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Abstract
The goal of infrared and visible image fusion is to fuse the dominant regions in the images of the two modalities to generate
high-quality fused image. However, existingmethods still suffer from some shortcomings, such as lack of effective supervision
information, slow computation due to complex fusion rules, and difficult convergence of GAN-basedmodels. In this paper, we
propose an end-to-end fusion method based on semantic region guidance. Our model contains three basic parts: preprocessing
module, image generationmodule, and semantic guided information quantity discriminationmodule (IQDM). Firstly, we input
the infrared and visible images into the preprocessing module to achieve the preliminary fusion of the images. Subsequently,
the features are fed into the image generation module for high-quality fused image generation. Finally, the training of the
model was supervised by the semantic guided IQDM. In particular, we improve the image generation module based on the
diffusion model, which effectively avoids the design of complex fusion rules and makes it more suitable for image fusion
tasks. We conduct objective and subjective experiments on four public datasets. Compared with existing methods, the fusion
results of the proposed method have better objective metrics, contain more detailed information.

Keywords Visible and infrared image · Image fusion · Diffusion models · Semantic guided · Generative network

1 Introduction

The purpose of image fusion is to combine images in differ-
ent modes to generate a fusion image with the advantages of
the input image. The visible image has the advantages of high
resolution, high quality and rich image texture detail infor-
mation. However, the image quality of the visible image is
easily affected by lighting conditions such as no light or low
light, and environmental factors such as object occlusion and
camouflage. Infrared image has better contour information
and global information of the object, which can effectively
make up for the shortage of visible image. However, infrared
images still suffers from low image contrast and quality, inad-
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equate expression of texture and detail information, as well
as susceptibility to noise. Therefore, the fusion of infrared
and visible images can effectively overcome the limitations
of single sensors, compensate for scene information, and pro-
vide richer information and stronger robustness for advanced
vision tasks such as object detection, object tracking, and
semantic segmentation.

In recent years, with the extensive use of residual blocks
[1] and dense connections [2], DenseFuse [3] is the first work
to apply deep learning to image fusion. Subsequently, RFN-
Net [4] proposed a two-stage training method to achieve full
learnability of the model. With the extensive application of
the attentionmechanism in the field of computer vision, PIA-
Fuse [5] combines the cross-modal differential perception
fusion module with the semi-fusion strategy, and designs an
attentionmodule based on information difference. SeaFusion
[6] is thefirstmodel that uses high-level semantic information
to drive image fusion, which concatenates the image segmen-
tation task and the image fusion task, effectively enhances
the fusion network ability to describe spatial details. Subse-
quently, DID-fuse [7] proposed a deep decompositionmodel,
which uses foreground and background information to assist
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the fusion network for the performance of fused image in
subsequent vision tasks improved.

With the in-depth study of GAN [8], the GAN-based
image fusion model has opened up a new method for the
field of image fusion. Fusion-GAN [9] is the first one to
introduceGAN in image fusion. It compensates for problems
such as information loss caused by fusion strategies by gen-
erating and adversarial strategies through which the fused
images are directly generated by the generator. The recent
SDDGAN[10] segments the input image into foreground and
background information, and completes the generation of the
image through semantic information supervision. TarDAL
[11] improved the fusion network of generator and dual dis-
criminator, laying a foundation for subsequent high-level
vision tasks. It is worth noting that in the recent work Diffu-
sion [12], the diffusion model is used to realize image fusion
for the first time, but the fused image still focuses on the
information of the visible image and ignores the information
of the infrared image. We summarize the shortcomings of
current deep learning-based fusion methods as follows:

(1) Auto-encoder (AE)-based methods still suffer from
numerous constraints of traditional methods by manu-
ally selecting fusion strategies.

(2) Fully convolutional neural network-based methods gen-
erally force the fused image to obtain detailed informa-
tion from the visible image,while thermal radiation infor-
mation in the infrared image is obtained only through
content loss. It makes the fused and visible images very
similar and lacks the information from the infrared image.

(3) In generative models, although VAE-based algorithms
can sample quickly, the quality of generated images
is low. GAN-based fusion models suffer from short-
comings, such as easy training collapse and lack of
interpretability.

