
Signal, Image and Video Processing (2023) 17:4415–4424
https://doi.org/10.1007/s11760-023-02675-z

ORIG INAL PAPER

Multi-frame spatio-temporal super-resolution

Zahra Gharibi1 · Sam Faramarzi2

Received: 25 March 2023 / Revised: 18 May 2023 / Accepted: 15 June 2023 / Published online: 31 July 2023
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023

Abstract
Increasing the resolution of digital images and videos using digital super-resolution (SR) techniques has been of great interest
in industry and academia over the past three decades. Most SR methods target improving only the spatial resolution of images
and videos, whereas improving the temporal resolution could be more critical for some videos. Motion blur is a temporal
artifact by nature, so removing it using spatial SR techniques would be highly challenging and often unsuccessful. This paper
proposes a multi-frame motion-based video super-resolution method to increase both spatial and temporal resolutions of a
single input video. Our optimization problem is based on amaximum a posteriori estimator that estimates each high-resolution
(HR) frame by fusing multiple low-resolution frames. The form of the image prior used in the optimization framework is
based on the assumption that natural HR frames are piecewise smooth. We introduce a new method to enhance the sharpness
of edges in the video frames during the optimization process. We also involve a temporal constraint that improves temporal
consistency in the estimated video. Moreover, we propose a new scheme for motion estimation that better suits video frame
rate upsampling. Our results are compared with state-of-the-art SR methods, including ML-based ones, which confirm the
effectiveness of the proposed method.

Keywords Video restoration · Space–time super-resolution · Global Optimization · Probability modeling · Maximum a
posteriori (MAP) estimator

1 Introduction

Digital super-resolution (DSR or briefly SR) is a set of image
restoration techniques aiming to increase spatial and/or
temporal resolutions in images and videos, mainly using
a controlled optimization procedure. For an imaging sys-
tem, spatial resolution refers to the finest detail visually
distinguishable in captured images. In contrast, temporal
resolution defines the highest frequency of dynamic events
perceivable in a video sequence. SR has been a very active
research area in both academia and industry over the past
three decades. It has found practical applications in many
real-life problems, including the display industry, medical
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imaging, satellite and aerial photography, astronomy, surveil-
lance, and remote sensing.

There are two categories of SR techniques in the litera-
ture: multi-frame SR (MFSR) and single-frame SR (SFSR),
where frame means a still image or a video frame. MFSR
mainly refers to the traditional way of doing SR, which
reconstructs a high-resolution (HR) frame by fusingmultiple
low-resolution (LR) frames [1–3]. Each LR frame must have
information not present in other LR frames. This condition
is fulfilled by the existence of subpixel motion (globally or
locally) between the LR frames, which commonly happens
in most captured frame sequences due to the movement of
objects in the scene or the camera. MostMFSR techniques in
the literature assume that the motion is global, and the blur
function is known a priori. However, a few ones allow for
local motion in their model and estimate both motion and
blur along with the HR frames [4, 5].

Learning-based SR (LBSR) techniques reconstruct an
HR frame from a single LR frame. This SR category of
techniques assumes that the relationship between the LR
and HR frames can be learned from a training set that
contains several LR frames and their corresponding HR
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frames. In a traditional SFSR approach called patch-based
or dictionary-based SR [6–8], an LR input frame is seg-
mented into small patches. Then each patch is compared
against theLRpatches in the training set to find its bestmatch.
Finally, an input LR patch is replaced with the correspond-
ing HR patch of its best match. SFSR is also developed for
videos where an LR video is segmented into spatio-temporal
patches [9]. Machine-learning (ML) and Deep Learning
(DL)-basedSFSRmethods [10–20], includingConvolutional
Neural Networks (CNN) and Generative Adversarial Nets
(GAN)based techniques, have beenofmuch interest in recent
years. Learning-based MFSR methods are also introduced
for videos by leveraging the temporal correlation between
video frames formore accurate reconstruction [9, 10, 21–24].
However, in this work, we refer to the traditional (none-ML)
motion-based MFSR techniques simply as MFSR to differ-
entiate them from the LBSR techniques.

