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Abstract
Stroke represents a critical medical condition with the potential for substantial brain damage and severe complications.
Timely identification of stroke is imperative to minimize harm and enhance patient prognosis. Computed tomography (CT)
scans serve as a standard tool for identifying stroke presence and location due to their capacity to offer intricate brain images.
Nonetheless, accurately classifying stroke types and delineating their boundaries remain challenging due to dataset limitations
and algorithmic constraints. This study focuses on the precise classification of stroke types from contrast-agent-free brain CT
images. Ameticulously curated dataset of stroke images was collaboratively assembled with domain experts. Hyperparameter
optimization techniques were applied to evaluate deep learning classification models. The resultant stroke segmentations were
visualized via an enhanced U-Net model, which integrates the Cross Patch AttentionModule (CPAM) to elevate segmentation
accuracy. Our investigation meticulously examines a spectrum of classification models with the principal goal of distinctly
discerning diverse stroke types. Benchmarking the renowned VGG16 model for image classification yielded a commendable
94% accuracy in identifying stroke types. However, the CPAM-Unet model exhibited superior performance, achieving an
impressive 95% accuracy. Notably, the CPAM-Unet model demonstrated an Intersection over Union (IOU) of 88%, a metric
conventionally associated with segmentation tasks. This performance hallmark underscores its adeptness in discriminating
between ischemic and hemorrhagic strokes. This study showcases the potential of deep learning in stroke detection using
contrast-agent-free CT images. The outcomes underscore the effectiveness of the CPAM-Unet model in accurately classifying
strokes, surpassing other classification models. By harnessing deep learning capabilities and incorporating the CPAMmodule,
heightened segmentation accuracy for ischemic and hemorrhagic strokes can be achieved. These findings contribute to the
domain of stroke diagnosis, underscoring the need for further research to advance early detection and enhance patient outcomes.
The results presented in this study hold promise for refining clinical practices and optimizing stroke patient management,
thereby warranting attention from both the scientific community and medical practitioners.
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1 Introduction

The accurate differentiation of ischemic and hemorrhagic
stroke types holds immense clinical significance, as it plays
a pivotal role in guiding timely and appropriate treatment
decisions. A comprehensive understanding of the underly-
ing stroke subtype can lead to improved patient outcomes,
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optimal allocation of medical resources, and tailored ther-
apeutic interventions. In this context, our study delves into
the realm of medical image analysis with the primary goal
of enhancing stroke classification accuracy [1, 2].

Despite the advancements in medical imaging technol-
ogy, precise stroke type identification remains a complex
task. Subtle nuances in image patterns often blur the bound-
aries between ischemic and hemorrhagic strokes, posing a
formidable challenge to accurate diagnosis. The traditional
reliance on manual assessment is not only time-consuming
but also subject to inter-observer variability, potentially lead-
ing to diagnostic inconsistencies and suboptimal treatment
pathways [3, 4]. To address these challenges, we embark
on a meticulous exploration of diverse classification models,
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aiming to unravel their potential in enhancing stroke type dif-
ferentiation. Our investigation spans a range of cutting-edge
approaches, each with its unique strengths and limitations.

Recent investigations have notably explored the potential
of employing deep learning algorithms for prognosticat-
ing hematoma expansion through non-contrast computed
tomography (NCCT) scans [1]. Innovative deep learning
techniques such as SkullNetV1 (CNN), which amalgamates
feature extraction with a latent learning approach to clas-
sify five fracture types, have been devised [2]. Additionally,
the deployment of multiple instance learning (MIL) for the
detection of intracerebral hemorrhage (ICH) through scan-
level annotations has been observed [3]. Furthermore, the
domain has witnessed the utilization of deep learning-based
automated analysis for detecting varying degrees of brain
hemorrhages through CT scan slices [4]. Within the con-
text of the COVID-19 pandemic, deep learning and machine
learning methodologies have been widely harnessed for the
detection of virus-induced damage in chest CT images and
X-rays [5].

Of particular note is the challenging domain of stroke
boundary detection, which has spurred intensive research
efforts. Even when dealing with limited datasets, deep
learning-based methods have showcased promise in stroke
boundary identification. Diverse deep-learning strategies,
including but not limited to VGG16, VGG19, Densenet121,
InceptionV3, Xception, and Resnet50, are actively being
employed for COVID-19 identification in chest CT images,
demonstrating competitive performance metrics like speci-
ficity and sensitivity and substantially reducing false positive
instances, especially concerning the detection of minute pul-
monary nodules [6–10].

Moreover, the realm of lesion detection and segmentation
has witnessed the introduction of deep learning-based algo-
rithms, particularly in the context of whole-body PET/CT
scans [11–13] and metastatic prostate cancer (mPCa) lesions
in PET/CT images [14]. The development of effective
segmentation techniques, founded upon deep learning algo-
rithms, has become pivotal for the precise localization of
regions of interest and rapid segmentation [15–17]. A notable
instance includes the introduction of a deep learning model
proficient in segmenting IVCF from CT scan slices [18]. In
a parallel vein, a deep learning model capable of segment-
ing acute ischemic stroke on NCCT at a level comparable
to neuro-radiologists has been presented [19], underscored
by the indispensability of domain expertise in evaluating the
performance of such models [20].

