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Abstract
For a physical sparse system identification issue, this brief proposes a filter proportionate arctangent framework-based least
mean square (FP-ALMS) algorithm. The ALMS algorithm has significant robustness against impulsive noise, whereas the
filter proportionate concept when utilized in combination with the ALMS takes advantage of the sparse feature to accelerate
convergence time. As a result, it turns out that the FP-ALMS algorithm has greater robustness and convergence speed in
an impulsive environment. Finally, simulation outcomes demonstrate that the novel FP-ALMS algorithm outperforms other
existing algorithms in terms of robustness in an impulsive environment, convergence rate, and steady-state error for sparse
system identification.

Keywords Sparse adaptive filter · Proportionate algorithm · Nonlinear system identification · Impulsive noise

1 Introduction

Sparse representations are typical in unknown systems, when
they are being identified, signifying that only a certain portion
of their impulse response’s coefficients are nonzero (dom-
inant), while the bulk of them are 0 or almost 0. Many
real-world applications, including digital TV transmission
channels [1], acoustic echo cancelers [2], and wireless mul-
tipath channels [3], involve such systems.

The conventional algorithms like the least mean square
(LMS) [4], least mean square/fourth (LMS/F) [5], normal-
ized least mean square (NLMS) [6], least mean kurtosis
(LMK) [7] algorithms, etc., based on gradient descent
technique were developed for different applications. Later
Lyapunov adaptive filtering (LA) algorithms [8, 9] were
proposed to overcome drawbacks encountered by gradient
descent-based techniques like local minima problem, slow
rate of convergence, but the aforementioned algorithms failed
to work for sparse systems. Therefore, researchers have
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shown interest in developing adaptive algorithms to iden-
tify sparse systems [10–17]. When there are many more
small-magnitude coefficients than large-magnitude coeffi-
cients, a system is said to be sparse. Sparsity norm-based and
proportionate-type adaptive algorithms are two general cate-
gories of sparsity-aware adaptive algorithms for recognizing
sparse systems [13]. In the sparsity norm-based approach,
an additional regularization term that promotes sparsity
is introduced to push the smaller coefficients approaching
zero. When using a proportionate-based approach, the con-
vergence is quickened by adjusting the gain term, that is
proportional with the filter weights; in otherwords, it is larger
for effective filter coefficients and lower for inert coefficients.
The proportionate type is favored and employed in this study
because of the difficulties in choosing the regularization fac-
tor in sparsity norm employing algorithms and being unable
to operate with systems that may not be exactly sparse but
still feature a reasonably sparse structure.

The majority of proportionate adaptive algorithms rely on
the Gaussian assumption and are established on mean square
error (MSE) criterion. In [11], a filter proportionate normal-
ized least mean square (FPNLMS) method was proposed
for a compressed input signal by the utilization of variable
step size to adapt sparse systems. This resulted in improved
performance compared to the other existing algorithms like
PNLMS [12], improved PNLMS (IPNLMS) [14], andµ-law
PNLMS (MPNLMS) [15] algorithms. But in actual time, the
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noise encountered is frequently impulsive, and the conven-
tional methods struggle with this situation. The maximum
correntropy criterion (MCC), a new robust optimum crite-
rion,was recently utilized effectively in adaptivefiltering [18,
19].MCCcost becomes an effective selection in an impulsive
interference environment because correntropy is resistive to
outliers for suitable kernel width. For effective utilization
in sparse systems some specific proportionate-type adap-
tive filtering approaches relying on maximum correntropy
criteria (MCC) [20] and the proportional minimum error
entropy (MEE) method [21] were created to counter impul-
sive noise. An improved proportionate algorithm utilizing
the maximum correntropy criteria (IP-MCC) was presented
to detect the system with changing sparsity under the impul-
sive noise environment [22], but the inclusion of double-sum
operations and exponential components led these techniques
to have a high computational cost. Adaptive filter estab-
lished on the maximum versoria criteria (MVC) has recently
acquired a lot of interest because, compared to other compet-
ing approaches, it performs better under non-Gaussian noise
and requires fewer computations [23]. Later the proportion-
ate MVC (P-MVC) method combined the MVC features of
resilience to impulsive noise with the proportional notion to
leverage sparsity for identifying sparse systems [24].

