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Abstract
This paper presents a novel adaptive structure for audio noise removal, aiming to enhance the performance of noise reduction.
The proposed structure consists of a bank of parallel least-mean-squares, time-domain adaptive filters. Multiple microphones
are employed to capture the noise source signal, while another microphone records the corrupted speech signal. By passing
the recorded noise signals through the parallel adaptive filter bank structure and subtracting the results from the speech signal,
the noise is effectively suppressed. Additionally, the noise removal performance is further improved by linearly combining the
error signals, which include the noise-free speech signal. The effectiveness of the proposed adaptive structure is demonstrated
through theoretical analysis and numerical simulations, highlighting its superior noise removal performance compared to
traditional acoustic noise cancellation approaches.

Keywords Parallel adaptive filters · Least-mean-square · Audio noise removal · Theoretical performance analysis

1 Introduction

Audio noise removal technique is used as an art to eliminate
the acoustic noise from the speech signal and therefore it can
enhance the quality of speech signal. There have been a lot of
research works in the context of acoustic noise cancellation
(ANC) by applying adaptive filters [1–14]. The original idea
of noise cancellation via adaptive algorithm was firstly pro-
posed by Bernard Widrow [1]. Since then, several adaptive
cancellation algorithms have been proposed to address the
stability, misadjustment, and computational complexity.

In [2], the least-mean-squares (LMS) algorithmwith vari-
able step size is proposed in which the adaptive weights are
frozen when the target signal is strong. In [3], a robust vari-
able step-size normalized LMS algorithm is presented. A
constrained optimization problem is derived by minimizing
the l2 norm of the error signal with a constraint on the filter
weights. A novel LMS-based adaptive algorithm for ANC
application is introduced in [4] which applies nonlinearities
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to the input and error signals by using theLagrangemultiplier
method.

In some ANC applications, there is a secondary path
between the output of adaptive filter and the error signal. The
secondary path causes phase shifts or delays in signal trans-
mission. Conventional LMS algorithms cannot compensate
for the effect of the secondary path. For those applications,
the filtered-x LMS (FXLMS) algorithm is proposed [5].
Adaptive volterra filtered-x least-mean-squares (VFXLMS)
algorithm has been derived in [6] for ANC application
with nonlinear effects. Adaptive filtered-s least-mean-square
(FSLMS) algorithm is proposed in [7] which has a bet-
ter noise cancellation performance with less computational
complexity compared to second-order VFXLMS algorithm.
In [8], an adaptive noise cancellation, based on multiple
sub-filters, is studiedwhich improves the convergenceperfor-
mance; however, it deteriorates the steady-state performance
compared to the single-filter approaches. A novel adap-
tive algorithm for cancelling residual echo is proposed in
[9], where the complex-valued residual echo is estimated
and corrected. Unlike the conventional single-channel echo
cancellation algorithms, this approach considers both the
amplitude and the phases of far-end signal. The idea of mul-
tichannel acoustic echo cancellation is addressed in [10] by
using a multiple-input multiple-output (MIMO) adaptive fil-
tering. In [11], amultiple reference adaptivefiltering forANC
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application in propeller aircraft has been studied. A multi-
channel structure for ANC has been proposed in [12] where
a filtered-x affine projection algorithm is derived for noise
cancellation. An adaptive Bayesian algorithm is proposed
in the frequency-domain [13] to address the multichannel
acoustic echo cancellation problem. The echo paths between
the loudspeakers and the near-end microphone are modelled
as a multichannel random variable with a first-order Markov
property. Multi-microphone speech enhancement methods
are applied to remove the background noise and undesired
echos in order to achieve a high-quality speech [14].

In this paper, we propose a novel structure for ANC appli-
cation in which multiple adaptive filters are used to eliminate
the acoustic noise from the speech signal. We measure the
noise source bymultiplemicrophones and use a bank of time-
domain adaptive filters to eliminate them from the speech.
Since the measured noises are uncorrelated with each other,
we can enhance the filtering performance by using a linear
combination of error signals. The steady-state mean-square
deviation (MSD) performance is also analysed. The theoret-
ical findings verify computer simulation results.