One prominent architectural innovation is the Cross Patch
Attention Module (CPAM) U-Net architecture, which has
demonstrated its prowess in various medical image seg-
mentation tasks, yielding state-of-the-art outcomes in liver
tumors, brain tumors, and pancreas segmentation in CT and
MRI scans [21, 22]. The CPAM block’s integration at each

layer of the U-Net architecture, enabling self-attention on
featuremaps, augments the network’s capacity to discern per-
tinent features and image regions. This architecture, owing
to its computational efficiency and efficacy, emerges as a
promising avenue for real-time medical image analysis [21,
22].

In light of these advancements, this study seeks to develop
a CPAM-Unet model, aimed at precisely identifying the type
of stroke from non-contrast brain CT images, thereby dis-
tinguishing occlusive (ischemic) and hemorrhagic strokes.
The proposed approach integrates advanced classification
algorithms and a segmentation methodology to enhance
accuracy and delineate stroke regions on CT images. The
study’s resultsmanifest a high classification accuracy of 94%
achieved by the developed deep learning model, attesting
to its competence in identifying stroke types. Importantly,
the incorporation of CPAM-UNET architecture in segmen-
tation yields an IOU metric accuracy of 95%, underscoring
its potential in tackling the intricate task of stroke-type detec-
tion. This research extends the potential of attention-based
deep learning techniques in the realm of stroke detection,
holding significant implications for precise stroke identifi-
cation, thereby facilitating timely therapeutic interventions.
The study’s unique contribution lies in its comprehen-
sive evaluation of the CPAM U-Net architecture’s efficacy,
enriching the diagnostic repertoire for accurate ischemic and
hemorrhagic stroke classification.

2 Materials andmethods

This study underscores the imperative significance of dataset
size and variability concerning the efficacy of deep-learning
models, particularly within the domain of medical image
analysis. In confronting the inherent challenge of limited data
availability, the researchers adeptly harnessed data augmen-
tation and transfer learning methodologies. This strategic
maneuver entailed the amalgamation of a Brain MRI dataset
procured fromKagglewith supplementary datameticulously
curated from healthcare facilities, all meticulously annotated
by seasoned medical professionals.

The strategic utilization of transfer learning emerges as a
potent technique in mitigating the data paucity quandary and
enhancing model performance. The inherent advantage lies
in the pre-trained networks’ acquisition of vast experiential
knowledge from extensive datasets, subsequently diminish-
ing the demand for copious inputs required by networks
trained from scratch. This judicious approach effectively
reduces both learning time and the computational resources
requisite for deep learningmodels,within the domain ofmed-
ical image analysis applications [23, 24].

To embark upon a comprehensive project focused on
stroke detection through the adept application of deep
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learning-based classification and segmentation models, sev-
eral critical procedural stages merit attention:

• Database compilation Aggregating a diverse repository
of medical CT scans, spanning both unaffected cases and
instances depicting stroke-related effects. The inclusiv-
ity of a diverse dataset encompassing multifarious stroke
manifestations and varying imaging scenarios stands as a
pivotal consideration.

• Data preprocessing Necessitating image resizing or nor-
malization, with prudent partitioning of the dataset into
training, validation, and test subsets.

• Model training Diligently training the model employ-
ing the bespoke dataset, necessitating tailored parameter
fine-tuning to effectuate accurate classification and seg-
mentation of images.

• Performance evaluation Meticulously assessing the
model’s performance vis-à-vis the validation and test
subsets. This rigorous scrutiny affords insights into the
model’s efficacy in classifying and segmenting novel, pre-
viously unseen images.

• Hyperparameter optimization An indispensable step
entails the judicious adjustment of parameters, an endeavor
rooted in the training set. This meticulous calibration sub-
stantiates the model’s prowess in impeccably categorizing
and segmenting images.

The culmination of these concerted endeavors and
methodological intricacies promises to yield robust deep
learning models tailored for accurate stroke detection, effec-
tively bridging the gap between theoretical prowess and
practical application within the medical image analysis
domain.

2.1 Transfer learning

Transfer learning constitutes a potent strategy within medi-
cal imaging, effectively surmounting the constraints imposed
by limited data availability, a recurrent impediment within
the medical domain. Notably, transfer learning facilitates the
training of models with parsimonious data volumes. Fur-
thermore, its efficacy extends to the enhancement of model
performance, capitalizing on the insights gleaned from pre-
trained models that have been endowed with comprehensive
knowledge garnered from extensive datasets. It is imper-
ative to underscore that, even under the aegis of transfer
learning, the indispensability of a diversified and refined
dataset remains paramount.Additionally, rigorous evaluation
of model performance is imperative to ensure its judicious
generalization to novel instances.

Within the purview of this investigation, the convergence
of feature extraction and fine-tuning methodologies was

embraced to cultivate classification models. Transfer learn-
ing, a seminal technique in the annals of machine learning,
engenders the seamless transference of a model trained for
one task to an analogous yet distinct task. In the realmofmed-
ical imaging, this technique proves invaluable in capacitating
the training of models on comparatively smaller medical
image datasets, leveraging the latent knowledge garnered
from pre-trained models deployed on broader general image
datasets.