It is possible to enhance the robustness of adaptive algo-
rithms by using saturation characteristics of nonlinearities
in errors like arctangents. Hence a novel cost function
framework was introduced and established on this char-
acteristic of an arctangent function where the typical cost
function was featured within the arctangent framework. This
brought about the establishment of arctangent families of
robust algorithms like the arctangent LMS (ALMS), arc-
tangent least mean fourth (ALMF) [25], and arctangent
LMS/F (ALMS/F) for system identification [26]. However,
the above-mentioned algorithms were sparse agnostic.

The filter proportional (FP) adaptation concept is applied
to the ALMS algorithm and is known as a filter proportionate
arctangent LMS (FP-ALMS) method in response to the facts
and drawbacks listed above. The following are the paper’s
key contributions: 1. The ALMS is subjected to FP adap-
tation ideas, resulting in the FP-ALMS algorithm that takes
advantage of the system’s sparseness properties. 2. It is inves-
tigated how the proportionate factor affects the final excess
mean square error (EMSE) and the stability restriction for
the step size. 3. The steady-state EMSE of the FP-ALMS
algorithm is established, and the computational complex-
ity is analyzed. 4. The proposed algorithm’s performance is
tested for several sparse systems under the effect of impulsive
noise. The following is a summary of the paper’s structure. In
Sect. 2, a novel FP-ALMS algorithm is developed. The FP-
ALMS algorithm’s performance is investigated in Sect. 3.
Steady-state performance and computational complexity are
analyzed in Sect. 4. In Sect. 5, the simulated outcomes are

compiled. Lastly Sect. 6 of this brief deals with the conclu-
sion.

2 Proposed FP-ALMS algorithm

Consider an unknown sparse system where x(k) � [x(k), x
(k − 1), ..., x(k − M + 1)]T signifies the input signal with
length M . The unknown physical system vector is denoted
byw0 of size M×1, whereas the desired signal d(k) � wT

0 x
(k)+ η(k) with η(k) being the noise signal. The error e(k) in
the system’s output is stated as

e(k) � d(k) − ŷ(k) (1)

with ŷ(k) � ŵ
T x(k) characterizes the adaptivefilter’s output

having ŵ(k) � [ŵ1, ŵ2, ..., ŵM ]T represents the adaptive
filter’s weight vector. The ALMS algorithm’s cost function
is given as [25]

J (k) � tan−1[γ ζ (k)
]

(2)

where ζ (k) � E
[
e2(k)

]
is the LMS algorithm’s cost function

[4] and γ > 0 suggests the steepness of the arctangent frame-
work. Utilizing the gradient descent technique, the ALMS
algorithm’s weight update representation is written as [25]

ŵ(k + 1) � ŵ(k) − μ′ ∂ J (k)

∂ŵ(k)
(3)

In Eq. (3), µ′ representing step size Eqs. (1) and (3) is
combined to produce the following result:

ŵ(k + 1) � ŵ(k) + μ
e(k)x(k)

(1 + [γ
(
e2(k)

]2)
(4)

with the cumulative step-size factor denoted by μ � μ′γ .
Equation (4) is represented as

ŵ(k + 1) � ŵ(k) + μ f (e(k))x(k) (5)

with the nonlinear function f (e(k)) is indicated as

f (e(k) � e(k)

(1 + [γ
(
e2(k)

]2)
(6)

It is seen that for large values of e(k), the nonlinear func-
tion f (e(k)) becomes 0. This results in an improvement of
the robustness of the ALMS algorithm to impulsive noise.
Meanwhile when γ → 0, the ALMS algorithm is identical to
the LMS algorithm, and when γ → ∞, f (e(k)) approaches
0 thus reducing the convergence rate. Using filter propor-
tionate adaptation concepts, the ALMS algorithm can take
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advantage of the system’s sparsity by multiplication of the
proportionate gain matrix Q(k) with a weight update vector
to benefit from the sparsity and thus increasing the conver-
gence time. The weight vector formula of the novel filter
proportionate ALMS (FP-ALMS) algorithm is stated as

