieves good results both quantitative indica-
tors and subjective vision; however, the denoising results are
over-smooth. Yang et al. proposed a LDCT image denoising
algorithm based on generative adversarial network (GAN)
[14]. The algorithm utilizes both Wasserstein distance and
perceptual similarity to reduce noise while preserving infor-
mation. Li et al. proposed a residual attentionmodule (RAM).
By inserting the module RAM into RED-CNN and WGAN
separately, the two network RED-CNN-RAM and WGAN-
RAMwere constructed [15]. Although obtained good results
in LDCT image denoising task, the model is complex and
time-consuming. Liang et al.[16] proposed a new trainable
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Sobel convolution and used it to design an edge enhance-
ment module, which preserved the details well. Wang et al.
[17] proposed a convolution-freeToken2Token dilated vision
transformer (CTformer) for LDCT denoising, which effec-
tively eliminates the common boundary artifacts.

In addition, the selection of the objective function also
directly affects the quality of the denoised image. One of the
most popular loss function is the MSE loss function, which
calculates the squared average of the pixel-by-pixel error
between the denoised image and the normal doseCT (NDCT)
image. Although high PSNR values are obtained by using
it, the image is inevitably over-smoothed. To address this
problem, researchers have investigated many loss function
for LDCT image denoising, such as perceptual loss, adver-
sarial loss, and edge loss. In natural image denoising task,
researchers have developed SSIM loss, multi-scale structural
similarity (MS-SSIM) loss [21], contrast regularization loss
[22], etc., which can retain the details of the denoised image
well.

Inspired by the aforementioned studies, we proposed
an encoder-decoder-based LDCT image denoising network
MSFREDCNN.Themain contributions of ourwork are sum-
marized as follows:

We proposed a lightweight multi-scale feature extraction
(MSFE) module, which enhance information utilization of
the input image.

1. We included zero padding to ensure that the input and
output images have the same size, which can reduce the
loss of structural information in the input image caused
by continuous down-sampling. In addition, a BN layer is
implemented in the denoising task to reduce overfitting
caused by network deepening.

2. We developed a weighted hybrid loss function consisting
of MSE loss, perceptual loss, and SSIM loss to guide the
network training. It improves the over-smoothing phe-
nomenon in the denoised images effectively.

The remainder of this paper is organized as follows.
Section 2 introduces the theory related to LDCT image
denoising and the network architecture proposed in this
paper. Section 3 analyzes the experimental results in detail.
Section 4 discusses the experimental results in depth and
presents a summary of the paper.

2 Theory

This section introduces the theory related to LDCT image
denoising and the network architecture proposed in this
paper. Section 2.1 explains the denoisingmodel from amath-
ematical point of view. Section 2.2 outlines the recommended
network architecture. Section 2.3 describes the proposed

objective function and its mathematical expression in this
paper.

2.1 Denoisingmodel

In general, let X ∈ RH×W be an LDCT image and Y ∈
RH×W be its corresponding NDCT image. Mathematically
speaking, the relationship between X and Y can be expressed
as follows:

X = F(Y ) (1)

where F(·) represents the complex degradation process from
NDCT images to LDCT images.

The core of the denoising problem is to find an operator
T (·) such that:

argmin
T

‖T (X) − Y‖22 (2)

where T (·) = F−1(·).

2.2 The proposed network architecture

This section describes the proposed network architecture
in detail. Section 2.2.1 introduces the operational proce-
dures of down-sampling and up-sampling. Section 2.2.2
details the proposed multi-scale feature extraction module.
Section 2.2.3 describes the overall network structure and
parameters of the proposed LDCT image denoising algo-
rithm in detail.

2.2.1 Down-sampling and up-sampling operations

This algorithm is implemented using the classical encoder-
decoder network architecture. In the traditional encoder-
decoder network architecture, the encoder is composed of
consecutive down-sampling modules,zero-padding and the
decoder is composed of consecutive up-sampling mod-
ules. With the continuous down-sampling, the output image
becomes smaller and smaller. It will inevitably cause the
loss of image details, degrading the final denoised image
qualification. Different from the rules contained in the tradi-
tional codec network structure, in our proposedmodel, a zero
padding operation is used to ensure the same size of input
image and output image. By this operation, it can effectively
reduce the loss of image information.