Within the context of medical imaging, transfer learn-
ing manifests two principal paradigms: feature extraction
and fine-tuning. The former hinges upon the utilization of
a pre-trained model to distill pertinent features from medi-
cal images. These extracted features subsequently serve as
input for an independent classifier, thereby affording the
identification of specific medical conditions. This approach
adroitly exploits the pre-trained model’s adeptness in dis-
cerning rudimentary features, harmoniously melding it with
the classifier’s capacity to internalize the distinctive traits of
medical images. On the other hand, fine-tuning entails the
initial employment of a pre-trained model as a foundational
scaffold, subsequently subjecting it to further training with
a medical imaging dataset. This iterative process serves to
calibrate the model’s parameters to align with the distinctive
features intrinsic to medical images.

The application of transfer learning in medical domains
proves particularly salient, as data scarcity often prevails. The
technique’s potency is discernible in its capacity to heighten
model efficacy by capitalizing on the reservoir of knowledge
enshrined in pre-trainedmodels rooted in expansive datasets.
However, the crux of the matter remains the need for a judi-
ciously diversified andmeticulously curated dataset, coupled
with the critical assessment of model performance vis-à-vis
its aptitude for seamless generalization to novel cases.

2.2 Data augmentation

Prior studies concerning data augmentation in medical imag-
ing have primarily revolved around the independent catego-
rization of each 2D slice. However, a novel investigation
has emerged, presenting a deep learning-based technique
capable of automatically categorizing computed tomogra-
phy (CT) and magnetic resonance imaging (MRI) data into
five contiguous body regions. This approach holds the poten-
tial to enhance classification accuracy. Recent research has
also delved into diverse deep learning-based methodologies
for medical imaging. Within this context, researchers have
assessed a range of artificial intelligence (AI) approaches
and strategies, encompassing bioinformatics, artificial neu-
ral networks, and data labeling and annotation algorithms.
Noteworthy is a recent proposal introducing an end-to-end
GenerativeAdversarialNetwork (GAN) architecture for gen-
erating high-resolution 3D images, along with another study
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employing the Extreme Gradient Boosting (XGBoost) algo-
rithm for subtype classification of brain tumors.

Researchers have introduced innovative semi-supervised
frameworks, enabling the training of segmentation models
using readily accessible radiological data along with a sparse
set of annotated images to tackle the challenges of tumor
segmentation. Augmenting the training pipeline with his-
togram equalization and data augmentation bolstered model
performance. Especially in the realm of medical imaging,
data augmentation emerges as a potent machine-learning
technique to amplify the available training data for models.
Transformations like flipping, rotation, scaling, and cropping
can augment the efficacy of deep learning-based models by
artificially expanding the dataset’s scale.

The significance of data augmentation inmedical imaging
is underscored by several factors:

• Small datasets The inherent expense and intricacy associ-
ated with acquiring medical images often result in limited
dataset sizes. Data augmentation serves as a means to sur-
mount this constraint by artificially enlarging the dataset.

• Variability Medical images exhibit substantial variability
contingent on imaging modality, patient demographics,
and imaging conditions. Data augmentation contributes to
diversifying the dataset, enhancing the model’s resilience
to these variations.

• Overfitting Deep learning models are susceptible to over-
fitting, leading to suboptimal performance on novel data.
Data augmentation counteracts overfitting by introducing
additional variations during training.

Predominant data augmentation techniques employed in
medical imaging encompass flipping, rotation, scaling, trans-
lation, shearing, and noise addition. It is paramount to
exercise caution when applying data augmentation, consid-
ering the unique attributes of the medical images and the
specific medical context to avert the generation of unrealistic
or misleading visualizations.

The selection and application of data augmentation tech-
niques should be undertaken judiciously, accounting for the
distinct characteristics of the medical images and the context
of the medical condition under scrutiny. Furthermore, adher-
ence to regulatory requirements, such as HIPAA compliance,
and ethical considerations are of utmost importance.

2.3 Classificationmodel

Using pre-trained models such as VGG16, InceptionV3,
DenseNet, and Xception for medical image classification is
a common approach in deep learning. These models have
already been trained on large image datasets and can be fine-
tuned for a specific medical imaging task [25–27]. Here is a
general outline of the process:

• First, a dataset of medical images that are labeled with the
appropriate class labels.

• Fully connected layers need to be removed, which is used
for the original image classification task the model was
trained on.

• Then, a fully connected layer with the number of neurons
corresponding to the number of classes was added for our
study.

• Fine-tune the model by training on a medical image
dataset. This can be done by "freezing" the weights of
the pre-trained layers and only training the added fully
connected layer.

A big, diversified dataset with high-quality photos might
be challenging to get in the field of medical imaging. Addi-
tionally, it is preferable to have a domain specialist assess
themodel’s performance becausemedical images differ from
natural photos in many ways. Therefore, the dataset was con-
structed with radiologists.

2.4 CPAM-UNET

Due to their capacity to deliver precise and effective seg-
mentation results, convolutional neural networks (CNNs) of
the U-Net sort have gained popularity in medical picture
segmentation applications [28]. Convolutional neural net-
work architecture called U-Net was created especially for
image segmentation problems. A contracting path (down-
sampling) and an expansive path make up its two main parts
(upsampling). The expansive path uses a transposed CNN
(deconvolution) to boost the spatial resolution of the feature
maps, whereas the contracting path operates as a conven-
tional CNN [29]. The model can use data from earlier layers
to improve segmentation in the expansive path because the
two paths are connected by skip connections that concate-
nate feature maps from the contracting path with matching
feature maps from the expanding path.

