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Abstract
Type-2 diabetesmellitus (T2DM) is a chronicmetabolic disorder affecting numerous people throughout the world. If untreated
in the initial stages, diabetes-related complications such as retinopathy, neuropathy, and cardiac issues may arise in the body.
This research introduces the efficient automatic T2DM identification method using photoplethysmography (PPG) signals.
The tunable-Q wavelet transform (TQWT) is used to analyze the PPG signals which permit the PPG signal to be converted
into predictable wavelets. Entropy features are then extracted by these wavelets for events of healthy controls and T2DM
followed by statistical significance analysis and classification using least-square support vector machine (LS-SVM) classifier
to identify the T2DM events. In addition, the majority voting-based feature selection method is applied for feature reduction
and the most relevant feature selection. With top-ranked 20 relevant features, the LS-SVM classifier with radial basis function
(RBF) kernel attained a maximum 98.51% classification accuracy, 98.64% sensitivity, 98.38% specificity, 98.61% area under
the curve, 98.31% precision, and, 98.47% F-score. The results indicate that the suggested approach for T2DM identification
has better classification performance than existing approaches.

Keywords Photoplethysmography signal · Tunable-Q wavelet transform · Type-2 diabetes · Entropy features ·Majority-based
feature selection method · Machine learning technique

1 Introduction

Diabetes mellitus (DM) has become a dreadful non-
communicable health condition that can cause significant
morbidity and mortality. Its most prevalent form is type-2
diabetesmellitus (T2DM), also called non-insulin-dependent
and adult-onset DM [1]. It needs to be detected at an early
stage due to its asymptomatic nature, which can affect at any
age, and cause many micro- and macrovascular complica-
tions even before its detection. It also brings a substantial
financial burden not only on the individual/ family but on the
whole health system and society [1, 2]. For the identification
of T2DM, the prominent approaches such as hemoglobin test
(Hb-A1C), fasting plasma glucose test (FPGT), oral glucose
tolerance test (OGTT), and semi-invasive movable blood
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sugar meters are either costly or invasive due to which these
approaches are not suitable for routine check-ups.

So, to overcome the above-mentioned limitation photo-
plethysmography (PPG) signal analysis has gained a lot of
attention for T2DM detection in the last few years because
of its simple, portable, inexpensive, and non-invasive nature.
The PPG signal depicts blood volume fluctuations and con-
tains information about blood vessels, arterial stiffness, and
hemodynamic characteristics which are considered to be an
early predictor of T2DM [3, 4]. Thus, the design of an auto-
mated technique to identify T2DM using the PPG signals is
considered to be a thrust area of research.

1.1 Literature review

In the last several decades, the PPG signal has received great
popularity to diagnoseT2DMdisease usingmachine learning
techniques. Keikhosravi et al. [5] used bilateral PPG signals
to assess endothelial dysfunction for T2DM identification
and achieved 93.5% accuracy by naïve Bayes classifier. Sim-
ilarly, Reddy et al. [6] used a support vector machine (SVM)
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with the weight fusion method for T2DM detection. They
used multiple features from various domains of PPG sig-
nal to achieve an accuracy of 89%. In another study by
applying an artificial neural network (ANN) along with time
domain and physiological features, an accuracy of 85.5%
was achieved [7]. After that, Nirala et al. [8] extracted differ-
ent time-domain features from toe PPG signals and showed
97.87% accuracy using the SVM classifier with ten features.
Prabha et al. [9] used physiological parameters along with
Mel frequency cepstral coefficient-based features. Using a
combination of principal component analysis and SVM clas-
sifier, they achieved 92.28% accuracy. In other studies, a
smartphone-based PPG signal was utilized to develop T2DM
detection systems [10, 11], but these systems obtained poor
classification accuracy.

From literature review, it is observed that existing studies
used the features based on morphology, time domain, and
frequency domain to detect T2DM. However, the PPG mor-
phological features are not highly accurate for the diagnosis
of T2DM because it is highly influenced by motion artifacts
in a nonstationary environment. Further, use of frequency
domain, and time-domain methods for the PPG signal anal-
ysis is less accurate because of oscillatory (nonstationary)
nature of these signals. Another study used empirical mode
decomposition (EMD) to address these drawbacks. However,
it suffers frommode mixing issues [12]. This motivated us to
employ a time–frequency-based approach based on tunable-
Q wavelet transform (TQWT) in oscillatory PPG signals for
the diagnosis of T2DM. The TQWT permits flexible analy-
sis for processing of the oscillatory and complex signals like
PPG [13]. TQWThas been used in a variety of domains and a
wide range of signal-processing fields. It has been also used
for various disease identification using different biomedical
signals [14–16].

