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Abstract
Loss of data in video transmission over an error-prone channel is inevitable. Video error concealment is a powerful tool for
resolving the effects of these errors. In this paper, we conducted several experiments with various video sequences to estimate
the distribution of motion vectors (MVs) surrounding the corrupted area. As a result of the experiments, the proposed method
suggests an innovative generative clustering approach using theGaussianmixturemodel (GMM). The proposed algorithmfirst
measures the GMM’s parameters based on the available surrounding MVs. Then each MV is assigned to exactly one cluster.
Next, each cluster’s likelihood is calculated, and the one is chosen based on the maximum likelihood criteria. Finally, new
MVs are generated for the chosen cluster, and the MV that can minimize the boundary distortion is selected for the corrupted
block. Comparison concerning recent state-of-the-art techniques shows progress in PSNR and SSIM for H.265/HEVC. The
proposed method improves the average PSNR by up to 5.67 dB and an average increase of 0.1135 in SSIM. Moreover, the
computational complexity of the proposed algorithm is context-adaptive and shows better performance for the videos with
relatively uniform motions over the missing areas.

Keywords Video error concealment · Gaussian mixture model · Motion vector clustering · H.256/HEVC

1 Introduction

Channel errors are unavoidable in communication networks.
Thus, video transmissions cannot be robust.Moreover, losing
a small fraction of a bitstream could cause severe quality
degradation since the video sequences are highly correlated
[1–3]. In other words, the propagated errors result in low-
quality received video data because of the predictive coding
and motion estimation [4–6].

Various methods are proposed in the literature to address
the effect of channel errors,which can improve the robustness
of video communication. The two main categories of these
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methods are error resilience (ER) and error concealment (EC)
techniques.

Forward error correction (FEC) and automatic repeat
request (ARQ) procedures are among ER methods that
attempt to guarantee a certain level of quality of service (QoS)
in a communication network. However, the former raises the
bandwidth of video data, while the latter cannot deal with
multicasting or broadcasting scenarios. Therefore, the ER
techniques are unsuitable for many video communications
[5, 7–9].

EC technique is a post-processing method trying to
recover the erroneous parts of a video frame using correctly
decoded spatial/temporal information. These methods are
categorized into three classes: spatial, temporal, and hybrid.
This paper proposed a temporal error concealment (TEC)
method to conceal the impaired blocks. TEC algorithms
exploit the correlation among motion vectors (MVs) of adja-
cent blocks located in the current or previous frames [10,
11].

In H.264/AVC standard, EC methods conceal the cor-
rupted macroblocks (MBs) in each erroneous slice. In
H.265/HEVC, the damaged area of a frame is relatively large.
Thus, most of the EC methods are not very effective [12].
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Furthermore, the substantial progress in H.265/HEVC video
coding has further raised several challenging issues that must
be addressed. These issues are listed below.

• Traditional EC techniques only rely on MV’s correlation,
which is not necessarily valid, especially for frames with
non-uniform motions. In H.265/HEVC, the number of
neighboringMVs is not often sufficient to recover the lossy
area,mainlywhen there is no flexiblemacroblock ordering
(FMO) slicing available [12, 13].

• Many EC techniques are suggested for H.264/AVC but
cannot be applied to H.265/HEVC real scenarios. The
errors in H.265/HEVC damage multiple consecutive cod-
ing tree units (CTUs), which are wide regions of a frame
[14].

• The size of a corrupted region is relatively large in
H.265/HEVC. Therefore, using only available neighbor-
ing MVs leads to low-quality concealed video. Fur-
thermore, SEC techniques perform well for an ade-
quately small damaged region which is not the case for
H.265/HEVC.

• There have been several EC algorithms proposed in the
literature that exploit side information. However, they
are inappropriate in many real scenarios since they are
not standard compliant, i.e., the codec requires some
modifications. Therefore, these algorithms have limited
applications.

This paper conducted several statistical experiments to
estimate the probability distribution of the corrupted region’s
neighboring MVs. The experiments show that the mixture of
Gaussians can accurately model the probability distribution
of these MVs. According to these experiments, we propose
a novel GMM clustering approach for H.265/HEVC EC.