Convolutional neural networks (CNNs) based on the
U-Net have gained appeal for use in medical image segmen-
tation applications due to their ability to produce accurate
and efficient segmentation results. Its primary elements are
an expanding path and a contracting path (downsampling)
(upsampling).While the decoded path functions as a standard
CNN, the encoded path uses a transposed CNN (deconvolu-
tion) to increase the spatial resolution of the feature maps.
Two paths are connected by skip connections that concate-
nate feature maps from the encoded path with matching
feature maps from the decoded path, the model may use
data from earlier layers to improve segmentation in the wider
route.

The original U-Net design has been improved with Atten-
tion U-Net in an attempt to improve performance even
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further. With the help of cutting-edge methods like an atten-
tion mechanism, the Attention U-Net model can selectively
concentrate on the most crucial characteristics for segmen-
tation. Moreover, CPAM-Unet has residual connections that
solve the vanishing gradient issue and provide a simpler way
to train complex models. With these improvements, U-Net
can now complete a variety of medical picture segmentation
tasks with state-of-the-art results, including:

• Attention Mechanism
• Multi-Scale Feature Fusion
• Residual Connection
• Spatial Dropout
• Batch Normalization
• Weighted Cross-Entropy Loss

These changes help to improve the accuracy and stabil-
ity of the model. In this study, İmproved UNet was trained
and testedwith parameter optimizations. The extremely diffi-
cult task of detecting ischemia and hemorrhage in computed
tomography (CT) images can be aided by deep learning algo-
rithms.

In this study, we introduce theCross PatchAttentionMod-
ule U-Net (CPAM-UNet) architecture for CT image-based
stroke identification. The Cross Patch Attention Module
(CPAM), a sort of attention mechanism, is included in the
CPAM-UNet architecture to specifically highlight interesting
locations in the feature maps. An encoder, a CPAM module,
a decoder, and skip connections between the encoder and
decoder make up the CPAM-UNet architecture. To extract
features from the input image, the encoder consists of many
CNNs coupled with a max pooling process. The three phases
of the CPAM module are aggregation, similarity computa-
tion, andpatch embedding.The input featuremap is projected
onto a low-dimensional space during the patch embedding
stage using a teachable linear transformation. A patch-level
attention map is created by normalizing the similarity matrix
that is created after computing the similarity between patches
using the linear combination of their embeddings. The fea-
ture vectors of the patches are then aggregated to extract a
new feature map, with the attention map being used to eval-
uate components. The encoder’s associated feature map is
concatenated with the decoder’s upsampling layers to create
the final product. A convolutional layer, batch normaliza-
tion, and ReLU activation functions are placed after each
up-sampling layer, which has a kernel size of 2 × 2 on each
side. The matching feature maps are concatenated to create
the skip connections between the encoder and decoder.

Experimental results show that the CPAM-UNet archi-
tecture performance is greater than current SOTA (state of
art) methods for stroke detection in CT images. The use of
the CPAM module allows the model to focus on informa-
tive regions in the feature maps, improving its accuracy and

Fig. 1 Designed Cross Patch Attention Module UNET

robustness. Our approach provides a detailed explanation of
the CPAM-UNet architecture and its components, as well as
a visual representation of the CPAM module in Fig. 1. We
believe that ourmethod has the potential tomake a significant
contribution to the field of stroke detection in CT images as
shown in the Result section.

2.5 Hyperparameter optimization of CPAMUNET

Hyperparameter optimization assumes a pivotal role in the
refinement of deep learning models, particularly in the
domain of UNet and attention modules. While UNet has gar-
nered prominence for its adeptness in image segmentation,
attention modules have showcased exceptional capacity in
capturing spatial relationships. Yet, determining the optimal
hyperparameters for these models persists as a challeng-
ing endeavor. This study introduces SequentialModel-Based
Optimization (SMBO) as a strategic remedy. Comprising
Bayesian optimization and surrogate modeling, SMBO fur-
nishes an efficient avenue to traverse the hyperparameter
space and enhance the performance of UNet and attention
modules.

SMBO capitalizes on the advantages of surrogate mod-
eling, approximating model performance based on past
evaluations of hyperparameter configurations. Through itera-
tive refinement of the surrogatemodel and judicious selection
of novel configurations for assessment, SMBO orchestrates
an efficient trajectory of exploration. This paradigm achieves
an equilibrium between exploration and exploitation, effec-
tuating hyperparameter optimization to amplify the prowess
of UNet and attention modules. SMBO proves instrumental
in tailoring hyperparameters encompassing attention heads
count, attention mechanism type, and attention dropout rate.
The leverage of the surrogate model empowers SMBO to
systematically explore and identify optimal hyperparameter
configurations, bolstering the efficacy of attention modules
within UNet and analogous architectures.

Within the CPAM U-Net architecture, several hyperpa-
rameters canbeoptimized, accompaniedby their correspond-
ing mathematical formulations:
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• Learning Rate (lr): Dictating the optimization step size for
model weights, the learning rate can be optimized through
grid or random search. The mathematical representation
entails lr�10(−p),where p stems froma randomized selec-
tion between -3 and -5.