Figure 1a shows the operation process of down-sampling
in the traditional encoder-decoder network, andFig. 1b shows
the down-sampling operation process used in this paper. Let
the input image size be H × W , from Fig. 1a, it can be seen
that after the down-sampling operation, the output image size
is (H − 2) × (W − 2), and the reduction of the image size

123



Signal, Image and Video Processing (2024) 18:1215–1226 1217

Fig. 1 Down-sampling operation processwith stride 1. aOperation pro-
cess of previous down-sampling. b Zero-padding sampling operation
process

Fig. 2 The proposed multi-scale feature extraction module. a MSFEA
Module, bMSFEB Module

will cause the loss of detail information. After successive
down-sampling, the information loss is more obvious. From
Fig. 1b, it can be seen that after the down-sampling operation
process proposed in this algorithm, the output image size and
the input image remain the same, thus reducing the loss of
detail information.

2.2.2 Residual multi-scale network structure

In traditional CNN denoising models, a large proportion
of the models extract image features by convolutional ker-
nels of fixed size, which often results in poor information
utilization of the input image and leads to poor denoising
performance. There are also some models that improve their
denoising performance by simply stacking the number of
convolutional layers. It is found that as the number of convo-
lutional layers increases, the model has more parameters and
is more likely to lead to gradient disappearance or network
overfitting. Inception network architecture can alleviate both
problems to a large extent.

Inspired by Inception_ResNet [23], in this paper, we pro-
posed twoMSFEmodules to improve the image information
utilization. The MSFEA module is shown in Fig. 2a, which
divides the input into four paths formulti-scale feature extrac-
tion. The four paths consist of three convolutional branches
and one directly connected branch, respectively. The convo-
lution kernel sizes of the three convolutional branches are (1

× 1), (1 × 1, 3 × 3), and (3 × 3, 3 × 3, 3 × 3), respectively.
While the number of channels are set to 16, (16, 16), and (16,
24, 32), respectively. Following, the output results of the three
convolutional branches are concatenated by dimension and
passed through a convolutional layer with a convolutional
kernel size of 1 × 1 and a channel number of 96. Finally, the
output results are element-wise summed with the directly
connected branches. The result of MSFEA module is fed
into the PReLU layer of the main denoising network. The
proposedMSFEBmodule is shown in Fig. 2b, which divides
the input into three paths for multi-scale feature extraction.
The three paths consist of two convolutional branches and
one directly connected branch, respectively. The convolu-
tion kernel sizes of the 2 convolution branches are (1 × 1)
and (7 × 1, 1 × 7, 1 × 1), respectively. The number of chan-
nels are set to 96 and (80, 64, 96), respectively. Then, the
output results of the 2 convolutional branches are concate-
nated by dimension and passed through a convolutional layer
with a convolutional kernel size of 1× 1 and a channel num-
ber of 96. Following, the output of the two convolutional
branches are element-wise summed with the directly con-
nected branches. Finally, the result of MSFEB module is fed
into the PReLU layer of themain denoising network. In addi-
tion, a BN layer is added after each convolutional layer of the
MSFE module and activated by the ReLU nonlinear layer to
prevent the network from overfitting.

2.2.3 The proposed denoising model

The proposed residual multi-scale feature extraction mod-
ule is introduced into the classical codec network to form
the proposed denoising model MSFREDCNN, as shown in
Fig. 3. The model consists of 3 parts: the encoder part, the
residual multi-scale feature extraction part, and the decoder
part. Unlike RED-CNN, the encoder part of this model con-
sists of 6 convolutional layers, including 2 layers of 5 × 5
shallow feature extraction layers and 4 layers of 3 × 3 deep
feature extraction layers. Correspondingly, the decoder part
also consists of 6 layers of deconvolution layers, which con-
tains 4 layers of 3 × 3 deconvolution layers and 2 layers of 5
× 5 deconvolution layers; all the convolution layers use zero
padding to ensure the consistency of input and output image
sizes, and a BN layer is added after each convolution layer,
which can not only speed up the convergence speed and pre-
vent the gradient disappearance or gradient explosion caused
by the deepening of the network layers, but also alleviate the
problem caused by the overfitting caused by overly complex
models or insufficient data sets. The encoder part is activated
by the ReLU function, and the decoder part is activated by
the PReLU function, which allows the negative part of gradi-
ent to be updated with the training of the network as well. In
this algorithm, the number of convolutional kernel channels
is set to 96 for all except the MSFEA and MSFEB modules.
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Fig. 3 Overall architecture of our proposed MSFREDCNN model. MSFEA and MSFEB are our proposed multi-scale feature extraction model
which is shown in Fig. 2