First, the proposedmethod extracts the available neighbor-
ingMVs of the damaged block from the current and previous
frames. Second, we develop a novel clustering algorithm for
motion data and assign eachMV to exactly one cluster. Third,
the most probable cluster is selected based on the maximum
likelihood (ML) criteria. Fourth, the newMVs are generated
for the chosen cluster, and the selected MV is the one that
can minimize the boundary-matching distortion between the
replacing and neighboring blocks.

The paper is organized as follows. Section 2 provides an
overview of the state-of-the-art related work EC techniques.
Section 3 is devoted to a concise description of the problem
and motivation for using GMM. Then, the problem formu-
lation and the proposed method are presented in Sect. 4, and
comprehensive experimental comparisons are demonstrated
in Sect. 5. Finally, Sect. 6 concludes this paper with remarks.

2 Related work

2.1 Using neighboring correctly receivedMVs

Many TEC methods are proposed in the literature using spa-
tially or temporally adjacent MVs. For example, Li et al.
modeled neighboring MVs of the lost block using the plane
fitting, which shows the changing tendency in small regions
of the damaged frame [15]. However, fitting a plane to the
MVs for the heavily corrupted video frame is not meaningful
and requires further modifications. Moreover, several TEC
techniques exploit filtering schemes to enhance the efficiency
of the recoveredMVs. [16–18] utilizedKalmanfiltering (KF)
to extract and refine the MV candidates.

Despite improving the accuracy of the MVs, they can-
not correctly track nonlinear and non-Gaussian motions in
a frame. Hence, a novel particle filtering (PF) EC approach
was introduced in [19] to mitigate this problem by denois-
ing the MVs derived from the boundary matching algorithm
(BMA). This method works well for non-stationary MVs.
However, it is rather complex. Also, Lin et al. used the avail-
able nearestMVs to predict themissingMVs. They proposed
a novel TEC method for estimating MVs’ weighting using
disparities amongMVs of available neighboring blocks [20].
This method is inefficient for the large, lossy regions since
neighboring MVs are unavailable for inner blocks.

In [21], the authors introduce a novel EC algorithm
that aims to enhance the performance of a commonly used
MV extrapolation algorithm by considering partition deci-
sion information from the previous frame. By incorporating
this additional information, the proposed method achieves
improved objective and subjective results compared to the
existing approaches. Notably, their algorithm demonstrates
a more substantial improvement in HEVC compared to
H.264/AVCvideos since the larger partition decision space is
existed inHEVC that accommodates awider range ofmoving
object sizes within a frame. Also, the proposed motion-
compensated EC method for HEVC presented in [22] aims
to enhance the visual quality. The method utilizes the clas-
sification map of residual energy associated with each MV
and employs a block-merging algorithm. By analyzing and
classifying the reliability of MVs, the scheme identifies and
merges blocks with unreliable MVs, ensuring the preserva-
tion of the structure of moving objects and edge information.
Notably, this method demonstrates its effectiveness in EC by
employing a novel approach that ensures the preservation of
moving objects and edge information, leading to an overall
improvement in video quality.

In the field of video EC, there have been ongoing efforts
to develop effective approaches for reducing blocky effects
along block boundaries. One recent contribution in this area
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is the work by [23], where they propose a novel MV refine-
ment approach for video EC. Their approach combines a
traditional boundary-matching method with a downhill sim-
plex approach to fine-tune MVs, resulting in reduced blocky
effects along the prediction unit block boundary. Importantly,
their method achieves this improvement while minimiz-
ing computational costs. Through extensive simulations, the
authors demonstrate the robustness and effectiveness of their
proposed approach. Thiswork provides valuable insights into
addressing block artifacts in video EC and contributes to the
growing body of research in this field. In [24] the authors
introduce a novel weighted boundary matching EC scheme
for HEVC. This approach leverages the depth information of
coding units (CUs) and the partitioning decisions of predic-
tion units (PUs) in reference frames to address lost slices. By
utilizing the surrounding largest CUs (LCUs), the summed
CU-depth weight is calculated to determine the conceal-
ment order of each CU. Furthermore, the co-located partition
decision from the reference frame is used to guide the con-
cealment of PUs within each lost CU. The sequence of PUs
to be concealed is sorted based on the texture randomness
index weight, prioritizing the PU with the largest weight.
Ultimately, the best estimated MV is selected for the con-
cealed PU. The results demonstrate that the proposedmethod
exhibits superior visual quality compared to state-of-the-art
techniques.