The majority of SR publications aim to improve only the
spatial resolution in images/videos. Nevertheless, space—
time (or spatio-temporal) super-resolution (STSR) for
improving both spatial and temporal resolutions is consid-
ered in very few publications. One approach for STSR is to
use multiple LR video sequences having spatial (sub-pixel)
as well as temporal (sub-frame) misalignments [25–27]. It
means that the corresponding pixels in the input videos’
frames are in different spatial locations due to the scene’s
movements, and the videos are captured in slightly different
timestamps. Here, for simplicity in modeling the motion, the
capturing cameras are kept close to each other compared to
their distances from the scene. This constraint enables the
motion between the videos to be globally modeled as a 2D
homography transformation in space and a 1D affine trans-
formation in time [28].

STSR froma single video is also proposed in severalworks
[9]. proposes a patch-based approach assuming that in a nat-
ural video, space–time patches recur many times inside the
same video at different spatio-temporal scales. This method
is effective on videos having a repeated act like a rotating tur-
bine [29]. proposes a 3D steering kernel regression method
to fuse the frames without an explicit motion estimation.
However, they employ a suboptimal imaging model to first
estimate the upsampled output frames without deburring and
then apply deblurring to each output frame individually. A
fewDL-based STSRmethods are also proposed [10–12], but
they mainly target frame interpolation to increase the video
frame rate. A one-stage space–time video SRmethod is intro-
duced in [11] to increase the spatial resolution and temporal
frame rate using a frame feature temporal interpolation and
a deformable ConvLSTM recurrent model.

We propose in this paper an STSR method from a sin-
gle video using an MFSR approach. It takes an LR video as
input and reconstructs an HR video with a larger frame size
and/or a higher number of frames. The proposed technique

improves an input video’s spatial and temporal resolutions
by combining each video frame with its adjacent frames.
For this purpose, we extend the sequential motion estimation
approach introduced in [5] to support temporal upsam-
pling. The optimization framework is based on a maximum
a posteriori (MAP) statistical framework that applies the
desired level of smoothness while restoring sharp edges in
the estimated HR frames. We introduce a sharpening pro-
cess embedded in the optimization framework to intensify
the recovered edges. Furthermore, we improve the tempo-
ral consistency by adding a temporal constraint between the
current and previous reconstructed frames. We compare our
proposed STSR method’s performance with a few SR meth-
ods, including deep learning-based ones.

It should be noted that the proposed method can
remove/reduce spatial blur, temporal blur, spatial aliasing,
and noise in video sequences. It can also increase the video
frame rate and perform view interpolation. However, it does
not address the removal of temporal aliasing resulting from
very fast dynamic events. Removing the temporal aliasing
is mainly done by capturing multiple videos with temporal
misalignments [25, 30].

The rest of this paper is organized as follows: Sect. 2
demonstrates our problem formulation, with subsections that
discuss our assumed STSR imaging model, the proposed
optimization framework, the extended motion estimation
method, the initial estimate of the HR frame, and our strategy
of color processing. The experimental results are presented in
Sect. 3, and finally, Sect. 4 concludes the work of this paper.

2 Problem formulation

2.1 Imagingmodel

Although the forward imaging model represented in this
section is similar to those used in other MFSR methods,
it is extended to include both spatial and temporal resolu-
tion improvements. Here, the input in the image domain is
a four-dimensional (4D) LR video g(xl , yl , c, tl ) of size
W ×H×C×T , where xl ∈ [0, W − 1] and yl ∈ [0, H − 1]
are spatial pixel coordinates, c ∈ [0, C − 1] is the color chan-
nel, and tl ∈ [0, T − 1] is the frame number. Here, W is the
frame width, H is the frame height, C is the number of color
channels (1 for gray-scale and 3 for color videos), and T is
the number of frames. The output would be a 4D HR video
f (xh , yh , c, th) of size rW×r H×C×sT , where r and s are
the scaling (upsampling) factors for space and time domains.
So the frame dimensions and the frame rate of the input video
would increase by factors of r and s, respectively.

