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Abstract
Compared with traditional computational fluid dynamics methods, the lattice Boltzmann method (LBM) has the advantages
of simple program structure, adaptability to complex boundaries, and easy parallel computation. However, since LBM is an
explicit algorithm, there are many iterations in the computation process, which leads to an increase in computation time. In this
paper, we improve LBM based on deep learning by combining a convolutional neural network (CNN) and a gated recurrent
unit neural network (GRU). Based on previous test data, the CNN module extracts spatial features during the computation,
while the GRU processes the corresponding temporal features. Compared with the conventional LBM, this method can
significantly reduce the computation time and improve the computational efficiency with guaranteed low Reynolds numbers
of 1000 and 2000. At the high Reynolds number of 4000, the prediction error of the proposed method is increasing but still has
a better performance. In order to verify the effectiveness and accuracy of the proposed algorithm, an eddying model widely
used in the computational fluid field is developed. The proposed method not only has impressive results but also deals with
non-stationary processes and steady-state problems.

Keywords Lattice Boltzmann method · CG-LBM network · Computational fluid · Gated recurrent unit neural network

1 Introduction

As a tool for approximating the incompressible Navier–
Stokes equations (NSE) in turbulent flow simulations, the
Lattice Boltzmann method (LBM) has attracted attention
in recent years due to its efficiency and parallelization [1],
especially in connection with large eddy simulation (LES)
[2]. The applicability of LBM for direct numerical simula-
tions(DNS) or LES has been investigated in several studies
(see for example [3] and references therein). The applica-
tion of LBM to the LES methodology provides significant
speedup over traditional finite volumemethods(FVM) [4, 5].
In a recent study [6], comparing open-source packages for
wall-modeled LES of an internal combustion engine demon-
strated that LBM (OpenLBM [7]) is on average 32 times
faster than FVM (OpenFOAM). On an industrial scale in the
order of one billion grid cells, LBM LES could even be the
first method allowing for overnight simulations [8].
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After the first LBM LES model (based on the standard
Smagorinsky eddy viscosity) was proposed [9], the approach
has been extended [10, 11] to be consistent in the inertial
range and complemented with a dynamic procedure [12]
for calculating model constants. Weickert et al. [13] pro-
posed and studied an LBM for the wall adaptive large eddy
(WALE) model. Based on a Hermite expansion, Malaspinas
et al. [14] introduced consistent subgrid closures for the fil-
tered Bhatnagar–Gross–Krook (BGK) Boltzmann equation.
Besides LES models based on eddy viscosity approxima-
tions, the approximate deconvolution model (ADM) has
been formulated in the framework of LBM [15, 16] and
was extended by adaptive filtering [17, 18]. Jacob et al.
[19] recently proposed a hybrid approach by combining a
recursive regularization technique with hyperviscosity. The
simplicity of implementation as well as the vast amount of
extension possibilities to other physical flowmodels promote
the necessity of exploring such advanced turbulence models
for LBM [20, 21]. Apart from the classical approaches based
on spatial filtering, Pruett [22] raised several advantages of
time-filtering in the context of LES and introduced a tem-
poral variant of the ADM, called the temporal approximate
deconvolutionmodel (TADM).Recently a new temporalLES
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(TLES) based on temporal direct deconvolution (TDDM)
was proposed [23, 24]. A TLES upholding the high paral-
lelizability of LBM due to intrinsic spatial locality, along
with the benefits of a turbulence model, is a promising alter-
native to classical LES [25].
In recent years, researchers have also transformed the origi-
nal complex iterative calculation or solution process into an
image generation problem [7, 26–28]. For example, Yang et
al proposed a CNN-based pressure solver model to replace
the original iterative solution of the pressure in the process
of solving the N–S equation. Based on this, they have a
good speed-up effect and high accuracy for the solution of
N-S equations, but they are not suitable for fully explicit
LBM. It solves in the histogram domain instead of the pixel
domain and is faster to calculate. In the acceleration of the
LBM, theAdaptiveNeural Fuzzy Inference System (ANFIS)
is used to learn lattice Boltzmann method (LBM) data and
predict fluid patterns based on their understanding. Chen et
al. [29] replaced the multi-step computation of LBM with
LSTM model operations, which are highly accurate and fast
[30]. In this paper, the Convolutional Neural Network and
Gated Recurrent Unit Neural Network combined with Lat-
tice Boltzmann Method (CG-LBM) is proposed to replace
the calculation process in the LBM to improve computa-
tional efficiency. By inputting the flow field information with
dual dimensions of time and space, the prediction results of
the flow field across multiple iterations are obtained using a
novel network structure. This model specifically constructs
a CNN network to extract the spatial characteristics and a
two-layer GRU network to fully learn the temporal charac-
teristics of the fluid data in the pipeline simultaneously. The
first layer GRU extracts the timing characteristics and trans-
mits the fluid information matrix of the same format to the
second-layer GRU according to the CNN layer’s times 24
fluid particle migration matrix. After the second-layer GRU
extractsmore timing information, the neuron outputs a vector
of fluid information in times 1 format to the fully connected
layer in the final step. This model has the advantage of deal-
ingwith both the process of non-steady-state and steady-state
problems. Meanwhile, the model can have faster calculation
speed and better accuracy.