In [25] the authors proposed a method to reduce the
prediction mismatch at the decoder. This algorithm selects
an optimal subset of the MVs and transmits them as side
information. However, this technique requires increasing the
bitrate and adjusting the standard codec.

2.2 Using available pixel information

These methods estimate the lost pixels using the tempo-
rally or spatially adjacent pixels. For example, in [26], the
authors proposed a sequential recovery SEC algorithm to
reconstruct the missing pixels successively using an adap-
tive linear predictor. The algorithm’s efficiency decreases
for large, corrupted regions. Therefore, it is not suitable for
H.265/HEVC.

In [27], the authors proposed a shape preservation tech-
nique exploiting different EC strategies based on the position
of the corrupted blocks. However, measuring the object’s
boundaries is challenging and limits its application. In [28],
the authors presented a homography-based registration algo-
rithm exploiting available pixels around the corrupted region
and their matched ones in the reference frame. However, this
procedure is not practical when there is a low correlation
between pixels to determine the registrations. Therefore, it
is often impossible for large corrupted areas to find good
matching points.

2.3 Using the generative model approach

Several statistical ECmethods have been recently introduced
in the literature. These techniques employ deep neural net-
works (DNNs) to conceal corrupted blocks. We categorize
them as generative EC algorithms which attempt to produce
convincing data close to transmitted data. In [29], the authors
presented a network with convolutional and Long short-term
memory (LSTM) layers for optical flow prediction. This
method effectively predicts optical flow when adequately
trained, but the results are unsatisfactory if the available
neighboring MVs are non-uniform.

In [30], a generative adversarial network (GAN) is applied
to the corrupted blocks. A couple of neighboring frames and
the proposedmask are fed into the completion network.Then,
the corrupted pixels are recovered based on the current and
previous frames. However, even a small loss requires train-
ing for the lost area before it occurs. Therefore, using GAN
networks for EC is time-consuming since it needs a training
phase for multiple lossy regions in each frame.

3 Problem statement

The main goal of modern video coding standards is to
increase coding efficiency while preserving the quality of
the transmitted videos. However, H.265/HEVCdoes not sup-
port error resiliency options such as FMO. Moreover, the
compression ratio of H.265/HEVC is much higher than the
previous codecs. Therefore, H.265/HEVC is more suscepti-
ble to channel errors and needsmore robust loss concealment
techniques [14].

Furthermore, EC methods attempt to exploit the neigh-
boring information of the corrupted regions. However, for
H.265/HEVC, the correctly received information is far from
the damaged area since the loss area is often relatively large.
Therefore, the traditional SEC algorithms are ineffective for
H.265/HEVC since insufficient adjacent pixels are available.

This paper devised a novel generative approach to address
these challenging issues. Supplementary Fig. 1 illustrates a
simplified diagram of the proposed algorithm. First, a set of
motion data is derived from the available neighboring MVs.
Second, a GMM is trained in the set of MVs which means
estimating the correct set of parameters that characterize the
GMM. Third, the proper data points are generated and the
missing MVs are extracted based on the minimum boundary
distortion criteria.

3.1 Derivation of motion information
for H.265/HEVC EC

H.265/HEVC contains coding tree units (CTUs) or, to be
more precise, CUs, whose sizes vary from LCU to Smallest
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CU (SCU). The LCU and SCU sizes are bounded to 64 × 64
and 8× 8 pixels, respectively. A packet loss in H.265/HEVC
stream affects several consecutive CUs since the packet loss
results in the loss of all the information associated with the
packet.