ŵ(k + 1) � ŵ(k) + μ(k) f (e(k))Q(k)x(k) (7)

where Q(k) � diag(q1(k), q2(k) . . . qM (k)). The gain factor
elements are given as [14]

ql(k) � 1 − θ

2M
+ (1 + θ)

∣∣ŵl(k)
∣∣

2‖ŵ(k)1‖ + ε
(8)

where l � 1, 2, . . . M , −1 ≤ θ ≤ 1, and ε is a positive
number that avoids division by 0 in Eq. (8). The step size in
Eq. (7) is revised in accordance with the filter coefficient and
is written as

μ(k + 1) � μ(k) + β(1 − l∞′(k))e(k)e(k − 1) (9)

where

l∞(k) � max
{∣∣ŵ1(k)

∣
∣,

∣
∣ŵ2(k)

∣
∣, . . .

∣
∣ŵM (k)

∣
∣} (10)

When all the filter coefficients are 0 initially, a slight med-
ication is done in l∞(k) to avoid the step size of stalling and
is written as

l∞′(k) � max{δ, l∞(k)} (11)

where δ is a small positive value that becomes ineffective
post-first iteration [11].

3 Performance analysis

This segment presents the performance study of the sug-
gested FP-ALMS algorithm. The step size limits needed to
satisfy the convergence requirement and how proportionate
terms affect steady-state behavior are discussed using the
transformed domain model [24]. The proposed FP-ALMS

algorithm utilizes the transformed matrix Q
1
2 (k) given as

Q
1
2 (k) � diag[q

1
2
1 (k), q

1
2
2 (k) . . . q

1
2
M (k)] (12)

and the transformed input vector xt (k) � Q
1
2 (k)x(k). Sim-

ilarly, the transformed filter coefficients ŵt (k) � Q− 1
2

(k)ŵ(k). From the equations written above we get ŵT
t (k)xt

(k) � ŵ
T
(k)x(k). Let the weight error vector is set as w̃

(k) � wo − ŵ(k), in the transformed domain we get w̃t

(k) � Q− 1
2 (k)

(
wo − ŵ(k)

) � Q− 1
2 (k)wo − ŵt (k). There-

fore e(k) is written as

(13)

e (k) � ea (k) + η (k) � w̃T (k) x (k) + η (k)

� w̃T
t (k) xt (k) + η (k)

where ea(k) � w̃T (k)x(k) � w̃T
t (k)Q

1
2 (k)Q− 1

2 (k)xt (k) �
w̃T
t (k)xt (k) is the apriori error. Expressing Eq. (7) with ref-

erence to the weight error vector w̃t (k) and assuming that Q
(k) varies slowly as used in [22, 24], we get

w̃t (k + 1) � w̃t (k) − μ(k) f (e(k))xt (k) (14)

The mean square performance evaluation for the FP-
ALMS algorithm is obtained using the conservation of
energy equation.

E
[
‖w̃t (k + 1)‖2

]
� E

[
‖w̃t (k)‖2

]

− 2μE
[
w̃T
t (k) xt (k) f (e (k))

]

+ μ2E[xTt (k) f (e (k)) f (e (k))xt (k)]

(15)

Substituting ea(k) in Eq. (15) and assuming E
[‖xt (k)‖2

]

is asymptotically not dependent of f 2(e(k)), the relationship
shown below is attained

E
[
‖w̃t (k + 1)‖2

]
� E

[
‖w̃t (k)‖2

]
− 2μE [ea (k) f (e (k))]

+ μ2 (k) E
[
‖xt (k)‖2

]
E

[
f 2(e (k))

]

(16)

For steady-state conditions as k → ∞,

E
[
‖w̃t (k + 1)‖2

]
≤ E

[
‖w̃t (k)‖2

]
(17)