2 LBMmethod based on CNN–GRU network

2.1 Basic principles andmethods of LBM

The calculation process of the complete lattice Boltzmann
method can be summarized as follows. According to the
characteristics of the research object, the macroscopic phys-
ical quantities on all nodes are first determined, and then
the equilibrium-state distribution function of each node in
each direction is calculated to obtain the initial field. The

Fig. 1 Probabilistic model of particle motion

node characteristics are treated in different boundary for-
mats, and the distribution of physical quantities at each node
is calculated according to the rules of macroscopic quantity
definition of the lattice Boltzmann model.
In the LBM numerical, the flow field is divided into many
grids of equal size, and the particle distribution function f
on each grid point is used to describe the state of the flow
field, and fi is used on the grid point to represent the number
of particles moving in the direction of ei . The D2Q9 model
for two-dimensional problems used in this paper discretizes
the motion directions of particles into 9 directions including
the zero vector, as shown in Fig. 1

Add probabilities to these nine velocity vectors to sim-
ulate a continuous Boltzmann distribution as accurately as
possible. For a stationary fluid (u = 0), Eq. 1 indicate that
0 must be the most probable velocity. The longer diagonal
velocity vectors must be less probable than shorter horizontal
and vertical velocity vectors. Velocities of the same magni-
tude must have the same probability regardless of direction.
The optimal probability for velocity 0 is 4/9, 1/9 for the
four cardinal directions, and 1/36 for the diagonal. These
probabilities (or weights) ωi can be expressed as follows,

⎧
⎨

⎩

w0 = 4/9
w1 = w2 = w3 = w4 = 1/9
w5 = w6 = w7 = w8 = 1/36

(1)

These weights have the correct qualitative properties, and
they are correctly normalized to add up to 1. But otherwise,
they predicted the same average of vx ,vy and all powers of
vx ,vy up to the fourth power. The Boltzmann equation is
derived for themodeling equation of continuous fluid dynam-
ics as follows.

∂ f

∂t
+ ξ

∂ f

∂r
= − 1

τC
( f − f eq) (2)

Since the motion of molecules in a fluid exists at all times,
Eq.2 is infinite-dimensional. Then the BGK operator ei
is used to replace ξ . The Boltzmann method changes the
infinite-dimensional equation 1 into Eq.3 with respect to the
velocity discretization.
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∂ fi
∂t

+ ei
∂ fi
∂r

= − 1

τC
( fi − fi

eq) (3)

The derivatives in time and space are then discretized in the
next step to obtain Eq.4. The overall is a forward differenc-
ing process of first-order accuracy. The Lattice Boltzmann
equation absorbs the values generated in the first-order
accuracy process and continues into the physical viscosity.
After the absorption, it changes from first-order accuracy to
second-order accuracy. After this method of processing, the
numerical dissipation of the Lattice Boltzmann method is
smaller than the fourth-order accuracy of the same physical
scenario using the CFD method.