(4) Fusion models based on attention mechanisms have too
many parameters, are computationally slow, and are dif-
ficult to perform real-time image fusion.

To solve the above problems, we propose an infrared
and visible image fusion algorithm based on the diffusion
model. So that, address the common issue of insufficient
ground truth as supervision information in image fusion, this
study employs an image segmentation model for performing
semantic segmentation on both the input infrared and visible
images; at the same time, an information discriminant mod-
ule is designed to solve the problem of semantic level region
screening, obtain the unique features of infrared image, the
unique features of visible image and the common features,
and realize the comparison of the semantic level informa-
tion of infrared and visible images. To avoid the problems of
high complexity and high computational cost of high-quality

fusion rules, we choose a generative network to directly gen-
erate the fused image.Aiming at the common problems of the
diffusion model and the shortcomings of the current image
fusion work based on the diffusion model, the advantage
of the proposed model is that the structure of the diffusion
model is redesigned, which makes the training simpler and
the performance more competitive.

The main contributions of this paper are as follows:

(1) We propose an image fusion method that combines
semantic information with the diffusion model. The gen-
erative network is guided by the input image to directly
generate the fused image, eliminating the need for com-
plex fusion rules.

(2) To solve the problems of slow image generation and com-
plex structure of the current diffusionmodel, we redesign
the structure of the diffusionmodel. Specifically, we have
designed a preprocessing module and a style attention
module to shorten the training time of the model and
enhance the fine-grained features of the original image.

(3) To break through the difficulty of lacking ground truth
in the image fusion task, we propose an information
quantity discrimination module (IQDM). The two com-
puter vision tasks were combined, and the semantic level
fusion of different modalities of information was used to
constrain the model through the comprehensive consid-
eration of multiple evaluation indicators.

(4) To measure the quantity of information contained in an
image, we introduce a new evaluation index DEB, and
prove that ourmethod is superior to the existing advanced
methods through a large number of experiments.

2 Proposedmethod

In this section, we present the prerequisites for both the par-
tial diffusion model and the SRGFusion model framework.
Firstly, a brief review of diffusion models is provided, which
includes the forward and backward processes as well as a
simple derivation of the loss function. Secondly, we will pro-
vide a detailed description of the proposed semantic guided
information quantity discrimination module. Then, the over-
all model structure and the detailed design of some models
will be described. Finally, we discuss the design of the loss
function.

2.1 Diffusionmodel

The diffusion model was proposed by [13] and has been
widely used for image-to-image and text-to-image genera-
tion in the recent work DDPM [14]. The model is trained by
predicting the distribution of noise, and image generation is
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Fig. 1 Flowchart of semantic guided IQDM module

completed through randomly generated Gaussian noise. An
image of size R

H×W×C represented by a tensor is denoted
as I , and β ∈ (0, 1) is a linear or sinusoidal parameter. In the
forward process, the noisy image xt ∈ R

H×W×3 is obtained
after the diffusion step t ∈ {0, 1, . . . , T − 1, T } the original
image x0 ∈ R

H×W×3 input to the diffusion model. In the
inverse process, the noisy image xt is input to generate the
image x ′

t ∈ R
H×W×3.

Forward process: The noise image xt is generated by
gradually adding noise z to the original image x0 through the
Markov chain of order T , which can be expressed as Eq. (1)
using the re-parameterization technique.

xt = √
αt x0 + √

1 − αt zt (1)

Here, αt = ∏t
i=0 αi is a linear distribution, αt = 1− βt and

Zt represents random noise.
Reverse process: Predicting x0 directly from xT is highly

unlikely, so we use the Bayesian formula to predict xT to
xT−1, which leads to x0. Write xT predicting xT−1 in the
form of Eq. (2):

q(xt−1|xt , x0) = q(xt |xt−1, x0)
q(xt−1|x0)
q(xt |x0) (2)

Using N ∼ (ξ, δ2) ∝ e− (x−ξ)2

2δ2 , the final relation from xt
to xt−1 can be obtained as shown in Eq. (3):

xt−1 = 1√
αt

(
xt − 1 − αt

1 − αt
εθ (xt , t)

)
+ σt z (3)

Here, ε denotes the neural network and θ denotes the model
parameters. In particular, the forward process is a process
that does not require learning, and the corresponding β is
obtained by randomly selecting the forward step size t . The
inverse process generates the image by stepwise derivation.