This, the stability condition concerning µ is provided by

μ(k) ≤ 2E[ea(k) f (e(k)]

E
[‖xt (k)‖2

]
E

[
f 2(e(k))

] (18)

If we utilize the premise that Q(k) is not dependent on xt
(k) then

E
[
‖xt (k)‖2

]
� E

[
xTt (k)xt (k)

]
� E

[
Tr

[
xt (k)xTt (k)

]]

Tr[E
[
xt (k)xTt (k)

]
� Tr

[
E

[
Q

1
2 (k)x(k)xT (k)Q

1
2 (k)

]]

(19)

If S(k) � E
[
Q

1
2 (k)RxQ

1
2 (k)

]
, then

E
[
‖xt (k)‖2

]
� Tr [S(k)]

123



338 Signal, Image and Video Processing (2024) 18:335–342

where Rx is the autocorrelation matrix and Tr is the trace
operator. Using Eq. (19) in Eq. (18) we get

μ(k) ≤ 2E[ea(k) f (e(k)]

Tr
[
S(k)]E[ f 2(e(k))

] (20)

Equation (20) illustrates that the stability bound matches
up to that of theALMS algorithm if Q(k) � I . Equation (20)
can also be written as

μ(k) < μm � 2E[ea(k) f (e(k)]

Tr
[
S(k)]E[ f 2(e(k))

] (21)

where μm represents the step-size upper limit.

4 Steady-state performance

The steady-state EMSE in the context of an impulsive noise
scenario as well as the impact of the proportionate gain fac-
tor over the final EMSE is investigated here. The steady-state
EMSE is determined by calculating Lim

k→∞ E
[‖ea(k)‖2

]
. Sub-

stituting Eq. (17) into Eq. (16) and using Eq. (19), we get

2E[ea(k) f (e(k)] � μmTr[S(k)]E[ f 2(e(k))] (22)

The Taylor series is used to expand the nonlinear compo-
nent of error as seen below.

(23)

f ((e (k)) � f (ea (k) + η (k)) � f (η (k))

+ f ′ (η (k)) ea (k)+
1

2
f ′′ (η (k)) e2a (k)+O

(
e2a (k)

)

where O
(
e2a(k)

)
denotes the third- and higher-order terms of

ea(k), whereas f ′(η(k)) and f ′′(η(k)) represent the 1st- and
2nd-order derivation of f (η(k)) and is written as

f ′(η) � 1 − 3γ 2η4

[
1 + γ 2η4

]2 (24)

and

f ′′(η) � 4γ 2η3
(
3γ 2η4 − 5

)

[
1 + γ 2η4

]3 (25)

The left half of Eq. (22) is obtained as

2 Lim
k→∞ E

[
ea(k) f (e(k)] � 2 Lim

k→∞ E

[
ea(k)( f (η(k)) + f ′(η(k))ea(k)

+
1

2
f ′′(η(k))e2a(k) + O

(
e2a(k)

)]

(26)

Utilizing the premise that the noise η(k) is i.i.d. (indepen-
dent and identically distributed) having mean 0 and uncor-
related to the signal that serves as the input x(k), together
with a priori error ea(k) having 0 mean and uncorrelated to
the noise η(k) and ignoring the high-order components [22,
24], Eq. (26) is

2 Lim
k→∞ E

[
ea(k) f (e(k)] � 2EMSELim E[

k→∞
f ′(η(k))

]
(27)

Similarly, the RHS of (22) is given as

Lim
k→∞ μmTr[S(k)]E[ f 2(e(k)] � μm Lim

k→∞Tr[S(k)]
(
E

[
f 2(η(k))

]

+E
[(

f (η(k)) f ′′(η(k))
)∣∣ f ′(η(k))

∣∣2
]
EMSE

)

(28)

The EMSE expression of the novel FP-ALMS algorithm
is produced by removing EMSE from Eqs. (27) and (28) and
utilizing the derivatives obtained from Eqs. (24) and (25).