fi (r , t + δt ) − fi (r , t)

δt

+ei
fi (r + ei , t + δt ) − fi (r , t + δt )

�r

= − 1

τC
( fi − f eqi ) (4)

where fi (r ,t+δt )− fi (r ,t)
δt

and fi (r+ei ,t+δt )− fi (r ,t+δt )
�r in Eq.4 are

the discrete forms of the temporal and spatial features to be
processed in Fig. 2, respectively.
Other physical information about the position canbeobtained
by using the particle distribution function, such as themacro-
scopic density ρ and the velocity u have the following
expression,

ρ(r , t) =
8∑

t=0

fi (r , t), u = 1

ρ

8∑

t=0

fi ei (5)

where r is the grid position and t is the time. The governing
equation of the discrete form of LBM is

fi (r + eiδi , t) − fi (r , t) = 	(τC )[ fi (r , t) − f eqi (r , t)] (6)

where δi is the time step, τC is the relaxation factor, and 	 is
the collision factor calculated from τC . The governing equa-
tions contain descriptions of particle migration and collision.
These two parts are calculated separately in the numerical
program. The expressions of the two are,

fi (r , t) = fi (r , t) + 	(τC )[ f eqi (r , t) − fi (r , t)] (7)

fi (r + eiδt , t + δt ) = f ∗
i (r , t) (8)

Eq.7 expresses the collision process of particles and Eq.8
expresses the migration process of particles.

From the LBM model, the core physical quantity of the
whole calculation process was the spatial size of the discrete
particle velocity distribution function (x, y). Therefore, it
was set as a three-dimensional array of size (x, y, 9) accord-
ing to the requirements of the model, so that it exactly meets

the required specification of gated recurrent neural network
input as an array, with the first two dimensions represent-
ing the length and width of the space and the last dimension
being the number of channels, it corresponds to the num-
ber of discrete velocities. Therefore, in the network model of
this paper, the original discrete particle velocity distribution
function information was extracted and the corresponding
calculation was completed.

2.2 CG-LBMmodel network structure

In order to fully learn the multi-featured fluid data, the CG-
LBM fluid-state prediction model was further proposed in
this paper. The model structure mainly includes CNN, GRU
and a fully connected layer. The overall network structure is
shown in Fig. 2.

Thismodel builds a two-layer GRU structure to fully learn
the temporal characteristics of fluid state data. Based on the
U × 24 particle migration information matrix output by the
CNN layer, the timing characteristics are extracted from the
first-layerGRU, and the particlemigrationmatrix in the same
format is passed to the second-layer GRU. After the second-
layer GRU further extracts timing information, the final one-
step neuron outputs a vector of particlemotion information in
U × 1 format to the fully connected layer. The mathematical
description is shown in Eq.9.

⎧
⎪⎪⎨

⎪⎪⎩

zt = σ(Whz · [yt−1, xt ] + bz)
rt = σ(Whr · [yt−1, xt ] + br )

st = tanh(Wht · [yt−1, xt ] + bg)
yt = (1 − zt ) · yt−1 + zt · st

(9)

Among them, x is the number multiplication of the matrix,
σ is the activation function sigmoid function, tanh is the
activation function tanh function, ’1−’ indicates that the data
propagated forward by the link are 1 − zt . zt and rt are the
update gate and reset gate. xt is the input, ht − 1 is the output
of the previously hidden layer, and ht is the output of the
hidden layer.
The fully connected layer containing V neurons further per-
forms a nonlinear mapping of the particle motion in the fluid
extracted by the GRU network. Finally, the output layer con-
taining individual neurons outputs the prediction results. The
equations for the fully connected layer and the output layer
are shown in Eq.10.

y = W1×V · σ(Wv×u · hU×1 + bV×1) + b1×1 (10)