When training the diffusion model, the model can be con-
strained by minimizing the difference between the predicted
value of the loss function through the neural network and the
true value through the forward process, which is specifically
expressed in the form of Eq. (4):

min
θ

Lsimple =
∥∥∥ztrue − εθ

(
αt x0 + √

1 − αt z, t
)∥∥∥

2
(4)

2.2 Semantic guided IQDMmodule

We denote infrared image as Iir ∈ R
H×W×1 and visible

image as Ivi ∈ R
H×W×3, as shown in Fig. 1.

Iir and Ivi are input into the segmentation network to
obtain the segmentation regions maskir and maskvi at each
semantic level. We finalize binarization process in the two
masks separately to obtain mask′

ir ∈ {0, 1} and mask′
vi ∈

{0, 1}, the infrared image private mask mask′
ir , the visible

image private mask mask′
vi , and the public mask masktrueir

are obtained by element-by-element subtraction of different
regions under the same category in masktruevi and masktruevi , as
shown in Eqs. (5) and (6):

mask′
ir − mask′

vi = mask′ (5)

mask′ = masktrueir ∪ masktruecommen ∪ masktruevi (6)

Here, masktrueir corresponds to the part of mask′ with ele-
ment values of 1, which mainly includes the parts that are
not clearly visible or present in the visible image, such as
occluded or disguised objects or people. The part of mask′
with an element value of −1 corresponds to masktruevi , which
mainly includes information such as textures and details that
only exist in visible light images. Since masktruecommen repre-
sents features present in both infrared and visible images, its
corresponding value in mask′ should be 0. To facilitate sub-
sequent calculations, the three masks are reprocessed so that
their internal element values are all 0 or 1.
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It is worth mentioning that to make the semantic region
guidance approach more general, we have tested it on two
image segmentation networks, BisNet [15] and DeeplabV3
[16]. Among them, BisNet is a lightweight image segmen-
tation network with high computational efficiency and short
computation time, but poor segmentation accuracy can affect
the quality of the final model generated images. DeepLabV3
focuses more on the improvement of segmentation accu-
racy and provides better supervised information needed by
the model, but has a larger computational complexity and a
longer computation time.

To effectively distinguish the image quality of common
region in infrared and visible image and fuse high-quality
features, we proposed an information quantity discrimina-
tion module. The masktruecommen is calculated by Eqs. (7) and
(8) to obtain the public area of Iir and Ivi respectively. The
I common
ir and I common

vi are fed into the information volume
discrimination module and the final common area features
are obtained by comparing the normalized scores.

I common
ir = Iir � masktruecommon (7)

I common
vi = Ivi � masktruecommon (8)

Here, � represents the multiplication of each element.
Specifically,I common

ir and I common
vi are input into IQDM to

calculate the three scores, and the larger values in Iir and
Ivi under the same index are used as the upper bound of
normalization, as shown in Eq. (9). By comparing the sum
of the scores, the optimal common feature region I truecommon is
obtained, which consists of highly informative regions from
different semantic regions I truecommon.

scorea = M(I common
a )

M(Ia)
(9)

Here, a ∈ {ir , vi} and M() represent the scores for calculat-
ing the three indicators.

It is worth noting that in the design of the IQDM, we
introduce three no-reference image quality assessment meth-
ods, namely DB-CNN [17], Entropy, and BRISQUE [18].
The influence of the three methods on the final image qual-
ity and whether they are suitable for the evaluation index
of the fusion image will be discussed with some details in
Sect. 3.3.1

Finally, after the calculation based on the IQDM, we mul-
tiply masktruevi and masktruevi by the corresponding Iir and Ivi ,
respectively, to obtain the corresponding supervised features
I trueir , I truevi , and I truecommon, and the real value Itrue for supervised
learning can be obtained by combining the three supervised
features. For the single channel image region, we replicate
the tensor in the channel dimension to achieve visible image
computation with three channels.