For simplicity, we represent our formulation in the vec-
tor–matrix notation where the input and output videos are
vectors in lexicographical order, of sizes WHCT × 1
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andr2sW HCT × 1, and shown in bold lower-case let-
ters as g and f , respectively. The i th frame of the output
video f i (of sizer

2WHC × 1) is estimated from the input
frames

{
g j−a , . . . , g j , . . . , g j+b

}
, where j � �i/s�.1 In

otherwords, our proposed framework combines a+b+1 adja-
cent frames of the input LR video around the center frame
g j (of sizeWHC × 1) to reconstruct the output frame f i ,
where a and b are the number of adjacent LR frames in the
backward and forward directions, respectively.2 We use the
following linear imaging model to relate the i th HR frame to
the k th LR frame:

gk � DBkM j , k f i + nk , j � i/s, k ∈ [ j − a, j + b]
(1)

where M j , k is the motion matrix that models warping (regis-
tration) from f i to gk , Bk is the spatio-temporal blur matrix,
D is the spatio-temporal downsampling matrix, and nk is the
noise vector. According to this model, an HR frame f i is
warped, blurred, and downsampled in both space and time,
then addedupwith noise to formanLR frameGk . Themotion
matrix represents the movement of the scene’s objects and
the camera between two frames. The 3D blur kernel is the
overall effect of the camera’s and objects’ movements, defo-
cus, depth of field, optical and sensor blurs, and exposure
time. Downsampling is the outcome of capturing the scene in
discrete spatial positions (pixels) and temporal timestamps,
dictating the camera’s frame resolution and framerate.

2.2 Proposed STSR framework

We use a maximum a posteriori (MAP) framework to esti-
mate an HR frame given a few neighboring LR frames:

f i � argmax
Xi

∏

k

Pr
(
f i |gk

)
, j � i/s, k ∈ [ j − a, j + b]

(2)

Using the Bayes rule, this can be alternatively written as:

f i � argmax
X i

∏

k

Pr
(
gk | f i

)
Pr

(
f i

)

Pr
(
gk

) (3)

where Pr
(
gk | f i

)
is the likelihood (a.k.a. data fidelity or data

fusion term), Pr
(
f i

)
is the prior on the HR frame (a.k.a.

regularization term), and Pr
(
gk

)
is the evidence of the LR

frame. The denominator in (3) can be ignored because it is not
a function of f i . Moreover, since the nominator’s densities

1 �·� is the floor operator.
2 A few first and last frames of the video may have less number of
adjacent frames. Also, for real-time applications, b should be set to
zero.

have exponential forms, it would be simpler to minimize the
minus log of the functional in (3) equivalently. This yields:

f i � argmi
X i

n

{
∑

k

−log
[
Pr

(
gk | f i

)] − log
[
Pr

(
f i

)]
}

(4)

Assuming the noise to be white Gaussian,
−log

[
Pr

(
gk | f i

)]
in (4) would be proportional to the

energy of noise, i.e. ‖DBkM jk f i − gk‖22 which is the sum
of squared differences (SSD) between the simulated and
observed LR frames. The operator ‖·‖22 denotes the square
of norm-2, which is defined for a vector A with elements ai
as ‖A‖22 � AT A � ∑

a2i where AT is the transpose of A.
Natural HR images are not globally smooth but mostly

piecewise-smooth, as they consist of smooth regions sur-
rounded by sharp edges. An appropriate form for the
regularization term based on such observation would penal-
ize high-energy variations much less than norm-2 in the
reconstructed frame while still suppresses smaller variations
(noise) effectively, so it allows for sharp edges to appear in
the estimated frame. One example is ‖H f i‖1 where ‖·‖1
denotes norm-1 (defined as ‖A‖1 � ∑|ai |). In our frame-
work, we chose the following form for the regularization
term: ‖∇ f i‖1 � ‖Hh f i‖1 + ‖Hv f i‖1 where ∇ is the gra-
dient operator, and Hh and Hv are first-order derivatives
(FODs) in the horizontal and vertical directions, respectively.
Therefore, the following optimization framework is stemmed
from (4):

f i � argmin
f i

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

j+b∑

k � j − a

j � i/s

∥∥DBkM j , k f i − gk
∥∥2
2 + λ

∥∥ Hh f i
∥∥
1 + λ

∥∥Hv f i
∥∥
1

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(5)

To improve the optimization framework, we apply a few
modifications to the functional in (5).