In the formula, y is the predicted value of representing fluid
state information, hU×1 is the vector representing fluid state
information output by the GRU network, WV×U and bV×1

are the weight matrix and bias vector of the fully connected
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Fig. 2 Schematic diagram of CG-LBM calculation flow

layer, W1×V and b1×1 are the weight matrix of the output
layer and bias.
The combinedCNN–GRUmodel leverages the advantages of
convolutional neural networks and recurrent neural networks
in spatial and sequence prediction. First, the convolutional
neural network is used to extract and simulate the spatial
features of the fluid model. Then, sequence data contain-
ing spatial features are fed into the GRU network to further
extract temporal features. Finally, the fluid state is predicted
by a fully connected neural network.
A process can be divided into four steps. First, the input
dataset is divided into training, test sets and normalized. Sec-
ond, the network parameters of theCNN–GRUmodel are set,
and the mean square error and LOSS function are selected as
the loss function, respectively. Then the training set is used
to train the model and test the training effect. If the model
fits the training set as required, it goes to the next step, other-
wise, it returns to the previous step and adjusts the network
parameters. Finally, the trained model is used to test the test
set and the test results are de-weighted to obtain the predicted
values of the fluid state.

2.3 CG-LBM loss function with physical information

The loss function is extremely important in deep learning.
Based on the physical background of LBM and the loss
functions commonly used in neural network training, a loss
function named LOSSCG−LBM is introduced to the CG-LBM
model and a loss function named LOSSLBM is introduced to
the LBM model.
The distribution function of inputs and outputs in a neural
network is the result obtained at the end of each iteration.
It is also the result obtained after completing two processes
of collision and migration. Therefore, the two output results
canbe substituted into the collisionprocess.Make it complete
the collision and migration process once and get two distri-
bution function results. If the actual value and the predicted
value are the same, the error is zero. With this loss function,
the physical background information including the velocity
input and Reynolds number of the flow field is introduced

to make the predicted values match the LBM as closely as
possible. The significance of this loss function is to introduce
a macroscopic physical quantity to control the model.
Specifically, LOSSGRU−LBM and LOSSLBM are repre-
sented by Eq.11 through Eq.15.

f truei = fi + 1

τc
( f eqi − fi ) (11)

f preCG−LBM_i = fi + 1

τc
(
�

f
eq

CG−LBM_i − �

f CG−LBM_i ) (12)

f preLBM_i = fi + 1

τc
(
�

f
eq

LBM_i − �

f LBM_i ) (13)

LOSSCG−LBM = f preCG−LBM − f truei (14)

LOSSLBM = f preLBM_i − f truei (15)

Among them, f eqi is the equilibrium distribution function

calculated from the experimental value fi , and
�

f
eq

CG−LBM_i
is the equilibrium distribution function calculated from the

GRU-LBM predicted value
�

f CG−LBM_i , and
�

f
eq

LBM_i is the
equilibrium distribution function calculated from the LBM

prediction value
�

f LBM_i . The significance of the loss func-
tion is to introduce amacroscopic physical quantity to control
the model. To verify the effect of the loss function LOSS on
the model performance, four models were trained using dif-
ferent network structures and training loss functions. They
were labelled by MSE LBM, MSE CG-LBM, LOSS CG-
LBM, and LOSS LBM. Figure3 shows these four models.
During the training of the different models, the decreasing
process of the corresponding function values is recorded.

In Fig. 3, the final convergence value of the loss function
is significantly lower when using the CG-LBM structure. It is
proved that the model with this structure has better learning
ability and degradation resistance. Compared with the MSE-
trained model, the LOSS-trained model converges with the
same trend as the MSE-trained model, but the initial state of
convergence is different. This indicates that the introduction
of LOSS does not affect the prediction results of the model.
At the same time, the former converges faster than the latter
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Fig. 3 Loss function value during training

under the same method. In general, the designed LOSS loss
function is more suitable for the network structure of this
paper in terms of accuracy and efficiency.