• Batch Size (bs): Specifying the quantity of samples uti-
lized in each iteration of model training, the batch size’s
optimization is amenable to grid or random search. The
mathematical expression adheres to Bs � 2q, with q origi-
nating from a randomly generated integer within the range
of 4 to 7.

• Number of Epochs (epochs): Determining the iteration
count for traversing the complete dataset during model
training, the number of epochs can be optimized via cross-
validation or early stopping. The mathematical depiction
is characterized by epochs� r, where r is a random integer
within 50 and 200.

• Dropout Rate (dr): For staving off overfitting, dropout, a
regularization technique, intermittently removes neurons
during training. Grid or random search can optimize the
dropout rate, characterized by dr � s, with s denoting a
random value within the interval of 0.1 and 0.5.

• Patch Size (ps): Governing the dimensions of input image
patches supplied to the network during training, patch size
optimization is amenable to grid or random search. The
mathematical equation pertains to ps � 2t , with t hailing
from a randomly selected integer spanning 5–8.

The optimization of these hyperparameters involves
diverse methodologies, such as grid search, random search,
cross-validation, or early stopping. Following a sequence of
training iterations, specific values have been determined for
each hyperparameter, being 10(−4), 25, 100, 0.3, and 27 (lr,
bs, epoch, dr, ps).

In the context of binary classification tasks, including
stroke identification in medical images [29], Binary Cross-
Entropy (BCE) loss emerges as a ubiquitous choice.BCE loss
operates by quantifying the divergence between predicted
and actual binary labels, encouraging high output values for
positive instances and low values for negatives. Unfortu-
nately, BCE loss falls short in addressing class imbalance,
a recurrent phenomenon in medical image analysis where
positive instances are often significantly fewer.

To mitigate class imbalance, Focal Loss was introduced
as an adapted variant of BCE loss. Focal Loss prioritizes
challenging instances that the model misclassifies, assign-
ing higher weightage, while diminishing the influence of
simpler examples correctly classified. Research substantiates
the efficacy of Focal Loss in enhancing model performance,
particularly in tasks involving medical image interpretation,
successfully managing class imbalance.

The combined BCE + FOCAL Loss serves as the cho-
sen loss function to train the CPAM U-Net model for stroke

Fig. 2 Labeled data example of CT image

Fig. 3 Rotate, contrast, brightness, mirror and ROI example of data
augmentation

detection. While the Focal component of the loss allocates
emphasis to intricate instances and attenuates simple ones,
the BCE component facilitates precise identification of pos-
itive and negative examples. This synergistic combination
empowers the model to pivot toward demanding scenarios,
such as minute or unconventional stroke lesions, thereby ele-
vating overall performance.

BCE + FOCAL loss

� − (
α (1 − y)(γ ) ∗ log (y_hat) + (1 − α) y(γ ) ∗ log (1 − y_hat)

)

where y hat is the projected probability of the positive class,
y is the ground truth label (0 or 1), is the balancing parameter
that regulates the ratio of positive to negative samples (often
set to 0.25), and is the focusing parameter that regulates the
weight placed on difficult cases (usually set to 2).

The quantity − y*log(y hat) − (1 − y)*log(1 − y hat),
which calculates the difference between the predicted and
ground truth binary labels, represents the BCE component
of the loss. The expression “(1 − y)()* log(y hat) + (1 −
y)y()*log(1 − y hat)” represents the Focal component of
the loss and up-weights the contribution of hard cases while
down-weighting the contribution of easy ones.

The BCE + FOCAL loss is used for binary classification
problems, where there are two possible classes (positive and
negative). Therefore, we have used 0.25(BCE) + 0.75(Focal)
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loss function. The designed Cross Patch Attention Module
U-Net architecture was shown in Fig. 1.

3 Results and discussion

In this study, we conducted a comprehensive comparison
of VGG16, InceptionV3, DenseNet, Xception, and Incep-
tionResNetV2 models using techniques such as data aug-
mentation, fine-tuning, and transfer learning. Additionally,
an Improved UNet model was trained for the segmentation
of stroke type and region within CT scans. To identify the
most optimal classification strategy for the UNet model, we
conducted an extensive investigation encompassing diverse
evaluation metrics and methodologies. Our exploration cov-
ered various classification approaches, including but not
limited to softmax, sigmoid, and sparsemax. Each method
underwent individual assessment based on criteria such
as accuracy, resilience in addressing class imbalance, and
suitability for multi-class scenarios. The selection of the
classification strategy holds significant sway over ensuing
hyperparameter optimization phases.

Sequential Model-Based Optimization (SMBO) stands
as a potent and efficacious technique for hyperparameter
optimization in UNet and attention modules. Our system-
atic experimentation underscores the superiority of SMBO
in navigating the hyperparameter landscape and discerning
optimal configurations. The outcomes underscore the pivotal
role of hyperparameter optimization in elevating the perfor-
mance of UNet and attention-based models. This research
constitutes a valuable contribution to the domain of deep
learning, providing insightful guidance to practitioners aim-
ing to enhance their models in the realm of computer vision
tasks. The specific values adopted for each hyperparameter
are 10(−4), 25, 100, 0.3, and 27 after a series of training(lr,
bs, epoch,dr, ps)., arrived at through a series of training itera-
tions encompassing learning rate (lr), batch size (bs), epochs,
dropout rate (dr), patience (ps), and patience multiplier (pm).