2.3 General framework

In the image fusion task, we put image Iir and Ivi con-
catenated on the channel dimension, and then input the
preprocessingmodule to obtain x0, and then realize the image
fusion through the forward and reverse process.Among them,
Iir and Ivi are preliminarily fused through the preprocess-
ing module, and then the preliminary fusion features are
synchronously input into the style attention module and the
diffusionmodel to generate the fusion image I f ∈ R

H×W×3.
Secondly, semantic region guidance is used to generate Itrue
for supervised training. Finally, the loss function is used to
constrain the training of the network, as shown in Fig. 2.

The preprocessing module and the style attention mod-
ule are both designed to adapt the diffusion model to the
fusion task of infrared and visible images. Among them,
the preprocessing module performs a preliminary fusion of
input images to shorten the training time for the diffusion
model. The style attention module incorporates the features
into each layer of the diffusion model, thereby constrain-
ing the diffusion model to produce high-quality fused image.
In particular, the noise prediction network of the diffusion
model is a network structure similar to the U-Net, and its
encoder and decoder are in the exact corresponding struc-
ture. We input the preprocessed image features into the style
attention module to force the constrained diffusion model to
generate the fused image, which is conducive to the enhance-
ment of the two different types of features.

2.4 Loss function

We design a loss function based on semantic guidance to bet-
ter use the existing knowledge to constrain the fusion image,
and train the network by minimizing the loss between the
input image and the output image, as shown in Eq. (10):

L total = αLmse + βLssim + γ Lcolor (10)

Here α, β, and γ are all hyperparameters used to balance
the three classes of loss functions.For the values of the three
hyperparameters, we used the GridSearch method for the
search. Specifically, the parameters are tuned sequentially
by step size over the specified parameter range. The adjusted
parameters are used to test the network and the parameter
with the highest accuracy on the validation set is found from
all the parameters.

Lmse can guide the network to fit each pixel in the image
to minimize the difference between the generated image and
the true value, which is specifically expressed as Eq. (11):

Lmse =
√

1

HW

H∑

x=1

W∑

y=1

(I f (x, y) − Itrue(x, y)) (11)
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Fig. 2 The framework of the proposed SRGFusion

In order to keep the structure between the supervised
image and the generated image as complete as possible, Lssim

as shown in Eq. (12) is used to constrain.

Lssim = 1 − SSIM(I f , Itrue) (12)

Since the model uses RGB three-channel visible image to
directly generate the fused image, the color similarity loss
Lcolor can enhance the color preservation of the fused image.
The specific form is shown as Eq. (13):

Lcolor = 1

HWC

∑

i∈η

K∑

k=1

	 (I ivi , I
i
f ), η ∈ {R,G, B} (13)

Here, C represents the number of channels and K represents
the number of pixels. 	 (·, ·) illustrates the pixel-wise cal-
culation of the discrete cosine similarity between the fused
image and the original visible image in the RGB channels.
Using Lcolor can better reduce the chroma distortion of the
fused image and also capture more scene information.

3 Experiment

In this section, we first introduce the experimental setup,
which includes the dataset selection and model training

details. Secondly, we present the model’s training method
and experimental results for each stage. Thirdly, we com-
pare test results and visual fusion images of related advanced
algorithms under various evaluation indicators. During the
ablation experimental phase, we reveal the effectiveness of
each module in our proposed model.

3.1 Experiment details

1) Datasets: We evaluate the model using infrared and vis-
ible images contained in the LLVIP [19], M3FD [11], Road
Scene [20], and TNO [21] datasets. The model is trained
on the LLVIP dataset, where the original dataset consists of
12025 sets of infrared and color visible image pairs and the
test dataset consists of 3463 sets of image pairs. It is worth
mentioning that in order to prevent gradient explosion all
images are resized to size and pixel values are normalized to
[0,1] before feeding into the network.