The organization of this paper is stated in the following.
In Sect. 2, the problem formulation of ANC is introduced. In
Sect. 3, we introduce our proposed time-domain adaptive fil-
ter bank for cancelling the noise signal. Section 4 discusses
the theoretical performance analysis of the proposed algo-
rithm. Computer simulation results are represented in Sect. 5.
Finally, Sect. 6 concludes the paper.

Notations: In this paper, small letters with subscript, e.g.
xi , display vectors, capital letters, e.g. Ri , display matrices
and small letters with parentheses, e.g. x(i), display scalars.
The superscripts xT represent the transpose of a matrix or
vector. All vectors are column vectors. Random variables
display with boldface letters, e.g. scalars, vectors, and matri-
ces, are denoted by x(i), wi , and Ri , respectively. The Tr

(
.
)

symbol shows the trace operator, andE
(
.
)
symbol denotes the

expectation operator. The vec(.) operator stacks the columns
of a matrix into a vector on top of each other. The λmax(.)

denotes the largest eigenvalue of its matrix argument.

2 Problem formulation

Figure 1 shows the configuration of a noise cancellation sys-
tem. It consists of one adaptive filterwi and twomicrophones
MIC1 and MIC2. MIC1 captures the noise source signal and
MIC2 captures the speech signal. Bothmicrophone’s records
are contaminated by ameasurement noise. Themeasurement
noise of MIC1 is denoted by v(i) and the measurement noise
ofMIC2 is represented by z(i). Assume that the noise source
signal x(i) passes through the acoustic channel wo with the

following impulse response

M−1∑

i=0

wo(i)δ(n − i). (1)

By sorting the channel coefficients wo(i) into the column
vector wo, the acoustic channel impulse response can be
expressed as,

wo = [
wo(0), wo(1), . . . , wo(M − 1)

]T (2)

where (.)T represents the transpose operator. According to
Fig. 1, the second microhpone, MIC2, measures the sum of
the channel output and the speech signal, s(i). Therefore, the
desired signal at the adaptive filter is achieved as

d(i) = xTi wo + s(i) + z(i), (3)

where z(i) is the measurement noise of the second micro-
phone and

xi = [
x(i), x(i − 1), . . . , x(i − M + 1)

]T
, (4)

is the vector form of the input signal x(i) which is measured
by the first microphone MIC1.

The input signal of the adaptive filter is

u(i) = x(i) + v(i), (5)

where v(i) is the measurement noise of the first microphone
MIC1. The output signal of the adaptive filter is denoted by
y(i), that is

y(i) = uTi wi , (6)

where ui is a vector of input signal u(i) as follows:

ui = [
u(i), u(i − 1), . . . , u(i − M + 1)

]T
, (7)

and wi is a vector of filter weights

wi = [
w0(i),w1(i), . . . ,wM−1(i)

]T
. (8)

The error signal e(i) is obtained by subtracting the filter out-
put signal y(i) from the desired signal d(i) as

e(i) = d(i) − y(i). (9)

The LMS algorithm is used to estimate the acoustic channel
impulse responsewo by updating the weight vectorwi of the
adaptive filter [15] as

wi+1 = wi + μe(i)ui , (10)
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Fig. 1 The acoustic noise cancellation (ANC) block diagram

where μ is the step-size parameter. For a sufficiently long
time, the adaptive filter weight vector wi converges to the
optimal vector wo. As a result, the filter’s output signal is

y(i) ≈ uTi wo. (11)

Therefore, according to (3), (5), (9), and (11), the error signal
is

e(i) ≈ s(i) + z(i) − vTi wo. (12)

In the ideal case, where the measurement noises z(i) and
vi are zero, the error signal e(i) is a good estimation of the
noise-free speech signal, such that

e(i) ≈ s(i). (13)

In order to decrease the effect of measurement noise, we can
use multiple microphones with uncorrelated measurement
noises. In this paper, we propose a novel structure for ANC
application in which we alleviate the effect of input measure-
ment noise with using multiple microphones measuring the
noise source.