Furthermore, each CU consists of coding blocks (CBs)
that are further divided into PUs and transform units (TUs).
Moreover, the motion information is located in PUs. As a
result, a lost CU causes the loss of corresponding PUs. To
address this issue, we propose a CU partitioning method that
is demonstrated in Supplementary Fig. 2. The damaged CU
is split into the 8 × 8 sub-blocks. Each sub-block Bij is indi-
cated by a row and a column, i.e., i and j, respectively. The
concealment process starts from the upper left sub-block B11

and finishes at the bottom right sub-block B88, row by row.
Additionally, each sub-block Bij extracts the available infor-
mation from its neighboring 8 × 8 blocks.

In addition, the proposed partitioning algorithm exploits
the available MVs to propagate the nearest motion informa-
tion into the lost subblocks. We also use the co-located MVs
of the previous frame. It allows the algorithm to accurately
track the changes in the MVs.

Furthermore, consider Ft and Ft−1 to denote current and
previous frames, respectively. Also, assume the set Si , j con-
tains the MVs of the neighboring prediction blocks (PBs).
Supplementary Fig. 2 illustrates the location of these blocks,
i.e., AL, A, AR, and L, which are denoted by

−−→
MV i−1, j−1,−−→

MV i−1, j ,
−−→
MV i−1, j+1,

−−→
MV i , j−1, respectively.

Additionally, we add the MV of the previous frame’s co-
located PB and the average of MVs to the set Si , j , which are

denoted by
−−→
MVCO and �0, respectively. Thus, the set Si , j is

represented by (1):

Si , j �
{−−→
MV i−i0, j− j0 |(i0, j0)

∈
{
(−1, −1), (−1, 0), (−1, +1), (0, −1)

}}

∪
{−→
0 ,

−−→
MV AV ,

−−→
MVCO

}
(1)

In summary, three steps are required to create the set Si , j
for each sub-block Bi j This procedure is outlined below:

(1) AddMVs of adjacent PBs, i.e., AL, A, AR, and L, in Ft
to the set Si , j .

(2) Add the average of the values in step 1 to the set Si , j .
(3) Find the co-located block in Ft−1, and add its corre-

sponding MVs to the set Si , j .

The set Si , j contains motion information from the previ-
ous and current frames. This set is used for further analysis
in Sect. 3.2.

3.2 Motivation for using Gaussian-mixture model

EC algorithms for H.265/HEVC suffer from the lack of
neighboring available data around the corrupted regions of
a frame. Therefore, a generative EC method is developed
in this paper to address this issue. Additionally, as stated in
Sect. 2.3, the training complexity of DNN for EC increases
the computational costs dramatically. Also, it is inefficient
for interactive applications since it cannot determine the
lossy region a priori. Therefore, many consecutive frames
are required to resolve this issue, which is not practical in
real-time scenarios.

Consequently, one solution is to use a generative model
that exploits the available neighboring temporal information
of the damaged region. To develop such a generative model,
we conducted several experiments to assess the distribution
of the MVs for the damaged sub-blocks.

In this paper, we conducted several simulations to mea-
sure the probabilities ofMVs, and the results are presented in
Supplementary Tables 1 and 2. These experiments involved
various types of video sequences, and we calculated the Root
Mean Square Error (RMSE) for GMMs with different num-
bers of components, as shown in Supplementary Table 1. The
video sequences are selected from publicly available stan-
dard video dataset from Xiph.org [31]: “Shields” (SH) and
“Park run” (PR) (720p), “Four people” (FP), “Tractor” (TR)
(1080p), “Rush field cuts” (RFC) (1080p) and “Crowd run”
(CR) (1080p). To estimate the Probability Density Function
(PDF) of the MVs, we utilized the set Si , j for the corrupted
subblock Bi j . Additionally, each LCU is denoted by LCU (r ,
c), where r and c represent the row and column, respec-
tively. The corrupted regions considered were LCU (10, 5)
and LCU (15, 8) for the high-definition (HD) and full high-
definition (FHD) video sequences, respectively. HD refers
to a video resolution of 1280 × 720 pixels and FHD specif-
ically refers to a video resolution of 1920 × 1080 pixels.
The number of components in the GMMs is estimated using
the Bayesian information criterion (BIC) approach, and the
results are presented in Supplementary Table 2. Also, the
mixing proportion and center position of each component
are denoted as mp(x0, y0), where mp represents the mixing
proportion and (x0, y0) denotes the center coordinates of the
corresponding component in Supplementary Table 2. These
experiments demonstrate that the probability distribution of
MVs can be effectivelymodeled by aGMM.Given the obser-
vations in the set Si , j and the MVs’ probabilities, the PDF is
formulated by (2).