2.3 Loss function

In addition to the network structure, loss function is an impor-
tant factor affecting the network denoising performance. In
this algorithm, the loss function is designed in two parts: one
part is the same as the traditional CNN denoising model,
using the MSE loss function to guide the proposed denois-
ing network, highlighting the superiority of the proposed
model; the other part is to overcome the shortcomings of
the MSE loss function and generate denoised images with
high relevance to human perception, alleviating the visual
embarrassment of radiologists. In this paper, the weighted
sum of the three hybrid objective functions:MSE, SSIM, and
perceptual loss, is utilized to guide the proposed denoising
model.

2.3.1 MSE loss function

TheMSE is the most commonly used loss function in regres-
sion models. In the context of LDCT image denoising, it is
the mean of the sum of the squared pixel differences between
the denoised images and NDCT images. Its formula is shown
in Eq. (3).

LMSE = 1

N

N∑

i=1

‖T (X) − Y‖22 (3)

where T (·) denotes the designed denoising network, X
denotes the LDCT image, Y denotes the NDCT image, and
N denotes the number of pixels in the imageX.

2.3.2 Perceptual loss

Perceptual loss [24] was first applied in the image style
migration task, where it compares the features obtained from
the convolution of the generated image with those obtained
from the convolution of the real image, making their con-
tent and global contextual structure similar. In the context

of LDCT image denoising, it represents comparing the fea-
tures obtained from the convolution of denoised images with
those obtained from the convolution of NDCT images, mak-
ing their content and global structure similar, and guiding the
denoising network to generate images that are increasingly
close to NDCT. The process can be described by Eq. (4).

Lper(Xdenoised, Y ) =
M∑

i=1

‖�i (Xdenoised) − �i (Y )‖2 (4)

where Xdenoised denotes the denoised image generated by the
denoising model, �i (·) denotes the i-th layer feature map
extracted from the feature extraction network, andM denotes
the number of layers. The feature extraction network used in
this paper is the pretrained model VGG19.

2.3.3 SSIM loss function

It is well known that SSIM is a common metric used to mea-
sure the similarity of two images. SSIM is considered to be
correlated with the quality perception of the human visual
system (HVS). A higher SSIM indicates that the two images
are more similar. It can be expressed as follows:

SSIM(Xdenoised, Y ) = (2μXdenoisedμY + c1)(2σXdenoisedY + c2)

(μ2
Xdenoised

+ μ2
Y + c1)(σ 2

Xdenoised
+ σ 2

Y + c2)

(5)

where μXdenoised , μY denotes the mean of and respectively,
σXdenoisedY denotes the covariance of Xdenoised andY .σ 2

Xdenoised

and σ 2
Y denote the variance of Xdenoised and Y respectively.

c1, c2 are constants to maintain stability.
Based on Eq. (5), the SSIM loss function can be expressed

as:

LSSIM = 1 − SSIM(Xdenoised, Y ) (6)

Finally, we use the weighted sum of several loss functions
above to guide the whole denoising network. The total loss
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function can be expressed as follows:

L total = λ1LMSE + λ2Lper + λ3LSSIM (7)

where λ1,λ2 and λ3 are weighting factors.

3 Experimental results and analysis

In this section, we first describe the dataset and the exper-
imental setup details. Next, we elaborate on the evaluation
indicators used in this study. Finally, we compared the per-
formance of the proposed MSFREDCNN with five different
state-of-the-art denoising methods (RED-CNN-RAM [15],
WGAN-RAM [15], CTformer [17], EDCNN [16], and RED-
CNN [7]) and visualized the LDCT image denoising results
to verify the effectiveness of the proposed network.