Remark 1 The vulnerability of the functional in (5) to the
motion estimation error can be reduced by applying the adap-
tive weighting operator Ok defined in (6) to the norm-2
function in the fidelity term, i.e. ‖Ok

(
DBkM j , k f i − gk

)‖22.
The operator Ok is a diagonal matrix that assigns smaller
weights to the outlier pixels.

Ok � diag

(
exp

{
−‖DBkM j , k f i − Y k‖1

σ

})
(6)

What matrix Ok does is assigning a lower weight to the
pixels in the kth LR frame that have a higher deviation from
the central LR frame to lessen the contribution of those pixels
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in estimating f i . The scalar parameter σ in (6) determines
the decay speed of the exponential function.

Remark 2 Modifying the norm-2 function of the fidelity
term in (5) with ‖DBkM j , k(I − βS) f i − gk‖22 will boost
the sharpness of the estimated frame f i , where I is the iden-
tity matrix, S is a high-pass filter operator, and β is a scalar
that controls the sharpness amount.

According to the unsharp masking technique [31], an
edge-sharpened frame f̂ i can be obtained from a frame f i
by summing up f i with its high-passed filtered form, i.e.
f̂ i � f i + βS f i . Consequently, by replacing f i in the like-
lihood term with f i −βS f i � (I − βS) f i a sharper image
is obtained. We do not need to apply the above modification
to f i in the regularization term since a high-pass filtering
operation already exists in this term. Our experiments show
that the optimization problem modified using this technique
converges as fast as the original one.

Remark 3 The temporal consistency of the estimated video
is improved by adding the term ‖ f i − M i−1, i f i−1‖22 to the
functional in (5), which minimizes the error between each
estimated frame f i and its motion-compensated previous
estimated frame f i−1.

The modified optimization framework using the above
propositions is obtained as:

f i � argmin
Xi

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

j+b∑

k � j − a
j � i/s

∥∥Ok
(
DBkM j , k (I − βS) f i − gk

)∥∥2
2

+λ
∥∥Hh f i

∥∥
1λ

∥∥Hv f i
∥∥
1 + γ

∥∥ f i − Mi−1, i f i−1
∥∥2
2

}

(7)

The optimization problem in (11) is convex but non-
quadratic and can be solved using the iteratively reweighted
least-squares (IRLS) method [32]. IRLS can solve (11) in
an iterative manner in which each step comprises solv-
ing a weighted least-square problem. If f (n)

i is the k th
HR frame to be estimated at the n th iteration of IRLS,
then ‖H f (n)

i ‖1[H stands for Hh or Hv in (7)] can be

replaced by
(
H f (n)

i

)T
W (n−1)

i

(
H f (n)

i

)
where W (n−1)

i �
diag

(∣∣∣H f (n−1)
i

∣∣∣
)−1

. To prevent division by zero, zero ele-

ments of H f (n−1)
i are replaced with a small number ε (e.g.

0.01).

Remark 4 Using IRLS, the functional in (7) results
in the following linear equation where A(n−1)

i , k �
O(n−1)

k DBkM jk(I − βS).

(
∑

k

A(n−1)T
i , k A(n−1)

i , k + λHT
h W

(n−1)
h i Hh + λHT

v W
(n−1)
v i Hv + γ I

)

f (n)
i �

∑

k

A(n−1)T
i , k gk + γ M i−1, i f i−1 (8)

The equation in (8) can be easily proved by replacing the
norm-1 terms in (7) with their equivalent IRLS forms for
the nth iteration, taking the derivative of (7) with respect to
f (n)
i , and setting the derivative to zero. IRLS iterates between

solving the least square problem in (8) using an iterative
method such as Conjugate Gradient [33] and estimating Ai , k

andW i matrices based on the value of f (n−1)
i . The advantage

of using Conjugate Gradient to solve (8) at the nth iteration
of IRLS is that the matrix in the left-hand side of (8) does not
require explicit calculation since it can be decomposed into
a set of filtering and weighting operations.