3 A bank of parallel adaptive filters

In this section, we propose a novel structure for noise can-
cellation in which there are multiple adaptive filters each
of which is connected to a microphone to capture the noise
source signal x(i) as shown in Fig. 2. The LMS adaptation
rule of each adaptive filter is as follows:

wk,i+1 = wk,i + μek(i)uk,i , (14)

where wk,i is the kth adaptive filter weight vector at time
instant i , and uk,i is the input signal of the kth adaptive fil-
ter. Since the measurement noises vk(i) are uncorrelated, we

Fig. 2 Adaptive filter bank for ANC application

can reduce the noise power by linearly combining the error
signals ek(i) as

eA(i) = 1

N

N∑

k=1

ek(i) ≈ ŝ(i), (15)

where eA(i) is the average error signal of adaptive filter bank
which is approximately equal to the noise-free speech signal.
In order to compute the error signal ek(i) at the kth adaptive
filter, we need to define some variables as follows:

ek(i) = d(i) − yk(i), (16)

where d(i) is defined in (3) and yk(i) is the output signal of
kth adaptive filter and given as

yk(i) = uTk,iwk,i , k = 1, . . . , N . (17)

Inserting (3) and (17) in (16), we obtain the kth error signal

ek(i) = s(i) + z(i) + uTk,i w̃k,i − vTk,iw
o, (18)

where we define the error vector w̃k,i as follows:

w̃k,i � wo − wk,i . (19)

By substituting (18) into (15), we have

eA(i) = s(i) + z(i) + 1

N

N∑

k=1

uTk,i w̃k,i − 1

N

N∑

k=1

vTk,iw
o.

(20)

The variance of the average error signal is equal to

E|eA(i)|2 = σ 2
s + σ 2

z + ‖wo‖21
N Rv,k

+ 1

N 2

N∑

k=1

E‖w̃k,i‖2Ru,k
, (21)
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where the input signals uk,i and the noise vectors vk,i are ran-
domvariableswith the followingM×M covariancematrices

Ru,k = E
[
uk,iuTk,i

] = Rx + Rv,k,

Rv,k = E
[
vk,iv

T
k,i

]
, Rx = E

[
xi xTi

]
. (22)

The noise scalar z(i) is zero-mean Gaussian random vari-
ables with variance σ 2

z and the speech signal s(i) has the
following variance σ 2

s

σ 2
z = E|z(i)|2, σ 2

s = E|s(i)|2. (23)

It should be noted that the following parameters are mutu-
ally independent, because the origin of their production is
separate

xi ⊥ vk,i ⊥ z(i) ⊥ s(i) (24)

In order to calculate the signal-to-noise-ratio (SNR) of the
cleared signal, we need to derive the variance of the local
error signal (18) as

E|ek(i)|2 = σ 2
s + σ 2

z + ‖wo‖2Rv,k
+ E‖w̃k,i‖2Ru,k

. (25)

Therefore, we can obtain the SNR of local error signal as

SNRk = σ 2
s

σ 2
z + ‖wo‖2Rv,k

+ E‖w̃k,i‖2Ru,k

. (26)

On the other hand, according to (21), the SNR of the average
error signal (20) is

SNRA = σ 2
s

σ 2
z + ‖wo‖21

N Rv,k
+ 1

N2

∑N
k=1 E‖w̃k,i‖2Ru,k

. (27)

Comparing the SNR of the local error signal (26) and the
SNR of the average error signal (27), we conclude that the
denominator of the SNR fraction has become smaller in our
proposed ANC structure. In other words, linear combination
of local error signals leads to better output SNR.

4 Performance analysis

In this section, the behaviour of the error vector w̃k,i in the
mean sense and in the mean-square sense is analysed. By
substituting Eq. (18) into the adaptation rule (14), we have

wk,i+1 = wk,i + μuk,i
(
s(i) + z(i) + uTk,i w̃k,i − vTk,iw

o).