3 Calculation verification and result analysis

Toverify the feasibility and prediction accuracy ofCG-LBM,
eddy current shedding experiments were designed to conduct
CG-LBM training and testing. There are three main reasons
for choosing the vortex shedding experiment as the CG-LBM
validation experiment. First, the initial and boundary condi-
tions of the vortex shedding problem are relatively simple
to program. Second, the flow field of this experiment is dis-
tinctly characterized, which facilitates comparison between
results. Finally, the vortex shedding flow field varies signifi-
cantlywith parameters, and it is easy to test the generalization
ability of the model [31].
In this paper, a fluid short-term state prediction model is
developed and the performance of the model is tested and
evaluated using a test set. Also, the results in terms of train-
ing time and prediction accuracy are compared with LBM
under the same conditions. The effectiveness of the model
was verified. The CG-LBMmodel is built using the idea pre-
sented in Section 2.2, where the number of convolutional
kernels U in the convolutional layer, the number of neurons
W in each GRU layer, and the number of neurons in the fully
connected layer is set to 128, 32 and 32.

3.1 Model environment

The experimental environment in this paper uses AMD
Ryzen 7 4800H processor and NVIDIA GeForce RTX
2060 graphics card. Python3.6 is used as the programming

Table 1 Laminar flow experimental environment

Parameters Numerical value

Pipe length 0.5 l

Time Step 0.1t

Density ρ

Reynolds number 1000, 2000, 4000

Relaxation factor τ

Fig. 4 Convergence at different viscosity

language, the deep learning architecture is based on the Ten-
sorflow 2.0 framework and the Scikit-learn machine learning
library. The model parameters of this paper are shown in
Table 1.

Among them, the value range of the relaxation factor τ in
the control equation of the LBM is [0–1], and its size is only
related to the convergence speed of the control equation. The
relaxation factor τ is firstly taken as 0.2, 0.4, 0.6, and 0.8,
respectively. The convergence rate of the governing equation
under different relaxation factors τ , the results are shown in
Fig. 4.

As shown in Fig. 4, when the control equations take dif-
ferent relaxation factors, they converge significantly after at
most 500 calculations. This study focuses on the acceleration
and accuracy improvement of CG-LBM to traditional LBM.
Therefore, the number of calculations of the model is well
over 500 times, and the value of the relaxation factor has
little effect on the convergence of the equations. Therefore,
the experiments in this paper all take the middle value of the
relaxation factor of 0.5.

3.2 Model building and result analysis

Based on the determined parameters, the software was used
to perform experiments on the vortex shedding model with
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Fig. 5 Variation trend of state variables at different Reynolds numbers
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Reynolds numbers Re = 1000, 2000 and 4000. The results
are shown in Fig. 5. Figure5 shows the vorticity, velocity
and pressure of fluids with different Reynolds numbers after
the calculation of 2000. The black dashed line divides Fig. 5
into three groups of Reynolds numbers 1000, 2000 and 4000
according to the different Reynolds numbers. It can be seen
that for the same number of calculations when the number of
calculations reaches 1000, the fluid with a Reynolds number
of 1000 just appears to have laminar flow, while the fluid
with a Reynolds number of 2000 already has a stable lam-
inar flow, and the fluid with a Reynolds number of 4000
already has laminar flow fluctuations. When the number of
calculations reaches 2000, the fluid with Reynolds numbers
1000 and 2000 has laminar fluctuation, but the fluid with
Reynolds number 4000 has already appeared with vortex
detachment phenomenon. The vorticity diagram, shows us
that as the Reynolds number increases, the stability of the
fluid becomes less stable, the fluid state is more likely to
change, and the corresponding velocity and pressure change
frequency is faster. The velocity diagrams with Reynolds
numbers of 2000 and 4000 show us that there is a period
of time when the velocity changes from laminar fluctuation
to the first vortex detachment are almost without an obvious
pattern, and this can seriously affect the prediction accuracy.
Predictably, for fluids with Reynolds numbers of 1000 and
2000,when the number of calculations reaches 3000 ormore,
the vortex shedding phenomenon will also occur, and the
velocity and pressure change frequency will also become
faster, and both will go through periods of almost irregular
changes.

3.3 Error comparison of CG-LBM and LBM

3.3.1 Comparison of operation speed

Table 2 shows the time consumption comparison of four
methods, CG-LBM, LSTM-LBM, GRU-LBM and conven-
tional LBM, at different Reynolds numbers, and the time

periods are expressed in terms of the number of completed
iterations.