EMSE � μmTr [S(k)]E[ f 2(η)]

2E
[
f ′(η)

] − μmTr [S(k)]E
[(

f (η) f ′′(η)
)∣∣ f ′(η)

∣∣2
] (29)

The expectation terms in Eq. (29) can be obtained by inte-
gration [17]. Equation (29) illustrates the steady-state EMSE
for the FP-ALMS algorithm and is analogous to the ALMS
algorithm [27] which indicates the calculation is true.

The PMCC algorithm, IP-MCC algorithm, P-MVC algo-
rithm, and the suggested algorithm’s computational com-
plexity are illustrated inTable. 1. The complexity ismeasured
using the required number of additions, multiplications, divi-
sions, and exponential operations. Table 1 shows that the
proposed FP-ALMS algorithm needs extra 2 additions, 7
multiplications, and 1 division terms in comparison with the
P-MVC criterion-based algorithm.

5 Simulation study

Three distinct experiments were assessed to determine the
impact of the proposed approach. The suggested FP-ALMS
algorithm was compared against the PMCC, IP-MCC, and
P-MVC-based algorithms. The mean square deviation MSD
(dB) � 20 log10 ‖ŵ(k) − w0‖2 is the measurement metric
employed to assess the proposed algorithm’s performance.

5.1 Experiment-I

The unidentified system to be simulated comprising of 120
samples is symbolized by the impulse response h(n) and is
shown in Fig. 1. It is generated as h(n) � exp( − βn)r(n),
where the sequence β is a uniformly distributed group of
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Table 1 Computational
complexity evaluation Algorithms Add Mult Div Exp (.)

PMCC 3M 4M + 5 1 1

IP-MCC 4M 4M + 5 1 1

P-MVC 3M 4M + 5 1 0

FP-ALMS
[Proposed]

4M + 2 4M + 12 2 0

Mult multiplication, Add addition, Div division, Exp exponentiation

Fig. 1 Echo path’s impulse response

data lying from -0.5 to 0.5 and determines the decay rate of
the envelope. The signal that serves as the input for compu-
tation is a random signal with a variance of 1 and a mean
of 0. The system noise consists of a mix of white Gaussian
noise having to mean of 0 and variance of 0.01 with impul-
sive noise vi (n) such that η(n) � vw(n) + vi (n). vi (n) is
generated as vi (n) � B(n)I (n), in which the Bernoulli pro-
cess is denoted by B(n) with occurrence probability Pr(B
(n) � 1) � P where P is the success probability. I (n) is
the Gaussian process featuring 0 mean and variance of 1000.
The parameters for simulation utilized in this experiment for
the various algorithms are as follows: PMCC (μ � 0.001,
p � 0.75, σ � 1.25), IPMCC (μ � 0.001, p � 0.75,
σ � 1.25, ε � 0.01), PMVC (μ � 0.001, p � 1,
τ � 0.1), and proposed (μ � 0.001, p � 0.75, γ � 0.6).
Figure 2 depicts the MSD curve of the suggested approach
with P � 0.05. The suggested FP-ALMS algorithm con-
verges at around 793 iterations, whereas the PMVC, IPMCC,
and PMCC converge at around 1692, 2600, and 648 itera-
tions, respectively. Though the PMCC algorithm converges
fast, it achieves higherMSDvalue. TheMSDvalues obtained
by PMCC, IP-MCC, P-MVC, and the proposed algorithm are
− 12.84, − 20, − 19.99, and − 20 dBs, respectively. This
suggests that the proposed approach can be considered over
the other algorithms.