Toevaluate theperformanceof theCTscans, data augmen-
tationwas employed. Each type of augmentation necessitated
a rationale for the addition of data to the dataset, a piv-
otal consideration in augmentation strategies. Depending on
the application, CT scans underwent rotations, alterations in
brightness or contrast, and even mirroring. The parameters
governing these augmentations were tailored for this study
and are illustrated in Figs. 2 and 3. The specific data aug-
mentation techniques are documented in Table 1, while the
partitioning of the model data for training and testing is out-
lined in Table 2. The dataset was partitioned into train, test,
and validation subsets using randomized functions. Notably,
augmentations were applied individually to the train, test,
and validation subsets as shown in Table 3.

Table 1 Dataset size after augmentation, fivefold of original dataset

Class Dataset size

Positive 8892

Negative 8854

Table 2 Training, validation and test data size for comparison

Model data Data size

Training 12,422

Test 3550

Validation 1774

Table 3 The segmentationmodel data size for ischemia andhemorrhage

Class Dataset size

Ischemia 6780

Hemorrhage 6558

Tables 4 and 5 were compiled to facilitate a comparison
of diverse backbone algorithms, elucidating the impact of
Attention-basedUNETmodels. As evident from the contents
of Tables 4 and 5, the choice of backbone significantly influ-
ences the training outcomes. Through a systematic evaluation
process, an optimal backbone was identified as the ini-
tial step. Furthermore, maintaining an equilibrium between
negative and positive instances is critical when selecting
the classification component of the UNET. Consequently,
VGG16 was designated for the classification aspect of this
study, a decision grounded in the balance observed between
the F1 score and the outcomes for negative and positive
instances.

As shown in Table 4, the preprocessed data were prepared
for training as ischemia and hemorrhage for the segmentation
model.Additionally, these data underwent data augmentation
procedures, as seen in Fig. 3.

Class imbalance poses a recurrent challenge in medical
image analysis due to the prevailing abundance of posi-
tive examples compared to problematic instances. Notably,
this imbalance is encountered in binary classification tasks,
including the identification of strokes in medical images,
prompting the utilization of loss functions such as Binary
Cross-Entropy (BCE) loss. Regrettably, BCE loss is inade-
quate in addressing class imbalance, potentially undermining
model performance.

This study introduces an investigation focused on stroke
detection within CT images utilizing the Cross Patch Atten-
tion Module (CPAM) U-Net architecture. This architecture
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Table 4 Classification model
training results for stroke
detection

Model Accuracy Val_acc Loss Val_Loss

VGG16 0.9416 0.9451 0.1901 0.2289

Inceptionv3 0.8757 0.9132 0.2659 0.2789

DenseNet 0.8237 0.8831 0.4326 0.4768

Xception 0.9285 0.9289 0.1899 0.2145

InceptionResnetV2 0.9201 0.9212 0.2098 0.2258

Table 5 Classification result
parameters for detecting the
stroke

Model Class Accuracy Precision-recall F1 score

VGG16 Negative 0.9312 0.9532 0.9412

Positive 0.9623 0.9345 0.9531

Inceptionv3 Negative 0.8233 0.9867 0.9046

Positive 0.9834 0.8125 0.8923

DenseNet Negative 0.7356 0.9934 0.8445

Positive 0.9945 0.6465 0.7756

Xception Negative 0.9356 0.9598 0.9443

Positive 0.9556 0.9311 0.9432

Inception ResnetV2 Negative 0.9255 0.9623 0.9421

Positive 0.9687 0.9121 0.9309

Table 6 Improved UNet
segmentation results for IOU
metric to detect ischemia and
hemorrhage

Model Accuracy Val_acc IOU BCE + focal loss Val_Loss Dice coefficient

UNet 0.7501 0.8010 0.604 0.2439 0.2661 0.8589

CPAM UNet 0.9512 0.8400 0.88 0.1598 0.1698 0.9325

integrates a self-attentionmechanism into each layer, enhanc-
ing the network’s capacity to spotlight pivotal features and
input image regions. In training the model, the BCE +
FOCAL Loss serves as the designated loss function. The
BCE component fosters accurate classification of positive
and negative instances, while the Focal component strate-
gically elevates the importance of challenging examples,
encompassing diminutive or irregularly shaped Ischemia
and Hemorrhage lesions, while de-emphasizing facile cases.
ImprovedUNet segmentation results for IOUmetric to detect
ischemia and hemorrhage was shown in Table 6.

Our proposed CPAM U-Net architecture, coupled with
BCE + FOCAL Loss, exhibits superiority over prevailing
state-of-the-art models in the realm of ischemia and hem-
orrhage detection, as corroborated by empirical data. The
outcomes of our study substantiate the feasibility of apply-
ing our approach to practical medical image processing
scenarios, particularly when confronted with the pervasive
challenge of class imbalance. Improved Unet Segmentation
results compared to the ground truth demonstrated in Fig. 4.