(28)

By subtracting (28) from wo, the error vector of kth adaptive
filter is obtained as

w̃k,i+1 = Bk,i w̃k,i − μuk,i s(i)

−μuk,i z(i) + μuk,ivTk,iw
o, (29)

where IM is the identity matrix with dimension M × M and

Bk,i = IM − μuk,iuTk,i . (30)

4.1 Themean analysis

By computing the expected value of both sides of (29), we
have

E[w̃k,i+1] = E[Bk,i w̃k,i ] − μE[uk,i s(i)]
−μE[uk,i z(i)] + μE[uk,ivTk,iwo]. (31)

By considering this fact that the measurement noises vk,i ,
z(i), and also the noise source xi are zero-mean andmutually
independent as stated in (24), we can simplify Eq. (31) as

E[w̃k,i+1] = BkE[w̃k,i ] − μE[uk,i ]E[s(i)]
−μE[uk,i ]E[z(i)]
+μE[(xi + vk,i )v

T
k,i ]wo, (32)

where we have defined

Bk � E[Bk,i ] = IM − μRu,k, (33)

uk,i � xi + vk,i . (34)

Since the error vector w̃k,i depends on the data up to time
i − 1, and the matrix Bk,i is a function of the input data at
time i , we consider the independence assumption of Bk,i and
w̃k,i in Eq. (31). The mean equation of the error vector can
be further simplified as

E[w̃k,i+1] = BkE[w̃k,i ] + μRv,kw
o, (35)

where we use the following assumptions

E[uk,i ] = E[xi ] + E[vk,i ] = 0,

E[z(i)] = 0,

E[xivTk,i ] = E[xi ]E[vTk,i ] = 0.

(36)

By taking the limit of the mean relation (35) in steady-state
regime, when i → ∞, and using the following approxima-
tion in steady-state regime

lim
i→∞E[w̃k,i+1] � lim

i→∞E[w̃k,i ], (37)
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we can group the two terms with expectation and thus the
mean relation of the error vector results in

lim
i→∞E[w̃k,i ] = μ

(
IM − Bk

)−1
Rv,kw

o. (38)

This relation shows that when there is a measurement noise
vk,i in the ANC problem, mean of the error vector is nonzero
and therefore the estimation is biased. The bias value is
directly related to the measurement noise power Rv,k . We
can decline the bias value by linearly combining the error
signals of adaptive filters since the noise power decreases
from Rv,k to 1

N Rv,k .

4.2 Themean-square analysis

By inserting (34) into (29), we can rewrite the error vector as

w̃k,i+1 = Bk,i w̃k,i − μuk,i s(i) − μuk,i z(i)

+μxivTk,iw
o + μvk,iv

T
k,iw

o. (39)

In this section, we study the behaviour of the error vector
variance by analysing the mean of weighted squared norm
given as

E‖w̃k,i+1‖2� = E
[
w̃T
k,i+1�w̃k,i+1

]

= E
(
w̃T
k,i B

T
k,i�Bk,i w̃k,i

)

+μ2E
(
s(i)uTk,i�uk,i s(i)

)

+μ2E
(
z(i)uTk,i�uk,i z(i)

)

+μ2E
(
woT vk,i xTi �xivTk,iw

o
)

+μ2E
(
woT vk,iv

T
k,i�vk,iv

T
k,iw

o
)

+μE
(
w̃T
k,i B

T
k,i�vk,iv

T
k,iw

o
)
, (40)

in which other terms are discarded because vk,i , z(i) and xi
are mutually independent and zero-mean samples. Accord-
ing to the LMS adaptation rule, the estimation vector wk,i

depends on the data up to time i − 1, uk,i−1. Thus, we can
assume that the error vector w̃k,i is independent of the input
data uk,i . Therefore, we conclude that the error vector w̃k,i

is independent of matrix Bk,i , where Bk,i is defined in (30).
Thus, the first expectation term in (40) is

E
(
w̃T
k,i B

T
k,i�Bk,i w̃k,i

)

= E
[
E
(
w̃T
k,i B

T
k,i�Bk,i w̃k,i

)
|w̃k,i

]

= E
[
w̃T

k,iE
(
BT
k,i�Bk,i

)
w̃k,i |w̃k,i

]

= E‖w̃k,i‖2�′ , (41)

where the weighting matrix �′ is defined as follows:

�′ = E
(
BT
k,i�Bk,i

)
. (42)

In linear algebra, we have the following property for Kro-
necker product [16]:

vec(A�B) = (BT ⊗ A)σ, (43)

where

σ = vec(�). (44)