Fig. 2 MSD curve of the proposed algorithm

Fig. 3 MSE analysis of the suggested algorithm

Figure 3 depicts the simulated and theoretical values of
the proposed FP-ALMS algorithm’s steady-state MSE. The
step sizewas changed from 0.2 to 0.6. Equation (29) provides
the theoretical values.
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Fig. 4 Choice of parameter γ

Fig. 5 Choice of parameter θ

5.1.1 Choice of parameters � and�

To examine the impact of the various parameters γ and θ on
the performance of the proposed algorithm, the MSD curves
of the proposed algorithm are obtained using Experiment-I .
The behavior for different values of γ and θ is compared
and plotted in Fig. 4 and Fig. 5 accordingly. Figure 4 depicts
that for γ � 6, the proposed FP-ALMS algorithm converges
slowly but converges fast for both values of γ � 1 and γ �
0.6. For Experiment-I , γ � 0.6 is considered as it achieved a
lower MSD value of − 20.05 dB compared to − 19.9 dB for
γ � 1. Figure 5 shows that for θ � 0.75, the proposed FP-
ALMS algorithm converges slightly faster compared to θ �
0.9 and θ � −0.75, but the MSD values almost remain the
same for different values of θ . Similarly, the optimized values
of γ and θ are obtained through simulation forExperiment-II .

Fig. 6 Experimental setup block diagram

5.2 Experiment-II

An experiment is put out to determine the room’s acoustic
transfer function to compare the resilience of the FP-ALMS
algorithm to PMCC, IP-MCC, and P-MVC criterion-based
algorithms. The block diagram representation of the differ-
ent components employed in the setup of the experiment
is shown in Fig. 6. The setup comprises a dSPACE Micro-
Lab Box which is a small development system for the
laboratory that brings together great performance and ver-
satility with a small size and affordability. It can be used
in signal processing and other research areas like medical
engineering, vehicle engineering, etc. The dSPACE Micro-
Lab Box has numerous analogs-to-digital converters (ADC)
and digital-to-analog converters (DAC) ports programmed
by the MATLAB-Simulink software. One of the MicroLab
Box’s DAC ports uses an input random noise to stimulate
the speaker and produce acoustic noise. To drive the speaker,
a connection is done from the DAC port to the speaker via
the reconstruction filter and the power amplifier. The speaker
excitation signal acts as the input of the unidentified transfer
function, whereas the received microphone signal acts as the
output. The input signal’s sampling frequency is 10 kHz, and
there is a 65-cmgap between the speaker and themicrophone.
Inside a laboratory roomare kept a speaker and amicrophone.
The room’s impulse response is produced by the LMS algo-
rithm which runs in real time in the identical MicroLab Box
lasting for about 5 min [11]. Figure 7 shows the impulse
response that was so acquired. The input signal needed for
determining the room transfer function is a random signal
with a variance of 4 and a mean of 0. The system noise is
generated as per the first experiment. The parameters for sim-
ulation utilized in this experiment for the various algorithms
are as follows: PMCC (μ � 0.001, p � 0.5, σ � 1.25),
IPMCC (μ � 0.001, p � 0.5, σ � 1.25, ε � 0.01),
PMVC (μ � 0.001, p � 4, τ � 0.1, p � 0.5), and
proposed (μ � 0.001, p � 0.5, γ � 0.9). Figure 8
illustrates the MSD curve of the suggested algorithm. The
PMCC, IP-MCC, P-MVC, and the suggested algorithm are
used to further identify the transfer function as the unknown
system. The MSD value obtained by the PMCC algorithm
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Fig. 7 Experimentally obtained impulse response

Fig. 8 MSD curve of the proposed algorithm

is − 25.8 dB, the IP-MCC algorithm is − 20.95 dB, the P-
MVC algorithm is − 24.45 dB, and the proposed algorithm
is − 26.07dB respectively, which shows that the proposed
algorithm attains the lowest MSD value when compared to
the current algorithms.

6 Conclusion

The paper introduced a novel filter proportionate arctangent
framework based on the least mean square to identify sparse
systems. The FP-ALMS algorithm’s step size is adjusted
proportionally to the filter coefficient. To evaluate the effec-
tiveness of the FP-ALMS algorithm, the steady-state EMSE
is obtained using theTaylor expansion approach. Simulations
demonstrate that the FP-ALMS algorithm outperforms other

modern algorithms in terms of robustness in an impulsive
noise environment.
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