We present a comprehensive demonstration of the efficacy
of employing classification models to detect strokes within
CT images. These models are skillfully trained to recognize

Fig. 4 Improved Unet Segmentation results compared to the ground
truth

distinctive patterns within the images that serve as indica-
tive markers of stroke presence. In contrast to conventional
image analysis methodologies, these classification models
markedly enhance accuracy and efficiency, as graphically
depicted in Fig. 5.

The utilization of classification models for stroke detec-
tion in CT images offers distinct advantages. Notably, these
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Fig. 5 CPAM-Unet Segmentation results compared to the ground truth

models provide a binary output, succinctly indicating the
presence or absence of a stroke within the image [29]. This
pivotal attribute expedites the identification of patients neces-
sitating further assessment or intervention by healthcare
practitioners [30–32]. Another noteworthy benefit lies in the
models’ adaptability to expansiveCT image datasets, thereby
bolstering accuracy and the capacity to generalize.Moreover,
these models can be seamlessly integrated into various archi-
tectures, such as Convolutional Neural Networks (CNNs),
Recurrent Neural Networks (RNNs), among others, thereby
further enhancing performance [33–35].

Furthermore, a comprehensive comparative analysis was
conducted, pitting the CPAM U-Net model against other
contemporary stroke detection models, including U-Net,
Attention U-Net, and classification models. This evalua-
tion, based on the same dataset and metrics, unequivocally
underscores the superiority of the CPAM U-Net model. Our
findingsmanifestly demonstrate that theCPAMU-Netmodel
surpasses its counterparts in accuracy, sensitivity, specificity,
and Dice Similarity Coefficient (DSC), unequivocally attest-
ing to the prowess of our proposed model.

In the context of this study, the innovative Cross Patch
Attention Module (CPAM) U-Net architecture is introduced
as a novel approach for stroke identification within CT scans.
A variant of the U-Net architecture, the CPAM U-Net incor-
porates a self-attention mechanism, enabling the network to
focus acutely on crucial intricacies and regions within the
input image. Moreover, a systematic exploration of diverse
hyperparameter values, denoted as α and γ , was undertaken.
These hyperparameters govern the allocation of emphasis
to intricate examples and strike a balance between positive
and negative samples, further enhancing the model’s perfor-
mance.

The utilization of the CPAM-UNet architecture and its
derivatives has been prevalent across diverse medical image
analysis tasks. These tasks encompass brain tumor segmen-
tation, retinal OCT image segmentation, colorectal cancer
identification, COVID-19 diagnosis, and other applications.
The observed performance metrics and outcomes are subject
to variations dependent on dataset specifics, task intricacies,
and implementation nuances, as illustrated in Table 7. This
table is curated from distinct studies, reflecting the scarcity
of research on Ischemia and Hemorrhage detection using

attention modules. To facilitate meaningful comparisons, we
leveraged the BraTS2018 dataset, optimizing parameters and
employing a classification method, yielding the results fea-
tured in Table 7.

Our assessment of the CPAM UNet model’s performance
in stroke detection relied on our proprietary CT imaging
dataset encompassing stroke lesions and their corresponding
ground truth masks. Utilizing a batch size of 32, a learning
rate of 0.001, and 100 epochs of training, a combination of
Binary Cross-Entropy (BCE) loss and Focal Loss facilitated
model convergence. Our experimental outcomes, encom-
passing key evaluation metrics such as accuracy, sensitivity,
specificity, andDice Similarity Coefficient (DSC), unequivo-
cally endorse the superiority of theCPAMU-Netmodelwhen
α � 0.25 and γ � 2. In a comparable vein, our comparative
analysis involving the CPAM U-Net model and other state-
of-the-art stroke detectionmodels, includingUNet,Attention
U-Net, and DenseNet, reaffirmed the supremacy of our pro-
posed model across metrics such as accuracy, sensitivity,
specificity, and DSC.

Our findings affirm that the suggestedCPAMU-Net archi-
tecture, complemented by BCE + Focal Loss, demonstrates
efficacy in stroke detection within CT images. The model’s
distinctive ability to focus on challenging scenarios, encom-
passingminute or irregularly shaped stroke lesions, emanates
from the fusion of the self-attention mechanism and an opti-
mized loss function. This outcome underscores the practical
potential of our method for diverse medical image analysis
applications.

The urgency of accurate stroke diagnosis, especially
given the potential for long-term impairment or fatal-
ity, is paramount. For optimal treatment decisions, precise
stroke categorization into ischemic and hemorrhagic types
is imperative. Automated segmentation models are emerg-
ing as a viable avenue of research to address this need,
given the limitations of manual segmentation in terms of
time consumption and human error. Recent advancements
encompass deep learning algorithms that excel in pre-
cise ischemia and hemorrhage segmentation in CT scans.
Leveraging diverse base models such as VGG16, VGG19,
Densenet121, InceptionV3, Xception, and Resnet50, a deep
transfer learning-based approach demonstrated competitive
performance, featuring high sensitivity, specificity, and miti-
gated false positives. Furthermore, another study showcased
the proficiency of a deep learning model in segmenting acute
ischemic stroke on NCCT images, attaining par with neuro-
radiologists.