3.1 Datasets and experimental setup

Dataset. In the experiments, we used the Low-dose CT image
and projection data from Mayo clinic [25]. All CT scans
were acquired at routine dose levels for the practice at which
they were obtained using standard-clinical protocols for the
anatomical region of interest. Each clinical case was pro-
cessed to include a second projection dataset at a simulated
lower dose level. Head and abdomen cases are provided at
25% of the routine dose, and chest cases are provided at 10%
of the routine dose. The slice numbers of chest, abdomen, and
head data set in our experiments are 5310, 2630, and 1595,
respectively. The size of image is 512 × 512. The percent-
ages of images used for training and testing are 70%and30%,
respectively. In our experiments, a fivefold cross-validation
was used to train and test the proposed network.

Experimental setup. In the training process, the Adam
optimizer [26] was used. Patch_size was set to 64 × 64, the
sliding interval is 10, and the experimental batch size was
set to the maximum of a single GPU memory. The initial
learning rate was set to 1e−4, which is reduced by half every
2000 iterations; the total number of epochswas set to 200.All
settings in the comparison algorithm are consistent with the
original paper. For a fair comparison, all experiments were
trained in thePytorch1.11 environment and accelerated using
the NIVID RTX3080-10 GB.

3.2 Evaluation of indicators

In this paper, PSNR, SSIM, and root-mean-square error
(RMSE) are used to quantitatively evaluate the experimen-
tal results: since the SSIM has been described in detail in
subsection 2.3.3., it is not repeated here.

PSNR is the ratio of the maximum power of a signal to
the noise power that may affect its representation accuracy.

Generally speaking, the higher the PSNR value, the better the
quality of the generated denoised image. Mathematically, it
can be expressed as follows:

PSNR = 10 · log10
(
MAX2

MSE

)
= 20 · log10

(
MAX√
MSE

)

= 20 · log10(MAX) − 10 · log10(MSE) (8)

whereMAX is themaximumpixel value of theNDCT image.
RMSE is the square root of the square of the deviation of

the observed value from the true value and the square root of
the ratio of the number of observations K . Mathematically,
it can be expressed as:

RMSE =
[
1

K

K∑

i=1

(Xdenoised − Y )2

]1/ 2

(9)

where K denotes the number of test images.

3.3 Experimental results

3.3.1 Chest dataset

Figures 4 and 5 show the denoised chest CT images obtained
by using different denoising models. Obviously, LDCT
images have severe noise and artifacts that make diagno-
sis difficult. RED-CNN-RAM and WGAN-RAM introduce
additional noise due to their limited ability in processing
images with high level noise. CTformer and EDCNN still
retain some noise because they focus much attention on
preserving detail in the image generation, mistaking some
noise as details. The denoising results of RED-CNN and
MSFREDCNN are over-smoothed because single MSE loss
are used to average the denoised image, resulting in loss of
structural details. The denoising result of the proposed net-
work MSFREDCNN + hybrid loss is the closest to NDCT
images. This is mainly because of our proposed residual
multi-scale feature extraction model, which makes the net-
work powerful in utilizing contextual information. This is
important in dealing with large noisy images.

Table 1 shows the average quantitative performance of
results obtained from different denoising methods on the
whole chest test set. AVGPSNR is the average peak signal-
to-noise ratio over the entire chest test set, AVGSSIM is
the average structural similarity over the entire chest test
set, and AVGRMSE is the average root-mean-square error
over the entire chest test set. The meanings of AVGPSNR,
AVGSSIM, and AVGRMSE appeared in the following text
are the same as here. The results of RED-CNN-RAM have
the lowest average PSNR, SSIM, and RMSE values. The
results of WGAN-RAM and CTFormer are relatively closer.
The results of our algorithm is the highest. In all, the noise
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Fig. 4 The denoising results of different models in chest dataset.
ROI1 and ROI2 are enlarged in the upper right and lower right cor-
ner, respectively. a LDCT, b NDCT, c–g are the denoised results of

RED-CNN-RAM,WGAN-RAM, CTformer, EDCNN and RED-CNN,
hMSFREDCNN+MSELoss (OUR), iMSFREDCNN+Hybrid Loss
(OUR)

Fig. 5 The denoising results of different models in chest dataset. ROI3
is enlarged in the upper right corner. a LDCT, b NDCT, c–g are
the denoised results of RED-CNN-RAM, WGAN-RAM, CTformer,