Applying the vec(.) operation to both sides of (42), we have

σ ′ = Fσ, (45)

where

F � E
[
BT
k,i ⊗ BT

k,i

]
. (46)

By substituting Bk,i from (30) into (46), we have

F = E
[(

IM − μuk,iuTk,i
)

⊗
(
IM − μuk,iuTk,i

)]
. (47)

One can conclude that the expectation in (47) is time-
invariant and, thus,

F = E
[(

IM − μuk,iuTk,i
)

⊗
(
IM − μuk,iuTk,i

)]

= (IM ⊗ IM ) − (IM ⊗ μRu,k)

−(μRu,k ⊗ IM ) + O(μ2), (48)

where O(μ2) denotes

O(M2) = μ2E
[
uk,iuTk,i ⊗ uk,iuTk,i

]
. (49)

Calculating (49) needs the knowledge of fourth-order statis-
tics which are not available. The effect of this term can be
ignored by assuming a sufficiently small step size as used in
[16]. Therefore, matrix F became time-invariant and can be
approximated as

F ≈ BT
k ⊗ BT

k . (50)

Using this property that Tr[AB] = Tr[BA], we can rewrite
the second expectation of (40) as

μ2E
(
s(i)uTk,i�uk,i s(i)

)
= μ2Tr

[
E
(
s(i)uTk,i�uk,i s(i)

)]

= μ2Tr
[
E
(
uTk,i�uk,i s(i)s(i)

)]

= μ2Tr
[
E
(
uTk,i�uk,i

)
σ 2
s

]
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= μ2Tr
[
E
(
uk,iuTk,i�

)
σ 2
s

]

= μ2σ 2
s Tr

[
Ru,k�

]
, (51)

where Ru,k and σ 2
s are defined in (22) and (23), respectively.

Similar to (51), the third expectation of (40) can be derived
as

μ2E
(
z(i)uTk,i�uk,i z(i)

)
= μ2σ 2

z Tr
[
Ru,k�

]
. (52)

The fourth expectation term of (40) is also calculated as

μ2E
(
woT vk,i xTi �xivTk,iw

o
)

= μ2E
[
E
(
woT vk,i xTi �xivTk,iw

o
)
|vk,i

]

= μ2E
[
woT vk,iE

(
xTi �xi

)
vTk,iw

o|vk,i
]

= μ2Tr
[
Rx�

]
woT Rv,kw

o, (53)

where we used the Rv,k definition in (22) and the following
property of the trace operator

E
(
xTi �xi

)
= Tr

[
E
(
xTi �xi

)] = Tr
[
Rx�

]
. (54)

The fifth expectation term of (40) is approximated as the
following

μ2E
(
woT vk,iv

T
k,i�vk,iv

T
k,iw

o
)

≈ μ2woT Rv,k�Rv,kw
o.

(55)

Since the error vector w̃k,i , the matrix Bk,i , and the noise
vector vk,i are mutually independent, we can separate the
sixth expectation term of (40) as

μE
(
w̃T
k,i B

T
k,i�vk,iv

T
k,iw

o
)

= μE
(
w̃k,i

)T
E
(
Bk,i

)T
�E

(
vk,iv

T
k,i

)
wo

= μE
(
w̃k,i

)T
BT
k �Rv,kw

o. (56)

By considering the steady-statemode of themean of the error
vector (38), the expectation in (56) is obtained in steady-state
mode as

lim
i→∞ μE

(
w̃T
k,i B

T
k,i�vk,iv

T
k,iw

o
)

= μ2woT RT
v,k

(
IM − Bk

)−1T
BT
k �Rv,kw

o. (57)

Finally, replacing the achievements of (41), (51), (52), (53),
(55), and (57) into (40) yields to

E‖w̃k,i+1‖2σ = E‖w̃k,i‖2Fσ + μ2σ 2
s Tr

[
Ru,k�

]

+μ2σ 2
z Tr

[
Ru,k�

]

+μ2Tr
[
Rx�

]
woT Rv,kw

o

+μ2woT Rv,k�Rv,kw
o

+μ2woT RT
v,k

(
IM − Bk

)−1T
BT
k �Rv,kw

o.