Pi , j �
K∑

n�1

L(Cn|Si , j )P(Cn) (2)
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where Pi , j is the PDF value for the Si , j and L(Cn|Si , j ) is
the likelihood of the nth MV. Besides, P(Cn) is the proba-
bility of the nth MV. The observed data in this experiment
are assumed to be described by a GMM with K different
normally distributed components. Accordingly, this paper
proposes a GMM model for clustering the available neigh-
boring MVs.

4 Proposed algorithm

In this paper, we propose a novel Gaussian mixture-based
generative (GMG) clustering algorithm for H.265/HEVC
EC. The proposed approach develops a probabilistic model,
which enables the MV estimation for the corrupted blocks.
Moreover, this method increases the number of MV can-
didates. Therefore, the proposed algorithm can accurately
predict the missing MVs and enhance the EC performance
for H.265/HEVC.

4.1 Problem formulation for MV recovery

In the present manuscript, we aim to find the MVs of the cor-
rupted PBs successively. This procedure improves the loss
concealment accuracy because the MV candidates are gen-
erated based on the successfully received PBs. We define the
MV of a corrupted sub-block as a 2D vector

−−→
MV , which is

denoted in (3).

−−→
MV � (

MVx , MVy
)

(3)

where MVx and MVy are x and y components of the cor-

responding MV, respectively. Also, assume that
−−→
MV is a

2D Gaussian random variable. Then, the set Si , j consists of
multivariate Gaussians with probability p(Xn|θ), which is
formulated in (4).

p(Xn|θ) �
K∑

k�1

wk × g(Xn|μk , σk) (4)

where Xn is the nth MV in the set Si , j , i.e., Xn ∈ Si , j . Each
Gaussian distribution is defined in �l space and K is the
number of components in a Gaussian mixture model.

Also, θ � {w1, μ1, σ1, w2, μ2, σ2, w3, μ3, σ3, . . . ,
wK , μK , σK } where μk ∈ Rl and σk ∈ �l are the mean
and covariance of Xn , respectively. It should be noted that
a Gaussian distribution is completely determined by σk and
μk Also, σk specifies the width of each Gaussian compo-
nent. Additionally, wk ∈ [0, 1] is a mixing probability that
describes the effectiveness of each Gaussian function. Also,
the sum of wk must equal one, i.e.,

∑K
k�1 wk � 1.

Therefore, theMVs’ distribution, i.e., (Xn|θ ), is defined as
the Gaussian distribution, i.e., g(Xn|θ ), which is completely
determined by (5).

g(Xn|θ) � 1

(2π)
l
2 (σk)

1
2

× exp

(
−1

2

(
Xn − μk

)T
σ−1
k

(
Xn − μk

))
(5)

The goal of this paper is to find the optimal parameter
θ by maximizing the MVs’ likelihood. In other words, the
challenge is to determinewhich set ofmodel parameters leads
to the missing MVs’ recovery.

Mathematically, it can be formulated as the minimization
of a log-likelihood function, which produces the parameters
θ :

min
μ1, ...,μK , σ 1, ...σ K

−
N∑
j�1

log

(
K∑

k�1

wkg(Xn|μk , σk)

)
(6)

where the mean {μk}Kk�1 and covariance {σk}Kk�1 should be
estimated. Besides, the prior probability can be calculated
based on the allocation of each Gaussian component. More-
over, the number of Gaussian components can be found by
using the BIC procedure.