2.3 Motion estimation

For spatial-only SR (no temporal upsampling), motion esti-
mation can be performed using either a central or a sequential
scheme [5]. In the central scheme, motion is directly esti-
mated between the current frame and its adjacent frames
(Fig. 1a). However, in the sequential scheme, the motion is
first estimated between each adjacent frame and its previous
frame (Fig. 1b); then, the central motion is obtained from the
sequentially estimated motion. While the former approach
provides better accuracy, the latter has significantly less com-
putational complexity since only one motion is estimated
from/to each frame when estimating multiple HR frames
using SR. However, for spatio-temporal SR (STSR), the cen-
tral scheme cannot be used sincewe do not have proper initial
estimates for the frames missing in the input LR video (due
to different temporal resolutions) before motion is estimated.

We expand the model employed in [5] to estimate motion
for our proposed STSR method using a sequential scheme.
In Fig. 2a, the solid circles are related to the frame positions
available in the input LR video, and the empty circles corre-
spond to the frame positions missing in the input LR video
due to a lower temporal resolution. For every frame posi-
tion (solid or empty), we aim to estimate motion from that
position to all its neighboring positions using the following
procedure:

1. Upsample each LR frame g j individually via interpola-
tion (e.g. using Bilinear or Bicubic methods) to obtain
upsampled frame g j .

2. Estimate motion sequentially from each upsampled LR
frame to its previous upsampled LR frame, i.e. M j , j−1

(Fig. 2b). Hence z j−1 � M j , j−1z j .
3. Obtain motion between adjacent HR frame positions

(Fig. 2c) using motion between adjacent LR frame posi-
tions asM i , i−1 � M i , i−s/s. This conversion is obtained
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Fig. 1 Two schemes for
estimating motion between the
frames in SR. a Central scheme.
b Sequential scheme

Fig. 2 Steps to estimate motion
for the current frame (i � 7)

by assuming that the motion between two consecutive
solid circles is distributed linearly at the intermediate
empty circles.

4. Obtain motion from the current frame position to all its
adjacent frame positions using (9) (sequential to central
motion conversion). For instance, in Fig. 2d, the current
HR frame position is i � 7, and the number of forward
and backward adjacent frames are chosen such that we
get two neighboring LR frame positions (black dots) in
each direction, which yields a � 4 and b � 5.

M i , k �

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

i∑

j�k+1
M j , j−1 a ≤ k < i

0 k � i

−
k∑

j�i+1
M j , j−1 i < k ≤ b

(9)

2.4 Initial estimate and color handling

A reasonable initial estimate for the HR frames, i.e. f (0)
i , is

essential because it helps the SR algorithm reach the final
solution in fewer iterations. Also, due to the SR problem’s
ill-posedness, multiple solutions may exist that minimize the
optimization functional, so different initial estimates may
result in different solutions due to the framework’s local min-
ima.We use amulti-frame non-uniform interpolationmethod
followed by a single-frame deburring step to obtain an initial
estimate for ourMFSR problem. Rather than using the imag-
ingmodel in (1), we use a suboptimal model by swapping the
motion and blur operators and assuming similar blur kernel
and noise characteristics for all frames, which yields:

(10)

gk � DM j , kB f (0)i + nk � DM j , k zi + nk, j

� �i/s� , k ∈ [ j − a, j + b]

where zi � B f (0)
i . An intuitive way to estimate zi would

be:
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zi �
∑

k

M i , k
−1D−1gk �

∑

k

Mk, i DT gk (11)

According to (11) the LR frames are projected onto the
HR grid through upsampling andwarping. Sincemotion vec-
tors have arbitrary values, the projected points may not be
uniformly distributed over the HR grid. Therefore, a non-
uniform interpolation process is required to estimate the HR
grid’s pixel values from the projected points. Once zi is
obtained, f (0)

i can be estimated by removing blurring and
noise. We use a few iterations of the proposed STSR frame-
work in Sect. (2.2) with D set to the identity matrix I (i.e.
no upsampling).