2) Training details: This model is implemented based on
the PyTorch framework, using Intel Xeon(R) CPU E5-2620
v4 @ 2.10GHz 32 processors, running on Ubuntu 20.04.2
LTS 64-bit operating system. We performed model training
in two stages on four NVIDIA Corporation GP102 GeForce
GTX 1080 Ti graphics cards, setting the batch size of a single
card to 12 and training the model for 300 epochs. When
training the network, Set the number of diffusion step to 200,
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(a) Infrared (b) Visible (c) RFN-Net (d) PIAFuse

(e) SeaFusion (f) SDDGAN (g) TarDAL (h) Ours

Fig. 3 Fusion results of #260001 in the LLVIP dataset

we have chosen theDeepLabV3 segmentation network as the
basis for the semantic region guidance. The Adam optimizer
is used to minimize the loss, and the initial learning rate is
set to 0.001. In the GridSearch method, we set the interval
of hyperparameters to [0, 1], with a step size of 0.1. Finally,
the values of α, β, and γ are 0.9, 0.5, and 0.2.

3.2 Performance analysis of fusion

To demonstrate the advantages of our proposed method,
we conducted a comprehensive evaluation of fusion perfor-
mance on four datasets and compared it with the five most
recent state-of-the-art methods.

3.2.1 Qualitative results analysis

The LLVIP and M3DF datasets include two types of image
pairs: daytime and nighttime. Among them, infrared image
highlight extreme heat radiation targets in the scene, while
visible image contain further texture information, detailed
features, and color information. To more intuitively com-
pare the advantages of our method in preserving source
image information, highlighting detail information, and color
fidelity, we selected four sets of infrared and visible image
pairs from the LLVIP and M3FD datasets for day and night
scenes for visual analysis.

Of the five compared methods, RFN-Net is based on
the encoder-decoder structure, PIAFuse applies an atten-
tion mechanism and illumination guidance module to image
fusion, and SeaFusion introduces high-level vision task as
supervision information, SDDGAN and TarDAL based on
generative networks and their variants.

For demonstrate the advantages of our method more intu-
itively, in Fig. 3, we show the fusion result for infrared and
visible images of #260001 in the LLVIP dataset. In the day-
time visible and infrared image fusion, the visible image
contains a large amount of information, how to effectively
preserve the texture features and common features in the vis-
ible image is a research difficulty.

(a) Infrared (b) Visible (c) RFN-Net (d) PIAFuse

(e) SeaFusion (f) SDDGAN (g) TarDAL (h) Ours

Fig. 4 Fusion results of #230070 in the LLVIP dataset

The original texture and color features of human faces
cannot be maintained in RFN-Net and TarDAL. Although
PIAFuse and Seafusion can retain the detailed information
about human faces, they are badly blurred and the fused
images are not clearly sufficient. In contrast, our method
effectively preserves information and color information. In
addition, the prominent feature of the wiper in the green area
in the infrared image is the head of the wiper, and the promi-
nent feature in the visible image is the wiper rod. Only our
method and SDDGANcan effectively retain the details infor-
mation of the wiper and its surroundings, and our method
retains additional color information.

In Fig. 4, #230070 in the LLVIP dataset are selected to
show the fusion results of nighttime images. In Fig. 4, the
door handle in the green area is the private feature of the
infrared image, and the license plate in the red area is the
private feature of the visible image.

In Fig. 4, the door handle in the green area is the private
feature of the infrared image, and the license plate in the
red area is the private feature of the visible image. In the
experimental results, onlyTarDAL is fuzzy for the red region,
while only SDDGAN gives poor results for the green region.

3.2.2 Quantitative results analysis

In order to make a fair comparison with other works, we use
six evaluation metrics in our quantitative evaluation. Mutual
information (MI) is used to evaluate the aggregation qual-
ity of the information of the original image pair in the fused
image, visual information fidelity (VIF) is used to evaluate
the fidelity of the information in the fused image, spatial fre-
quency (SF) is used to evaluate the spatial frequency related
information in the combined data, and Qabf is used to quan-
tify the edge information of the source image. The evaluation
metric standard deviation SD is used to evaluate the contrast
of fused image, and the metric MS-SSIM is used to evaluate
multi-scale structural similarity.