4.2 Training the GMM
with Expectation–Maximization

Training aGMMmeans determining the correct set of param-
eters θ . There are two iterative techniques to solve the Eq. (6)
the gradient descent (GD) algorithm and the Expectation—
Maximization (EM) method. The former is an optimization
algorithm for finding a local minimum of an equation, while
the latter is a method to find maximum a posteriori (MAP)
estimates of the parameters of the statistical models. EM is
an appropriate algorithm since it is faster and more accu-
rate than GD. Also, EM always converges to a K-component
Gaussian mixture model, but GD often converges to a sub-
set of the model [32]. EM method provides two successive
steps for better estimating the model parameters, which do
the following:

(1) Initialization: choose initial guesses for the locations
and shapes of the Gaussian components.

(2) Iteration: repeat the two following steps until the stop-
ping condition is met.

(a) Expectation step (E-step): the method calculates the
function g(·) using the current guess θ . It evaluates the
expectation value for the latent variables in the posterior
distribution. In other words, this step finds the weights
for the data points belonging to each cluster.
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(b) Maximization step (M-step): given the expectations in
the previous step, the procedure updates the parameters,
locations, and shapes by utilizing the weights of all the
data points.

Furthermore, we identify the GMM parameters that can
generate data points similar to what we observed. Mathemat-
ically, the EM method applies by the following procedure:

(1) Initialization: initialize mean μ0, variance σ0, and mix-
ing probability w0. Then, calculate the log-likelihood
starting value.

(2) E-step: evaluate posterior probability using the Bayes
rule and assess the expectation γn, k :

γn, k � wk × N (Xn|μk , σk)∑K
k�1 wk × N (Xn|μk , σk)

(7)

(3) M-step: re-estimate the parameters applying (7):

μk �
∑N

n�1 γn, kXn∑N
n�1 γn, k

(8)

σ �
∑N

n�1 γn, k
(
Xn − μk

)(
Xn − μk

)T
∑N

n�1 γn, k
(9)

wk � Nk

N
� 1

N

N∑
n�1

γn, k (10)

ln p(X|μ, σ , w) �
N∑

n�1

ln

{
K∑

k�1

wkg(Xn|μk , σk)

}

(11)

(4) Calculate the log-likelihood:

Lastly, if there is no convergence in the fourth step, repeat
the second step’s procedure. Furthermore, the EM procedure
is intrinsically a density estimation algorithm. It describes
the distribution of some data by assuming a generative prob-
abilistic model. In this paper, we exploit the EM technique to
find the distribution of theMV candidates forMV clustering,
which is explained in Sect. 4.3 in detail.

4.3 The Gaussianmixture-basedMV clustering
algorithm for H.265/HEVC EC

The proposed method is a Bayesian unsupervised clustering
technique. In this scenario, each Gaussian component is a
cluster that maximizes the likelihood of the data points. The
proposed method generates new MVs based on the distri-
bution parameters derived using the available neighboring
motion information.

As it is illustrated in Supplementary Tables 1 and 2, MVs
can be assumed to be generated from a mixture of K Gaus-
sians. Moreover, the Bayesian information criterion (BIC)
is used to solve the overfitting issue. It is a method for
model selection and suppresses the possibility of too many
components. Using this technique, GMG can determine the
best-fitting model [33].

Supplementary Fig. 3 demonstrates the GMG method in
summary. In this figure, i and j are the number of erroneous
CUs and their corresponding subblocks, respectively. Xn is
drawn from a GMM with K Gaussian components given in
(5) with density (4). Hence, one can estimate the j th sample
generated by the kth Gaussian component. After parameters
recalculation in (8), (9), and (10), the expected log-likelihood
can be achieved by (11). Furthermore, the initial guess esti-
mates the posterior parameters for the whole distribution.
Therefore, we propose the initial guess from the set Si , j that
is more precise than a random guess. Moreover, the termi-
nation criterion is determined by a predefined cut-off point
based on the mixing coefficients.