The current work proposes a tunable-Q wavelet trans-
form (TQWT) method for the automatic diagnosis of T2DM
using PPG signals. The TQWT decomposes the PPG signal
into various sub-bands (SBs) or wavelets. After the decom-
position of PPG signals into useful sub-bands or wavelets,
entropy features were extracted. After that, all extracted
features were tested for being statistically significant. In
addition, the majority voting-based feature selection method
was employed to choose the most reliable features. Finally,
the least-square support vector machine (LS-SVM) classifier
with different kernels was tested for T2DM detection.

The rest of the article is arranged as follows: The overall
proposed methodology is described in the second section.
The third section explains the experimental results and dis-
cussion, and finally, the article is summarized with the
conclusion in the fourth section.

2 Methodology

Figure 1 depicts the proposed methodology. Each section
of the proposed methodology corresponding to Fig. 1 is
explained below:

2.1 PPG dataset, pre-processing and segmentation

This study used Nirala et al. [8] PPG database. The PPG
signal (5 min) was recorded from each participant at a sam-
pling frequency of 1 kHz. To eliminate the noise present in
the recorded PPG signals, a Butterworth bandpass filter was
used with 0.5 and 20 Hz cut-off frequencies. After noise
removal, the recorded PPG signals were segmented into ten
small segments of 30-s each resulting in a total of 1510 sam-
ples (10 samples/subject) containing 770 samples of healthy
controls and 740 samples of T2DM.

2.2 Tunable- Q wavelet transform (TQWT)

The most frequently used conventional wavelet transform
(WT) is discrete wavelet transform (DWT) which has certain
drawbacks, including fixed bandwidth of the filter bank and
fixed oversampling rate. The fixed number of oscillations in
the mother wavelet is another major limitation of DWT [17].
Unlike DWT, the TQWT is an effective transform because it
overcomes the limitations as mentioned earlier by providing
flexibility to adjust the Q-factor for any oscillatory signal.
This choice does not exist in conventional WTs [15]. The
TQWT analyzes the complex and oscillatory signals with
the help of three adjustable parameters, namely redundancy,
Q-factor, and the decomposition level which is denoted as r,
Q, and, J, respectively. At each TQWT-based decomposition
level, the input data series X(n)with sampling frequency (Fs)
is represented as low-pass subband signals andhigh-pass sub-
band signals along with their sampling frequencies denoted
as αFs and βFs, respectively. Where α denotes the low-pass
scaling factor and β denotes the high-pass scaling factor. The
scaling of the signal spectrum is controlled by the parameters
α and β. To produce a low-pass subband, the low-pass filter
H0(� ) and low-pass scaling (Lps α) are used. Likewise, by
using high-pass filter H1(� ) and high-pass scaling (Hps β),
the high-pass subband is obtained. After Jth-level, the iden-
tical frequency response created for low-pass and high-pass
subbands is expressed as H J

0 (� ) and H J
1 (� ), respectively,

as [13, 15]:

H J
0 (� ) �

⎧
⎪⎪⎨

⎪⎪⎩
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m�0
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�

/
αm
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, |� | ≤ α Jπ
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(1)
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Fig. 1 The flowchart of the
proposed methodology for
identification of T2DM
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, (3)

H1(� ) � θ

(
απ − �
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)

(4)

θ (� ) provides the frequency response of Daubechies filter
that has two vanishing moments and it can be expressed as
[13, 15]:

θ (� ) � 0.5(1 + cos(� ))
√
2 − cos(� ), |� | ≤ π (5)

The values of Q and r are related to filter bank high-pass
parameter α and low-pass parameter β, can be expressed as
[13, 15]:

r � β

1 − α
, Q � 2 − β

β
(6)

TQWT’s parameters were selected based on the energy
distribution of the PPG signal. The energy distribution curve
helped us to identify the distribution of energy with respect
to frequency for a defined decomposition level. Whereas the
energy level of sub-bands helps us to visualize the distribu-
tion of energy in each band.