EDCNN and RED-CNN, h MSFREDCNN + MSE Loss (OUR),
i MSFREDCNN + Hybrid Loss (OUR)

and artifact suppression degree after denoising by different
methods is in the following order:

RED-CNN-RAM <WGAN-RAM < CTFormer < Hybrid
Loss (OUR) < EDCNN < RED-CNN < MSFREDCNN
(OUR). According to the run times in Table 1, it can be
seen the efficiency of different denoising methods is as
follows: CTFormer < RED-CNN-RAM < WGAN-RAM <
Hybrid Loss (OUR) < EDCNN < MSFREDCNN (OUR) <
RED-CNN. Excepted for RED-CNN, the efficiency of our
algorithm is improved highly compared with other algo-
rithms. Figure 6 shows the quantitative evaluation of ROIs
in Figs. 4 and 5. These metrics are obtained by averaging
ROIs at the same locations on different slices in the whole
chest dataset. Obviously, compared with other state-of-the-
art algorithms, our model has achieved the highest PSNR,
the highest SSIM, and the lowest RMSE.

3.3.2 Abdomen dataset

Figures 7 and 8 show the denoised abdomen CT images
obtained from different denoising methods. All of the listed
denoising methods can suppress the noise and improve the
visual effect to some extent. However, in the region pointed
by the blue arrows labeled by ROI4, and the blue circles
labeled by ROI5, there is over-smoothing in the results of
RED-CNN, which is due to that it only uses the MSE loss
as the objective function. Although WGAN-RAM greatly
improves visual fidelity, its traditional classification dis-
criminator only provides global structural feedback to the
generator due to the use of adversarial loss, and some resid-
ual artifacts can still be observed. Comparing the ROI4 and
ROI5 in Figs. 7 and 8, we can see that the visual effect of
CTformer and EDCNN are better than WGAN-RAM, but
there are still residual artifacts in the denoised results. In
Figs. 7h–i and 8h–i, the proposed method outperforms other
methods in suppressing noise and retaining details.
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Table 1 The average quantitative
performance of results obtained
by using different models on the
whole chest test set

Methods AVGPSNR AVGSSIM AVGRMSE Times [/S]

LDCT 26.7559 0.7415 0.0473 0

RED-CNN-RAM 32.8750 0.8723 0.0227 65,436.6

WGAN-RAM 33.5403 0.8887 0.0211 66,506.8

CTformer 33.5521 0.8799 0.0205 61,200.3

EDCNN 35.1385 0.9088 0.0176 28,955.4

RED-CNN 35.4624 0.9043 0.0169 8410

MSFREDCNN (OUR) 36.2403 0.9224 0.0156 25,284.7

Hybrid Loss (OUR) 34.2548 0.9002 0.0189 33,469.9

The best results under each indicator are highlighted in bold font

Fig. 6 The average quantitative evaluation of ROIs in Figs. 4 and 5

Table 2 shows the average quantitative performance of
results obtained from different denoising networks on the
whole abdomen test set. The results of WGAN-RAM are the
lowest. The results of RED-CNN-RAM are better than those
of WGAN-RAM. The results of CTformer, EDCNN, and
RED-CNN are relatively closer. The results of the proposed
MSFREDCNN is the highest. Excepted for RED-CNN, the
efficiency of our algorithm is improved highly comparedwith
other all algorithms. Figure 9 shows the quantitative evalua-
tion of ROI in Figs. 7 and 8. Obviously, no matter in ROI4 or

ROI5, the proposed network has achieved the highest PSNR,
the highest SSIM, and the lowest RMSE.

3.3.3 Head dataset

In order to further verify the generalization performance of
the proposed algorithm, experiments on head dataset are con-
ducted in this section. The visual comparison is shown in
Figs. 10 and 11. The quantitative evaluation is shown in
Table 3. The results are consistent with the above chest and
abdomen dataset, that is, the proposed algorithm is best in
both visual comparison and quantitative indicators. In addi-
tion, Fig. 12 presents the changes of the PSNR with the
increase of epochs during training head dataset. It is not diffi-
cult to find that our model has faster convergence and higher
PSNR value.