If the input video is in the RGB color space, SR must
be applied to all three red, green, and blue color channels
since they need to have the same resolution. However, since
the human visual system (HVS) is less sensitive to color
than luminance (gray level), a more efficient way would be
to decorrelate luminance from color and apply SR only to
the luminance channel. This process is done in video coding
using the YCbCr color space where Y expresses luminance
and Cb and Cr convey color information [5]. Using this
approach, we apply SR only to the Y channel and upsam-
ple Cb and Cr channels via Bicubic interpolation.

3 Experimental results

Unlike most state-of-the-art (SOTA) SR methods, our pro-
posed method does not include a training step. As the first set
of experiments to test our method, we use the Vid4 [4] and
SPMCs-30 [34] benchmark datasets. Vid4 which is used by
most publications contains four video sequences (City, Cal-
endar, Foliage, and Walk) of slightly different sizes close to
720× 576, each of which has at least 34 frames. SPMCs-30
contains 30 video sequences of dynamic scenes, each has 31
frames of size 960×540. Our proposed method is compared
with SOTA SFSR and MFSR methods, including VSRnet
[13], VESCPN [14], DBPN [15], RDN [16], RCAN [17],
TOFlow [12], and TDAN [18] for 4X spatial upsampling,
similar to [18]. Table 1 shows the quantitative compari-
son using PSNR (in dB) and SSIM [35] quality metrics.
The results on SPMCs-30 are not reported for VSRnet [13]
and VESCPN [14] since their source codes or reconstructed
frames are not publicly available. The visual comparisons of
differentmethods onVid4 and SPMCs-30 datasets are shown
in Figs. 3 and 4, respectively. Our proposed method demon-
strates similar or better results than those SOTA methods.

Figure 5 provides quantitative comparisons between our
proposed method and Bicubic. Figure 5a shows the PSNR
variations of our proposed SR method versus Bicubic con-
cerning variation in the standard deviation (σ ) of Gaussian

blur. The maximum PSNR values for both SR and Bicubic
are obtained for σ in the range of [0.6, 1]. In this range, SR
shows an average PSNR difference of 7.4dB compared to the
Bicubic interpolation, which is an impressive improvement.
A blur function with small support (σ ∈ [0.6, 1]) is effec-
tive in suppressing noise. However, as σ increases, the LR
images become very blurry and SR becomes less effective as
reflected in its PSNR values getting closer to Bicubic.

Figure 5b represents the variations in PSNR values of our
SR method and Bicubic for different downsampling ratios.
The increase in the downsampling ratio results in lower-
resolution LR images, making it harder for SR to recover
the missing details. Despite a considerable drop in PSNR
for the downsampling of 4, our SR method has still pro-
vided 4.4dB more improvement than Bicubic. Figure 5c also
demonstrates the PSNR variation for different noise power
or SNR values. For higher values of σ of noise, we increase
the regularization parameter λ in (8) to increase the smooth-
ness of the reconstructed frame. This figure shows that SR
has a higher PSNR difference with Bicubic for higher SNR
values.

Figure 6 shows another example of improving the spa-
tial resolution of a traffic light footage using the proposed
method compared to Bicubic. Due to the high distance of the
scene from the camera, the target object is noisy and has a
low resolution. Therefore, it is hard to read the plate number
using Bicubic upsampling. However, our proposed method
has significantly improved the image quality.

The next experiment shown in Fig. 7 demonstrates the
performance of our proposed SR method in removing the
temporal blur. Motion blur is a temporal artifact in nature,
as it appears due to the fast movements of objects in the
scene or the camera itself during the exposure time [25, 36].
When the scene is roughly static and planar, the perceived
spatial motion blur would be space-invariant (similar for all
regions). However, when the scene is highly dynamic dur-
ing the exposure time or the camera is filming a scene with
far and near-field objects while moving fast, the perceived
motion blur would be space-variant. Removing a space-
variantmotion blur froma single image is highly challenging.
It requires segmenting the scene into objects and background,
applying different deblurring to different parts of the scene,
and finally putting the deblurred objects back together in a
coherent way. On the other hand, our multi-frame SRmethod
is inherently capable of removingmotion blur through apply-
ing temporal deblurring, as described below.