First, the erroneous slice is detected in a received frame,
and the corrupted CUs are extracted. Second, the algorithm
splits each erroneous CU into 8× 8 sub-blocks and builds the
set Si , j for each of them. Third, it calculates the expectation
value γn, k , and the parameters are iteratively evaluated until
only a small change occurs in the mixing coefficients:

‖wl − wl+1‖ < ε (12)

wherewl is themixing coefficient for the lth iteration and ε is
the threshold value for terminating the iteration. Fourth, the
algorithm chooses the appropriate cluster Cchosen according
to its Nk value, which determines the sufficient number of
points assigned to the kth cluster. Finally, the latent variables,
i.e., themissing data, are generated by using the selected clus-
ter. Then, the new candidate MVs are generated based on the
Cchosen , and the one which minimizes the boundary distor-
tion is exploited for loss concealment. Algorithm 1 describes
the proposed GMG procedure in detail.

5 Experimental results

This paper conducts a comprehensive assessment of the
performance and complexity of the proposed algorithms
compared with other state-of-the-art EC schemes such as
Lin [21], Kim [23], Xu [24], and Chang [22] algorithms. The
video encoding process uses the main profile with an input
bit depth of 8. The CUs are limited to a maximum width and
height of 64 pixels, and the maximum partition depth is set to
4. We do not use the decoding refresh type, and we choose a
group of pictures (GOP) size of 4. Motion estimation is per-
formed using the test zone (TZ) search method with a search
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range of 64. To explain the relationship between lost pack-
ets, slices, and CUs, we divide the video frames into slices,
and each slice is further divided into CUs. If a packet is lost
during transmission, it can include one or more slices, and
each slice can include one or more CUs. Therefore, the loss
of a packet can result in the loss of one or more CUs, which
affects the video quality in the corresponding region [34].

We utilized slice mode in our experiments to divide the
video frames into smaller slices, each containing an integer
number of CTUs and amaximum size of 1500 bytes per slice.
This was done to align with the MTU constraint, which is
common in video transmission over networks.

The coding structure is “I P PP . . . I” with only one
intra-frame (I) after 50 inter-frames (P). Objective qual-
ity estimation typically uses PSNR as an evaluation metric
adopted for the 200 frames in the experiments. The PSNR is
determined between two video sequences by (13).

PSNR � 10 log
M2

MSE
(13)

where M is the most considerable value of the signal, 255 in
our experiments, and MSE is the mean square error differ-
ence between two video frames.

On the other hand, we exploit the structural similar-
ity index measurement (SSIM) and MS-SSIM (multi-scale
SSIM), which captures essential.

Also, the concealed video sequences were tested using
VMAF (videomulti-method assessment fusion)which incor-
porates spatial and temporal features by extracting them
from the video frames and then aggregating them to pro-
duce a single feature value per frame. These features capture
information related to spatial details and temporal variations
within the video [14]. The simulations were conducted on a
personal computer (PC) equipped with an Intel Core i5-6400
processor. TheCPUoperateswith a frequencyof 2.7GHzand
features four cores. The PC was also equipped with 16 GB
of RAM. These hardware specifications provided the nec-
essary computational resources to perform the simulations
efficiently. The quantization parameter (QP) is set to 22, 27,
32, and 37. Additionally, the number of randomly generated
lost packets to the total number of packets, i.e., packet loss
rate (PLR), is 10 and 20%.

We have utilized H.265/HEVC reference software HM
18.0 for these experiments. We evaluated the proposed
video encoding method on a publicly available video dataset
from Xiph.org [31], which includes a diverse set of video
sequences covering a wide range of content types. The pro-
posed method was tested on five different video sequences:
“Shields” and “Park run” (720p) HD signal format with 50
frames per second, “Four people” (720p) HD signal format
with 60 frames per second, “Tractor” (1080p) FHD signal
format with 25 frames per second, and “Crowd run” (1080p)
FHD signal format with 50 frames per second, respectively.
Also, we used 4:2:0 color subsampling throughout the sim-
ulations.

Supplementary Tables 3, 4, 5, 6, 7, 8, 9 and 10 exhibit
the test results of the PSNR, SSIM, MS-SSIM, VMAF, and
decoding time.With PLRs of 10, and 20%, the average PSNR
of the proposedmethod is 5.67 dBgreater than theChang [22]
algorithm. Furthermore, it achieves an average total gain of
0.1135 in SSIM than the other comparedmethods.According
to these tables, the proposed method is more resilient than
the other methods in reliability against error propagation.
Compared to the other techniques, the better performance of
the proposed approach is consistent with our expectations.