3.4 Hyper-parameter experiments

In this section, the hyper-parameters of different loss func-
tions are analyzed. In this study, we set λ1 to 1 based on the

Fig. 7 The denoising results of different models in abdomen dataset.
ROI4 is enlarged in the upper right corner. a LDCT, b NDCT, c–g are
the denoised results of RED-CNN-RAM, WGAN-RAM, CTformer,

EDCNN and RED-CNN, h MSFREDCNN + MSE Loss (OUR),
i MSFREDCNN + Hybrid Loss (OUR)
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Fig. 8 The denoising results of different models in abdominal dataset.
ROI5 is enlarged in the upper right corner. a LDCT, b NDCT, c–g are
the denoised results of RED-CNN-RAM, WGAN-RAM, CTformer,

EDCNN and RED-CNN, h MSFREDCNN + MSE Loss (OUR),
i MSFREDCNN + Hybrid Loss (OUR)

Table 2 The average quantitative
performance of results obtained
by using different models on the
whole abdomen test set

Methods AVGPSNR AVGSSIM AVGRMSE Times [/S]

LDCT 40.3027 0.9264 0.0098 0

RED-CNN-RAM 42.2910 0.9678 0.0076 35,391.1

WGAN-RAM 41.3149 0.9533 0.0087 30,893.1

CTformer 43.4655 0.9684 0.0069 27,925.4

EDCNN 43.8361 0.9703 0.0067 9987.9

RED-CNN 43.9573 0.9720 0.0064 5093.1

MSFREDCNN (OUR) 44.3343 0.9733 0.0061 9985.0

Hybrid Loss (OUR) 44.2327 0.9727 0.0062 15,538.5

The best results under each indicator are highlighted in bold font

Fig. 9 The average quantitative evaluation of ROIs in Figs. 7 and 8

importance of MSE in the overall objective function. The
values of λ2 and λ3 were determined by parameter selec-
tion experiments. In particular, by analyzing the performance
of the average PSNR values obtained by using proposed
MSFREDCNN with different λ2 : λ3 in three datasets, the
optimumvalues of λ2 and λ3 were determined. Table 4 shows
the average PSNR values of MSFREDCNN under different
λ2 : λ3. Obviously, when λ2 : λ3 = 2 : 1, the average PSNR
values are the highest (as shown in bold in the Table 4).
Therefore, was set in this study. In addition, Table 5 shows
the influence of different λ2 and λ3 values on the average

PSNR values in different datasets when λ2 : λ3 = 2 : 1. It is
not difficult to find that the average PSNRvalues of themodel
are the highest when λ2 = 0.02 and λ3 = 0.01. Therefore,
λ2 = 0.02 and λ3 = 0.01 were set in this study.

3.5 Ablation experiments

In this section, four ablation experiments are performed to
prove the effectiveness of each module in the proposed algo-
rithm: The network structure, the objective function, the
patch size, and the sliding interval. For the convenience of
description, we define the following symbolic representa-
tions.

BL:Baselinemodel. It represents a rough networkwithout
any enhancement modules.

BL + PA + BN: It represents the network that adds BN
layers and zero padding to the BL model.

BL + PA + BN + MSFE: It represents the network
that adds the proposed residual multi-scale feature extrac-
tion modules MSFEA and MSFEB to the BL + PA + BN
model.

MSE: Using the MSE loss function to guide the proposed
MSFREDCNN network.
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Fig. 10 The denoising results of different models in head dataset. ROI6
is enlarged in the upper right corner. a LDCT, b NDCT, c–g are
the denoised results of RED-CNN-RAM, WGAN-RAM, CTformer,

EDCNN and RED-CNN, h MSFREDCNN + MSE Loss (OUR),
i MSFREDCNN + Hybrid Loss (OUR)

Fig. 11 The denoising results of different models in head dataset. ROI7
is enlarged in the upper right corner. a LDCT, b NDCT, c–g are
the denoised results of RED-CNN-RAM, WGAN-RAM, CTformer,

EDCNN and RED-CNN, h MSFREDCNN + MSE Loss (OUR),
i MSFREDCNN + Hybrid Loss (OUR)

Table 3 The average quantitative
performance of results obtained
by using different models on the
whole head test set

Methods AVGPSNR AVGSSIM AVGRMSE Times [/S]

LDCT 44.1609 0.8912 0.0079 0

RED-CNN-RAM 46.4744 0.9162 0.0074 51,016.5

WGAN-RAM 45.5045 0.9004 0.0077 49,551.4

CTformer 47.4550 0.9279 0.0063 17,097.3

EDCNN 47.3641 0.9235 0.0063 7138.3

RED-CNN 47.2316 0.9222 0.0065 3803.7

MSFREDCNN (OUR) 47.5572 0.9401 0.0059 6997.1

Hybrid Loss (OUR) 47.5381 0.9386 0.0059 13,433.9

The best results under each indicator are highlighted in bold font

MSE + VGG: Using MSE and perceptual loss function
to guide the proposed MSFREDCNN network.