We introduce an evaluation index DEB for quantifying
the overall information content of the fused image, to better
verify the quality of the image and lay the foundation for
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the subsequent advanced vision tasks, which are composed
of DB-CNN, Entropy, and BRISQUE. The higher the DEB
score, the more information is perceived. Since the image
fusion task is a computer vision task lacking effective prior
knowledge, and DEB is the image evaluation index under no
reference, it can be more effective to verify the quality of the
fused image.

We selected 40 sets of infrared and visible image pairs in
each of the four datasets for comparison, and show the test
results in Table 1.

Our method performs prominently on the LLVIP dataset
and achieves the optimum in all indicators. On the remaining
two types of color datasets, our method has a large differ-
ence in the DEB index compared with alternative methods,
which is attributed to the fact that the learning method based
on semantic information guidance better retains the feature
information in the two types of images. In the TNO dataset,
our method performs nicely and has a tiny difference in DEB
values compared with other methods, which is limited by the
fact that the input images are gray images with low resolu-
tion.

3.3 Ablation study

3.3.1 Information quantity discrimination module

We select DB-CNN, Entropy, and BRISQUE to judge the
information quantity of the input image, respectively. Among
them, DB-CNN is primarily used to judge image contrast
stretch, imagequantizationwith color jitters, over- andunder-
exposure issues, and will have higher scores for high-quality

sharp image. Entropy is used to represent the amount of
information about an image. A large amount of information
represents a small range of data dispersion, and more image
details are preserved. BRISQUEextracts themean subtracted
contrast normalized (MSCN) coefficients of natural image to
determine the possible image artifacts and distortions in the
rich texture regions.

We determine the final amount of IQDM used by testing
the effect of different amounts of IQDM on the quality of the
fused image. Specifically, we adopted the strategy of control-
ling variables to conduct experiments in the LLVIP dataset,
and tested the influence of eachmodule on thefinal evaluation
index without changing the network structure. According to
Table 2, compared with the single method, the combination
of the two information content judgment methods improves
the image quality obviously, but the optimal index is still
composed of the combination of the three information con-
tent modules. Therefore, we believe that the three methods
of judging the amount of information are all helpful to the
improvement of the final index, and the combination of mul-
tiple methods is more obvious for the improvement of the
index.

In particular, the above three modules are better suited
to judge the amount of information under this vision task,
and the relevant evaluation metrics can be changed in the
construction of the model to suit different vision tasks.

It is worth mentioning that the main function of IQDM in
the model is to supervise the selection of information. There-
fore, in order to truly compare the effect of each evaluation
index, the values in Table 2 are the final results of retraining
the model to convergence.

Table 1 Performance of SRGFusion and related methods in four datasets

Method LLVIP database M3FD database
MI VIF Qabf SD MS-SSIM DEB MI VIF Qabf SD MS-SSIM DEB

RFN-NET 1.98 0.54 0.15 8.37 0.68 39.57 2.83 0.87 0.48 9.38 0.72 37.16

PIAFuse 3.97 1.86 0.63 8.84 0.89 68.43 4.21 1.16 0.64 8.80 0.93 66.99

SDDGAN 3.16 0.89 0.30 9.01 0.64 45.71 3.07 0.71 0.31 9.52 0.65 46.38

SeaFusion 4.11 1.87 0.64 8.41 0.81 64.59 4.02 1.02 0.66 8.41 0.83 68.87

TarDAL 3.42 0.59 0.40 8.54 0.72 52.77 3.37 0.80 0.43 9.26 0.92 54.39

Ours 4.76 1.92 0.65 9.61 0.96 87.61 4.21 1.10 0.63 9.37 0.93 74.83

Method Road scene database TNO database
MI VIF Qabf SD MS-SSIM DEB MI VIF Qabf SD MS-SSIM DEB

RFN-NET 1.64 0.56 0.36 8.26 0.72 42.29 2.97 0.82 0.65 9.72 0.71 40.74

PIAFuse 4.42 1.14 0.61 8.13 0.84 68.16 4.74 1.14 0.66 8.95 0.92 67.17

SDDGAN 3.94 0.69 0.42 8.57 0.74 51.14 3.26 0.72 0.39 8.86 0.63 52.24

SeaFusion 4.98 1.10 0.64 8.54 0.69 62.74 4.21 1.22 0.71 8.35 0.94 64.98

TarDAL 3.81 0.76 0.42 8.27 0.79 54.15 3.82 0.87 0.49 9.36 0.91 58.84

Ours 4.56 1.15 0.62 8.83 0.91 77.62 4.41 1.41 0.62 9.44 0.94 69.27

Bold values indicate better results than other filtering methods
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Table 2 Impact of different information modules on performance
(DB represents DB-CNN, EN represents Entropy, and BR represents
BRISQUE)