The versatile Cross Patch Attention Module (CPAM)
U-Net architecture has witnessed implementation across
various medical image segmentation tasks, spanning liver
tumors, brain tumors, pancreas segmentation in CT andMRI
scans, among others. TheCPAMblock’s self-attentionmech-
anism augments feature map analysis, enabling the network
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Table 7 Literature comparison with our study and other research

Dataset Modality Performance metric Results Ref

BraTS 2018 MRI (T1, T1-contrast,
T2)

Dice coefficient 80.18 89.80 85.47 [37]

LIDC-IDRI CT Sensitivity 0.92 [38]

Retinal OCT Doheny-UCLA Eye
Centers

Optical coherence
tomography

Accuracy: Mean and
absolute mean border
position differences

%1.5–%10 Class Sensitive [39]

Colorectal cancer CT Dice coefficient DLAD for prediction of
ASPECTS were 65%, 82%,
and 80%

[40]

Liver Tumor MRI (T2) Accuracy 74.60 ± 5.62 [41]

ISLES 2018 raw spatiotemporal CTA Dice coefficient 0.61—0.77 [42]

BraTS 2018 MRI (T1, T1-contrast,
T2)

Dice coefficient 0.872 (whole tumor), 0.83
(tumor core), 0.801 (enhancing
tumor)

Our
Model

Ischemia and hemorrhage CT Dice coefficient 0.9325 and Ischemia and
Hemorrhage class accuracy
0.9789

Our
Model

to concentrate on pivotal features and input image regions.
This architecture’s computational efficiency further aug-
ments its standing compared to other state-of-the-art models
for medical image segmentation, rendering it an apt choice
for real-time medical image analysis applications.

It is imperative to acknowledge that medical images
diverge considerably from natural images, underscoring the
necessity of domain expertise to gage model performance.
Additionally, validation across different datasets and pre-
processing techniques remains a crucial aspect of model
robustness and applicability.

Our study embodies the confluence of pioneering tech-
nology and clinical requisites, addressing the challenge of
accurate stroke type identification while aligning with the
intricacies of medical image analysis. Through heightened
precision in stroke classification, we envision empower-
ing clinicians with enhanced tools, ultimately augmenting
patient care and decision-making. In this endeavor, our
research bridges pioneering methodologies with real-world
clinical demands, emblematic of the evolving domain of
medical artificial intelligence.

The nuanced segmentation of ischemia and hemorrhage
in CT images augments the panorama of research, offering
substantial potential to revolutionize clinical outcomes by
enabling swift and precise treatment decisions. The effec-
tiveness of CPAM U-Net architecture and similar deep
learning segmentation models in enhancing the precision
and effectiveness of stroke segmentation is evident. Further
exploration across diverse datasets and integration into clini-
cal protocols is warranted to unlock the full potential of these
models.

4 Conclusion

The use of deep learning algorithms has the potential
to significantly advance the identification of strokes and
enhance patient outcomes. The Cross Patch Attention Mod-
ule (CPAM) U-Net architecture and the proposed deep
transfer learning-based CNN approaches for detecting the
presence of COVID-19 in chest CT images have shown com-
petitive performance in detecting small pulmonary nodules,
segmenting liver tumors, brain tumors, and pancreas in CT
and MRI scans, and segmenting IVCF and acute ischemic
stroke on NCCT. These deep learning-based methods have
also shown potential in the detection and segmentation
of metastatic prostate cancer (mPCa) lesions in PET/CT
images as well as lesions on whole-body PET/CT scans. The
effectiveness of these models on various datasets and prepro-
cessing techniques must be confirmed, nevertheless.

Ischemia and hemorrhage detection in CT images with
deep learning can be challenging for a few reasons:

• Variability in imaging protocols Different imaging proto-
cols can result in variations in the appearance of ischemia
and hemorrhage in CT images. This can make it difficult
for deep learningmodels to learn to recognize patterns that
are indicative of these conditions.

• Limited annotated data Obtaining a large dataset of anno-
tated CT images that contain ischemia and hemorrhage
can be difficult. This can make it challenging to train deep
learning models that can accurately detect these condi-
tions.
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• High dimensionality CT images are high-dimensional,
which can make it difficult for deep-learning models to
learn to recognize patterns in the images.

• Overlapping features Ischemia and hemorrhage can have
similar features, which canmake it difficult for deep learn-
ing models to differentiate between them.

• Class imbalance Ischemia and hemorrhage may be rare
in some datasets, which can make it difficult for deep-
learning models to learn to detect these conditions.

All these challenges could be addressed by using more
sophisticated models, more data, and more advanced pre-
processing techniques. In our work classification and seg-
mentationmodelswere used to challenge the task of detecting
the stroke type automatically. The IOU metric is a very dif-
ficult metric to improve given the ischemia and hemorrhage
similarities on CT images. Therefore pixel-wise accurate
models need to be evaluated and given to the medical pro-
fessional for usage [34–36].

In conclusion, our findings suggest that CPAMU-Netwith
hyperparameter optimization can be a promising approach
for stroke detection in CT images, and the proposed combi-
nation of BCE and Focal Loss can effectively handle class
imbalance and improve the model’s ability to focus on diffi-
cult examples. Future work may involve applying the CPAM
U-Net model to larger datasets and testing its generalization
ability in real-world clinical settings.
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