MSE + SSIM: Using MSE and SSIM loss function to
guide the proposed MSFREDCNN network.

MSE + SSIM + VGG: Using the proposed hybrid loss
function consisting ofMSE, SSIM, and perceptual loss func-
tion to guide the proposed MSFREDCNN network.

For the network structure, the modules to be ablated are
added to the baseline model each time. The objective results
of the ablation experiments are shown in Table 6. It can be
observed that the denoising performance of the network grad-
ually improves with the addition of each module.
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Fig. 12 The changes in average PSNR of different models during train-
ing head dataset

Table 4 The average PSNR of MSFREDCNN under different λ2 : λ3
on the whole test set

λ2 : λ3 AVGPSNR
(chest dataset)

AVGPSNR
(abdomen
dataset)

AVGPSNR
(head
dataset)

1: 1 34.6729 43.5011 46.7966

1: 2 34.9816 43.6743 46.5201

1: 5 35.0127 43.8820 45.9033

2: 1 36.2144 44.3019 47.3441

5: 1 35.7648 44.0175 46.8015

The best results under each indicator are highlighted in bold font

Table 5 The influence of different λ2 and λ3 values on the average
PSNR values when λ2 : λ3 = 2 : 1
λ2 : λ3 AVGPSNR

(chest dataset)
AVGPSNR
(abdomen
dataset)

AVGPSNR
(head
dataset)

0.002, 0.001 35.6258 43.7535 47.1194

0.02, 0.01 36.2403 44.3344 47.5572

0.2, 0.1 36.1560 44.0013 46.6339

2, 1 34.7709 43.5058 45.8842

The best results under each indicator are highlighted in bold font

Ablation study of the objective function is performed to
verify the effectiveness of the proposed hybrid loss func-
tion. Four different loss functions are added to the proposed
denoising model. Since the background region in CT images
occupies a large part of the CT image, which is often not
useful for the physician’s diagnosis. Therefore, the ROIs
mentioned in Sect. 3.3 are used for average quantitative per-
formance calculation. The comparison results are shown in
Table 7. It can be seen that the highest objective metrics can
be obtained by using the hybrid loss function on the proposed
network model.

In addition, it is important to analyze the impact of patch
size and sliding interval in the training process. In the training
progress, three different patch sizes of 64×64, 128×128, and
256 × 256 were used for experiments respectively. Table 8
demonstrates the ablation study of patch size on the three test
datasets. From Table 8, it appears that smaller image blocks
yield superior performance. This is because small patches
can capture the local features and details of the image more
efficiently, and small patches are more adaptable to different
image types. For the parameter sliding interval, we trained
the model with sliding intervals of 5, 10, 15, and 20, respec-
tively. Table 9 shows the corresponding experimental results.
As shown in Table 9, although the model achieves supe-
rior outcomes at small sliding intervals, the computation and
processing duration increase correspondingly. Considering a
reasonable trade-off between the achieved performance and
the involved calculation complexity a sliding interval of 10
was used in our algorithm.

4 Discussion and conclusion

By evaluating the effectiveness of each component in the
network in the previous section, it can be concluded that the
reasons why the proposed method can achieve good results
can be attributed to the following four aspects. Firstly, a
lightweight residual multi-scale feature extraction module
MSFE is proposed in this paper, which can extract multi-
scale features of images frommultiple paths and improve the
feature utilization of images. Secondly, a zero padding oper-
ation is used in the convolution layer to ensure the input and
output images are of the same size, which solves the prob-
lem of image structure information loss due to continuous
down-sampling. Thirdly, due to the over-fitting phenomenon
that may be caused by the deepening of the network, we
add a batch normalization layer to the network to alleviate
this problem. Finally, the hybrid loss function, which con-
sist of MSE loss, perceptual loss, and SSIM loss, helps to
improve the performance of the proposed network further.
This is because the hybrid loss function synthesizes the char-
acteristics of a single loss function, evaluates and guides the
network training frommultiple perspectives, making the per-
formance of the network further improved [27].