Table 2 shows us that the computational efficiency is
weakly correlated with both the Reynolds number size and
the computational time period, and only with the different
models. On the home platform proposed in Sect. 3, the com-
putation time of the serial LBM program model is about
17.2 times higher than that of the CG-LBM model. the
CG-LBM model is about 2 times more efficient than the
LSTM-LBMmodel and about 1.16 times more efficient than
the GRU-LBMmodel. It can be seen that the newmodel pro-
posed in this paper has a significant effect on reducing the
consumption of computational resources compared with the
traditional LBM model, and the experimental results of this
method are in line with expectations.

3.3.2 Comparison of computational accuracy

Error analysis verifies the accuracy of the model on the test
set of Re = 1000, 2000, 4000. Figures6, 7 and 8 show the
loss functions of Re=1000, 2000, and 4000. The horizontal
axis is the number of CG-LBM calculations corresponding
to the iterations of ordinary LBM.

Figures6, 7 and 8 show the prediction errors of the CG-
LBMmodel and the conventional LBMat different Reynolds
numbers for different computation time periods, which are
expressed by the number of completed computations. When
the Reynolds number is 1000, the average loss function of the
conventional LBM model is 0.022, and that of the CG-LBM
model is 0.0021, with an accuracy improvement of about
10.47 times.When the Reynolds number is 2000, the average
loss function of the conventional LBM model is 0.023 and
that of the CG-LBM model is 0.0023, with an improvement
in accuracy of about 10 times. When the Reynolds number
is 4000, the average loss function of the conventional LBM
model is 0.018, and that of the CG-LBM model is 0.0065,
with an accuracy improvement of about 2.77 times.

Table 2 Time-consuming
Comparison

Re Iteration period LBM t/s LSTM-LBM t/s GRU-LBM t/s CG-LBM t/s

1000 1000–2000 226.98 33.68 15.34 13.22

1000 2000–3000 233.41 32.90 15.06 12.91

1000 3000–4000 241.05 33.39 15.75 13.15

2000 1000–2000 224.39 33.56 15.90 13.20

2000 2000–3000 233.21 34.08 15.55 13.49

2000 3000–4000 242.28 33.85 15.79 13.34

4000 1000–2000 225.25 33.64 15.19 13.26

4000 2000–3000 234.39 33.41 15.07 12.97

4000 3000–4000 244.66 32.99 15.02 13.09
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Fig. 6 Error(Re=1000)

Fig. 7 Error(Re=2000)

Fig. 8 Error(Re=4000)

4 Conclusion

To improve the computational efficiency of the LBM, we
propose a deep learning-based algorithm to change the com-
putational process of the LBM. A CG-LBM model is built
using CNN and GRU networks. It can predict the parti-
cle distribution function after multiple time steps. In this
paper, the accuracy of the predicted values and the compu-
tational efficiency of the model after a series of calculations
and parameter adjustments are analyzed for the laminar flow
problem as an example. The results show that the CG-LBM
has the necessary reliability and can speed up the computa-
tion. Based on this study, the following three conclusions can
be drawn.

(1) Based on the training and testing results of the CG-LBM
model, the model can guarantee the necessary accuracy.
The study proves that using the physical information loss
function can improve the performance of the neural net-
work in the presence of physical background.

(2) The computational structure based on the CG-LBM
model achieves significant results in guaranteeing pre-
diction accuracy. As a result, a deep learning-based
algorithm is successfully constructed and can be used
to deal with fluid prediction problems.

(3) The computational structure of the CG-LBM model
greatly reduces the consumptionof computational resources
without degrading the accuracy. In the arithmetic exam-
ple designed in this paper, the computational efficiency
of the method on a home testbed is 22.23 times higher
than that of the serial LBM program, showing good com-
putational efficiency results and great potential.

Some future development prospects should be proposed
for the current model, and improving the prediction accuracy
and computational efficiency is the direction of our continu-
ous efforts. The study in this paper shows that the CG-LBM
model with high accuracy performs better in the long-term
calculation process. However, the computational error of flu-
ids with a Reynolds number higher than 4000 is not studied
in this paper, so it is also our work to continue to improve the
generalization ability of the model.
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