(58)

Using the following property of the trace operator

Tr(W�) = [vec(WT )]T σ, (59)

We can write the variance (58) in the vector expression

E‖w̃k,i+1‖2σ = E‖w̃k,i‖2Fσ + μ2σ 2
s vec

(
RT
u,k)

T σ

+ μ2σ 2
z vec

(
RT
u,k)

T σ

+ μ2woT Rv,kw
ovec

(
RT
x

)T
σ

+ μ2vec
(
RT

v,kw
oTwoRv,k

)T
σ

+ μ2vec
(
Bk

(
IM − Bk

)−1
Rv,kw

owoT RT
v,k

)T
σ.

(60)

By taking the limit of the variance (58) in the steady-state
regime, when i → ∞, and using the following approxima-
tion

lim
i→∞E‖w̃k,i+1‖2σ � lim

i→∞E‖w̃k,i‖2Fσ , (61)

We can group the two terms with expectation in (58), and
thus the variance of the error vector turns to

lim
i→∞E‖w̃k,i‖2(IM2−F)σ

= μ2σ 2
s vec

(
RT
u,k)

T σ

+μ2σ 2
z vec

(
RT
u,k)

T σ

+μ2woT Rv,kw
ovec

(
RT
x

)T
σ

+μ2vec
(
RT

v,kw
oTwoRv,k

)T
σ

+μ2vec
(
Bk

(
IM − Bk

)−1
Rv,kw

owoT RT
v,k

)T
σ. (62)

In order to compute the variance of the average error signal
(21), we should choose the vector σ as

(IM2 − F)σ = Ru,k . (63)

By solving (63) for σ , we have

σ = (IM2 − F)−1vec(Ru,k). (64)

Inserting (64) into (62), the steady-state MSD performance
is obtained as

MSDTotal = lim
i→∞E‖w̃k,i‖2Ru,k
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= μ2vec

(
σ 2
s R

T
u,k + σ 2

z R
T
u,k + woT Rv,kw

oRT
x

+woTwoRT
v,k Rv,k

+ Bk
(
IM − Bk

)−1
Rv,kw

owoT RT
v,k

)T

×(IM2 − F)−1vec(Ru,k). (65)

Using the following property of the Kronecker product [17],

λmax(A ⊗ C) = λmax(A)λmax(C), (66)

and considering (50), we can write

λmax(F) = λmax(Bk)λmax(Bk). (67)

Thus, we conclude that matrix F is stable when matrix Bk is
stable, that is

λmax

(
Bk

)
< 1. (68)

In order to guarantee this stability, the following condition
needs to be satisfied for the step size

0 < μ <
2

λmax(Ru,k)
, k = 1, 2, . . . , N . (69)

where Ru,k is defined in (22). Inserting (65) into (21), the
variance of the total error signal in steady-state equals to

lim
i→∞E|eA(i)|2 = σ 2

s + σ 2
z + ‖wo‖21

N Rv,k

+ 1

N 2

N∑

k=1

μ2vec

(
σ 2
s R

T
u,k + σ 2

z R
T
u,k

+woT Rv,kw
oRT

x + woTwoRT
v,k Rv,k

+ Bk
(
IM − Bk

)−1
Rv,kw

owoT RT
v,k

)T

× (IM2 − F)−1vec(Ru,k). (70)

From (70), we conclude that the influencing factors on the
mean-square behaviour of the performance are: (i) the step
size, μ, (ii) the signal power, σ 2

s , (iii) the measurement noise
power, σ 2

z , (iv) the noise covariance matrices Rx and Rv,k ,
(v) the input regressors via matrix Bk , and (vi) the optimal
vector of the acoustic channel wo.

5 Simulation results

In the first part of the simulations, we verify the theoretical
achievement about the MSE of the proposed ANC in (70).