Our proposed multi-scale feature extraction module is
effective to extract rich information from LDCT images.
The proposed hybrid loss is beneficial to focus on multi-
ple features of the image and improves the comprehensive
utilization rate of the information and features. Finally, the
quality of denoised image is improved. The contribution of
this paper includes two aspects. On the one hand, we pro-
posed a method to improve the utilization rate of image
features and finally improved the denoised image quality
effectively. On the other hand, our method provides ideas
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Table 6 Network structural ablation experiments

Chest dataset Abdominal dataset Head dataset

PSNR SSIM RMSE SSIM PSNR RMSE PSNR SSIM RMSE

BL 35.3591 0.9135 0.0169 44.0998 0.9214 0.0064 47.2501 0.9353 0.0062

BL + PA + BN 35.6441 0.9159 0.0163 44.1336 0.9287 0.0063 47.3267 0.9397 0.0062

BL + PA + BN + MSFE 36.1665 0.9225 0.0156 44.3057 0.9389 0.0061 47.5279 0.9400 0.0060

The best results under each indicator for each dateset are highlighted in bold font

Table 7 Objective function ablation experiments

Chest dataset Abdominal dataset Head dataset

PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE

LDCT 29.0042 0.3198 0.0096 37.7464 0.9165 0.0018 40.4332 0.9322 0.0017

MSE 31.6648 0.6321 0.0042 40.9418 0.9549 0.0013 43.1135 0.9649 0.0014

MSE + VGG 31.7801 0.6329 0.0041 41.1517 0.9582 0.0012 43.5474 0.9677 0.0013

MSE + SSIM 32.7187 0.6951 0.0036 41.7237 0.9611 0.0012 43.6829 0.9710 0.0011

MSE + VGG + SSIM 32.9558 0.7050 0.0034 42.0383 0.9639 0.0011 44.0057 0.9753 0.0011

The best results under each indicator for each dateset are highlighted in bold font

Table 8 The ablation study of patch size on three test datasets

Patch size Chest dataset Abdominal dataset Head dataset

PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE

64 × 64 36.2403 0.9224 0.0156 44.3343 0.9733 0.0061 47.5572 0.9401 0.0059

128 × 128 35.8415 0.9006 0.0162 44.0879 0.9510 0.0069 46.3217 0.8921 0.0062

256 × 256 35.2573 0.8857 0.0169 42.8249 0.9164 0.0081 45.6312 0.8176 0.0075

The best results under each indicator for each dateset are highlighted in bold font

to improve the utilization rate of image and noise features
from more angles and aspects to further improve the quality
of LDCT images. Despite MSFREDCNN has achieved sat-
isfactory experimental results, there are still some problems
to be solved. First, the noise prior information is not utilized
in our model. Second, our network is lack of self-adaptive
attention on the most important parts of the image. In the
future, we will analyze the characteristics of speckle noise
and streak artifacts in LDCT images, study their distinguish-
ing features, and design different noise suppressionmodules.
In addition, we will introduce attention mechanisms, design

high-level statistical attentionmodule, and improve the noise
reduction ability of the network.

In conclusion, we proposed residual multi-scale fea-
ture extraction network with hybrid loss for LDCT image
denoising. In our experiments, we analyze the denoising per-
formance of the proposed MSFREDCNN both subjectively
and objectively. In addition, ablation experiments for net-
work structure, objective loss, patch size, and sliding interval
are performed. Experimental results showed that our method
outperforms some related denoising networks.

Table 9 The ablation study of
sliding interval on three test
datasets

Sliding interval Chest dataset Abdomen dataset Head dataset

PSNR Time [/s] PSNR Time [/s] PSNR Time [/s]

5 36.4339 33,527.1 44.5210 14,668.3 47.5834 7864.5

10 36.2403 25,284.7 44.3343 9985.0 47.5572 6997.1

15 35.7440 22,364.9 43.5677 7488.4 46.2383 6025.6

20 34.2589 19,677.2 43.1059 6733.2 45.9837 5331.8
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