Modules MI VIF Qabf SD MS-SSIM
DB EN BR

� 4.17 0.88 0.46 8.87 0.62

� 4.02 0.62 0.46 8.79 0.64

� 3.98 0.77 0.47 8.81 0.62

� � 4.33 1.09 0.59 9.26 0.79

� � 4.35 1.16 0.51 9.31 0.75

� � 4.26 1.13 0.54 9.28 0.83

� � � 4.76 1.15 0.65 9.61 0.96

Bold values indicate better results than other filtering methods

Table 3 Performance comparison of models with or without diffusion
(N/SRGFusion stands for removing diffusion process)

MI VIF Qabf SD MS DEB

Dataset LLVIP database

N/SRGFusion 4.13 1.57 0.52 9.25 0.87 78.24

SRGFusion 4.76 1.92 0.65 9.61 0.96 87.61

Dataset M3FD database

N/SRGFusion 4.08 0.92 0.58 9.31 0.84 69.34

SRGFusion 4.21 1.10 0.63 9.37 0.93 74.83

Dataset Road Scene database

N/SRGFusion 3.97 0.98 0.58 8.76 0.79 70.88

SRGFusion 4.56 1.15 0.62 8.83 0.91 77.62

Dataset TNO database

N/SRGFusion 3.85 1.27 0.63 9.57 0.86 62.41

SRGFusion 4.41 1.41 0.62 9.44 0.94 69.27

Bold values indicate better results than other filtering methods

3.3.2 Use diffusion process or not

To demonstrate the effectiveness of the diffusion model,
we perform ablation experiments on the diffusion model.
Specifically, we retain the U-Net structure used by the orig-
inal diffusion model as well as our proposed style attention
module, but cancel the diffusion process. We summarize the
experimental results in Table 3.

On the LLVIP, M3FD, and Road Scene datasets, it per-
forms well in six categories of metrics: MI, VIF, Qabf, SD,
MS, and DEB. In the TNO dataset, only the SD index is
slightly lower than the model structure under the removing
diffusion process, which proves that the use of the diffusion
model is extremely beneficial for the generation of high-
quality fused image.

In the diffusion model, the steps of diffusion plays a deci-
sive role in the quality of the final image generated by the
model. In Table 4, we show the comparison of model scores
and parameter numbers for different diffusion step sizes.

Table 4 Diffusion steps and parameters

Diffusion step MI VIF Qabf SD MS Parameters

50 0.35 0.21 0.13 1.62 0.09 33M

100 2.27 1.18 0.48 4.11 0.51 68M

200 4.76 1.92 0.65 9.61 0.96 138M

300 4.78 1.91 0.64 9.82 0.97 206M

Bold values indicate better results than other filtering methods

We selected a total of 40 fused images to compute the
average index. As can be seen fromTable, the smaller the size
of the diffusion step, the worse the quality of the generated
images. Then, in order to balance the quality of the fused
images and the computational efficiency, we choose 200 as
the final diffusion steps.

4 Conclusion

In this paper, we propose a semantic information guided
image fusion network based on diffusion model for infrared
and visible image fusion, called SRGFusion. Firstly, the pre-
processing module is used to pre-fuse the infrared visible
images to shorten the model training time. Then, the style
attention mechanism and diffusion model are used to gen-
erate high-quality fused image. Finally, IQDM is used to
generate supervision information and compute the loss to
ensure model training. In summary, we investigate a diffu-
sion model-based image fusion framework and attempt to
bypass complex fusion rules to directly generate high-quality
fused image for applications to high-level vision tasks. In the
future, wemay explore additional lightweight network struc-
tures to meet the needs of real-time image fusion.
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