Figure 7a shows one frame of the Old Town Cross video,
andFig. 7b demonstrates theLR framegenerated by applying
a temporal rectangular blur of length 5 (so the exposure time
is expanded over five frames). Since the scene is not planar
and the camera is not moving parallel to the scene, a more
severe motion blur happens on the right side than on the
left side of the frame. Figure 7c, d result from the motion
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HR Bicubic VSRnet [13] VESCPN [14] DBPN [15]

RDN [16] RCAN [17] TOFlow [12] TDAN [18] ProposedCity

HR Bicubic DUF [20] TDAN [18] Proposed

HR Bicubic DUF [20] TDAN [18] ProposedWalk

Fig. 3 Comparison results of our proposed method with SOTA methods on the Vid4 dataset

car05 HR RCAN [17] TDAN [18] Proposed

philips hkc01 HR Bicubic TDAN [18] Proposed

Fig. 4 Comparison results of our proposed method with SOTA methods on the SPMCs-30 dataset

Table 1 Quantitative comparison of our proposed method with SOTA methods in terms of PSNR (dB) and SSIM quality metrics

Methods Bicubic VSRnet
[13]

VESCPN
[14]

DBPN
[15]

RDN [16] RCAN
[17]

TOFlow
[12]

TDAN
[18]

Proposed

Vid4 23.79/0.633 24.73/0.697 25.34/0.730 25.33/0.731 25.40/0.735 25.42/0.737 25.90/0.765 26.86/0.814 26.89/0.821

SPMCs-
30

27.08/0.744 – – 29.76/0.830 29.92/0.836 30.07/0.841 29.47/0.831 30.80/0.869 30.86/0.858

The bold numbers are the largest ones
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Fig. 5 Variation of peak signal to
noise ratio (PSNR) with respect
to the variation of the following
SR parameters: a Standard
deviation (σ ) of Gaussian blur;
b Downsampling/upsampling
ratio; c signal to noise ratio
(SNR)

Fig. 6 Improving the quality of a traffic camera video. a One video
frame; b closeup view of the frame upsampled by Bicubic; c improved
closeup using our proposed method

deblurring method proposed in [37] and the online GAN3-
based deblurring and upscaling tool [38], respectively. These
methods have failed to perform any noticeable improvement
due to the space-variant nature of the perceived motion blur.
The result of our proposed method is presented in Fig. 7e,
and closeups from the LR and restored frames are shown
in Fig. 7f. Our method has successfully removed the space-
variant blur by improving the video’s temporal resolution.

Our proposed method can also be used to create high-
quality slow-motion videos or interpolated views. Tested on
several videos, including building structures, fast-moving
clouds, and candle fumes, the frame rate is set to increase by
a factor of 15. These results are not shown here due to the dif-
ficulty of perceiving the temporal effect on a still manuscript.

3 Generative Adversarial Networks.

Fig. 7 Removing space-variant motion blur for the Old Town Cross
video. a Ground-truth frame; b LR frame; c result by [37]; d result by
[38]; e result by our method through temporal deburring; f close-up
from images (b) and (e)

Please refer to the package accompanying this article for a
few examples.

4 Conclusion

Improving the resolution of natural videos using the super-
resolution (SR) technique is a highly ill-posed problem.
This paper presents a space–time super-resolution method
to increase a single video’s spatial and temporal resolu-
tions to alleviate aliasing, blurring, and noise artifacts. A
new motion estimation framework is proposed to first esti-
mate motion sequentially and then derive motion between
the central and neighboring frames. An initial estimate of
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the output frame is obtained using a non-uniform interpola-
tion technique to derive the upsampled frame, followed by
a deblurring step. An optimization formulation is derived
using the maximum a posteriori probability (MAP) estima-
tor, which estimates a high-resolution (HR) video frame from
a few neighboring low-resolution (LR) frames of the input
video. We incorporate an edge-sharpening operation into the
optimization problem to further enhance the edges. We also
improve temporal consistency in the reconstructed video by
minimizing the error between successive estimated frames.
The results of the proposed method are compared with a few
SOTAmethods, including two deep learning-based ones. The
results confirm the effectiveness of the proposed SR method
in improving the quality of natural videos.
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