In other words, the clustering hypothesis for MV recov-
ery exceeds the motion-compensated method, which is used
in the Chang design. Due to the high compression ratio
of H.265/HEVC, error propagation is severe in successive
video frames. It causes rapid degradation for most EC tech-
niques in H.265/HEVC since evenminor error results in high
degradation in the following GOP frames. The PSNR gain
is prominently consistent in the proposed scheme, and the
visual quality is better than the compared algorithms.

Supplementary Figs. 4 and 5 depict the visual comparison
demonstrating the 121th frame of the video sequence “Park
run” and the 55th frame of the “Tractor” sequence, respec-
tively. These video sequences were tested at the PLR of 10
and 20%, with a corresponding QP of 27 and 37 for each
experiment. In Supplementary Figs. 4 and 5b-e, the frames
are concealed using the Lin [21], Kim [23], Xu [24], and
Chang [22] algorithms. The comparison clearly shows that
the proposed method significantly enhances the visual qual-
ity and preserves shapes and patterns better than the other
algorithms. Furthermore, the proposed method accurately
predicts themissingmotion information, while the compared
techniques fail to maintain the moving structures. These fail-
ures manifest as blockiness and deformed curves near the
objects’ boundaries.

123



1990 Signal, Image and Video Processing (2024) 18:1983–1991

Algorithm 1 Algorithm of GMG approach

Note that the concealment errors propagate through con-
secutive slices spatially and temporally, which leads to severe
quality degradation. Furthermore, when an erroneous slice is
detected, themoving region of a video frame does not provide
precise PU/TU information at the slice level. Consequently,
applying only the neighboring MVs can lead to consecutive
slice errors and blocking artifacts, especially when MVs’
disparity increases. The proposed clustering model initially
exploits the available neighboring MVs and then generates
new MV candidates for loss concealment.

In conclusion, our proposed technique produces better
quality results than the state-of-the-art generative technique
presented in [30]. The performance of the proposed algo-
rithm in [30] decreases with slice loss rate (SLR) growth due
to the accumulation of errors between P-frames. However, in
our proposed algorithm, the GMM is used to cluster theMVs
of each CU separately, which reduces the error propagation
to adjacent frames.

5.1 Computational complexity analysis

We calculate and compare the required decoding time for
various EC techniques in Supplementary Tables 3, 4, 5, 6, 7,
8, 9 and 10. According to these tables, our proposed method
performswell in various EC experiments. The other EC algo-
rithms often consider a fixed number of MVs adjacent to the
missing blocks, which limits their accuracy. For example,
the EC method in [28] only exploits the available neighbor-
ing MVs. However, the proposed algorithm’s computational
complexity is context-adaptive and depends on the degree
of MVs’ uniformity around the corrupted region. In other
words, the smaller the MVs’ variations, the lower number of
computations required.

6 Conclusion

This paper devised a novel generative EC algorithm for
H.265/HEVC. We have done several experiments to find
the probability distribution of the spatially and temporally
neighboring motion information surrounding the damaged
regions. As a result, it is observed that a GMM describes
the PDF of the MVs correctly, leading to a novel MV clas-
sification approach. Moreover, the parameters of the GMM
are calculated locally for each erroneous CU. Thus, the new
MVs are generated based on the proposed model. Next, the
erroneous blocks are concealed with the MVs, which min-
imizes the boundary distortion. The main attraction of our
proposed algorithm is that it can generate newMVs for deal-
ing with relatively large lossy regions of a video frame which
is the case for the new video codecs. Thus, it is an impor-
tant area for future study. According to the experimental
results, the proposed method preserves the structure of mov-
ing objects in the concealed regions of the recovered frames.
Furthermore, we calculated the decoding time for the pro-
posed method and compared it with other state-of-the-art
techniques. The results confirm that the proposed technique
outperforms other EC schemeswhile balancing video quality
and computational complexity.

Supplementary Information The online version of this article (https://
doi.org/10.1007/s11760-023-02739-0) contains supplementary mate-
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