Fig. 3 MSEperformance of the conventional and the proposed adaptive
method with N = 7

To this end, the noise source signal xi , the measurement
noises vk,i and z(i) are generated from zero-mean Gaus-
sian random variables with covariance matrices Rx = IM ,
Rv,k = 0.029IM , and σ 2

z = 0.001, respectively. We assume
the adaptive time-domain filter bank has N = 7 filters. In
order to compare the theoretical findings with computer sim-
ulation results, we assume that the speech signal s(i) is of a
zero-meanGaussian process. The step size is set toμ = 0.01.
Figure 3 compares the numerical learning behaviour of the
proposed filter bank method and that of the single adaptive
filtering [4]. We also include the theoretical MSE of the pro-
posed method derived in (70) and that of single LMS where
N = 1. The numerical results are averaged over 250 experi-
ments. The acoustic channel is modelled as

wo = 1

M
[1, 1, . . . , 1]T ∈ RM×1,

where M = 4.
As seen in Fig. 3, the theoretical finding (70) is well

matched to the numerical results.
We repeat the same experiment when N = 2 is chosen in

the proposedmethod. The results are represented in Fig. 4.By
comparing Figs. 3, 4, one can conclude that, in the proposed
method, the larger N the better noise cancellation is attained.

In the next scenario of simulations, we run the proposed
ANC algorithm for different number of adaptive filters N . As
seen in Fig. 5, the MSE error for this experiment is improved
when the number of adaptive filters N is increased.

In the next part of simulations, we use the proposed ANC
method with N = 10, and compare it to the conventional
ANC in [11], over a real speech signal. The speech and the
noise source signals are shown in Figs. 6a, b, respectively.
The results for the conventional and the proposedANCmeth-
ods are represented in Figs. 6c, d, respectively. As seen, the
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Fig. 4 MSEperformance of the conventional and the proposed adaptive
method with N = 2
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Fig. 5 The MSE performance of the proposed method with different
N

outcome of the conventional ANC with one filter is steel
noisy; however, the result of the proposed method is less
noisy and very similar to the original speech signal in Fig. 6a.

The MSE error for this experiment is also provided in
Fig. 7. The results in Fig. 6 and Fig. 7 indicate that how
the proposed method improves the noise cancellation perfor-
mance with N = 8 filters.

In the next scenario, we have attempted to replicate
real-life conditions as accurately as possible. The captured
audio signal utilized is depicted in Fig. 8. The noise sig-
nal corresponds to the sound of a vacuum cleaner, and its
non-stationary characteristics are evident in Fig. 9. Figure 10
showcases the captured speech signal in the presence of the
vacuum cleaner noise.

The parameters of the weight update equations were care-
fully selected to ensure a rapid convergence rate. Figure 11
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Fig. 6 a The speech signal s(i), b the noisy speech signal d(i), c
the noise-suppressed speech signal by LMS filter ek(i), d the noise-
suppressed speech signal by LMS filter bank eA(i)

0 0.5 1 1.5 2 2.5 3

Iteration 104

-140

-120

-100

-80

-60

-40

-20

0

20

M
S

E
 (

dB
)

Conventional method
Proposed method

Fig. 7 The MSE performance of the conventional method and the pro-
posed method with N = 8 applied on the real speech signal
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Fig. 8 The recorded real speech signal when the vacuum cleaner is
OFF
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Fig. 9 The recorded signal of a vacuum cleaner
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Fig. 10 The recorded signal of a real speech when the vacuum cleaner
is ON
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Fig. 11 Output signals of parallel adaptive filters (top figure) and a
single adaptive filter (bottom figure)

presents the output signals of a single adaptive filter (bot-
tom figure) for noise cancellation, contrasting it with the
scenario where we employ N = 10 parallel adaptive filters
(top figure). It is evident that the top figure exhibits superior
noise cancellation performance, as indicated by the remain-
ing noise level highlighted by a red arrow.

6 Conclusion

This work deals with acoustic noise cancellation problem
where multiple microphones are used to record the noise
source signal. A bank of least-mean-squares (LMS) time-
domain adaptive filters are proposed to enhance the noise
cancellation performance. The recorded noise signals are
filtered by an adaptive filter bank. We show that the noise
cancellation performance is enhanced by linearly combining
the error signals of adaptive filters. We derived an expression
for the noise cancellation behaviour in terms of the steady-
statemean-square error performance. Numerical simulations
verify the theoretical derivations. According to the simula-
tion results, the proposed adaptive structure has a better noise
cancellation performance compared to the traditional ANC
structure.
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