After several experiments, the TQWT parameters Q, r and
J were selected to be 1, 3, and 15, respectively, because, at
these parameter values, most of the energy was confined to
the frequency range of 0 to 15 Hz, i.e., the PPG frequency
range as shown in Fig. 2 (a). Further, Fig. 2 (b) shows the
energy level of SBswhereinSB1andSB16denote the highest

and lowest frequency component of the PPG signal, respec-
tively. It is observed from Fig. 2 (b) that at Q � 1, r � 3, and
J � 15, the energy is distributed throughout over most of the
SBs. So, based on this energy level distribution we selected
the parameters of TQWT in our study. Figure 3 shows the
decomposed components of the PPG signal for T2DM and
healthy cases.

2.3 Feature extraction

After determining SBs using TQWT following features were
extracted: -

2.3.1 Log energy entropy (LogEE)

The LogEE measures the randomness available in the sig-
nal. It is used to evaluate the complexity of the signal [17].
It is defined as the logarithm of the energy calculated for
each SBs of the PPG segment [17]. Mathematically it can be
formulated as [17]:

LogEE �
N∑

i�1

log(X2
i ) (7)

whereXi is an ith sample of decomposed SBof PPG signal
and N is the length of decomposed SB.

2.3.2 Fuzzy entropy (FuzzyE)

Fuzzy entropy is used to measure the irregularity of the PPG
signal [18]. For a finite database of n samples, fuzzy entropy
is expressed as [19]:

FuzzyE(A, B, C , n) � ln
[
φA(B, C)

]
− ln

[
φA+1(B, C)

]

(8)
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Fig. 2 a The energy distribution
versus frequency b The energy
level of SBs at Q � 1, r � 3, and
J � 15 of TQWT

Fig. 3 Sub-bands of decomposed PPG signal using TQWT for two cat-
egories (Blue- T2DMPPG, Green- Healthy PPG, Black- SBs of T2DM,
Red- SBs of healthy subject)

Table 1 Demographic information of T2DM and normal participants

Parameters T2DM Group Healthy Group

Number of participants 74 77

Age (in years) 65.918 ±
7.375

50.282 ± 12.949

Weight (in kg) 66.481 ± 8.97 66.45 ± 6.252

Height (in cm) 164.87 ± 9.71 169.82 ± 6.114

Systolic blood pressure (in
mmHg)

128.38 ± 14.5 122.36 ± 9.126

Diastolic blood pressure
(in mmHg)

76.35 ± 9.127 75.184 ± 5.072

Body mass Index (in
kg/m2)

24.828 ± 3.36 26.899 ± 8.57

Data were written in the form of mean ± SD

where φA(B, C) can be defined as [19]:

φA(B, C) � 1

n − A

n−A∑

j�1

1

n − A − 1

⎡

⎣
n−A∑

k�1, k �� j

(
DA

jk

)
⎤

⎦ (9)

where Djk is the similarity degree between two distinct
patterns of length A extracted from the signal and can be
estimated using the fuzzy function [19]. The fuzzy similarity
boundary is controlled by parameters C and B.

For fuzzy entropy calculation, we have selected the value
of embedded dimension (A) � 2. The value of step (B) and
width (C) of the fuzzy exponential function has taken 1 and
0.2*SD (SD is the standard deviation of data series), respec-
tively [19, 20].

2.4 Statistical analysis

The Kolmogorov–Smirnov and Shapiro–Wilk tests were
used to analyze the normality of all features. After that, based
on the normality test, the Mann–Whitney U test (confidence
range of 95%) was applied to analyze the statistical signifi-
cance of extracted features.

2.5 Majority voting-based feature selection
technique (MV-FST)

Feature selection techniques (FSTs) minimize the classifier
model’s complexity while improving classifier performance.
The traditional feature selectionmethods use just one estima-
tion criterion, resulting in a bias against the single criterion.
Thus,we appliedmulti-criterion FSTs in this study. The com-
bination of various FSTs was used through a majority vote to
obtain the most significant feature. In our work, seven filter
methods such as classifier attribute eval (Clas. AE), correla-
tion attribute eval (Corel. AE), Info gain attribute (InfoG. A),
gain ratio attribute (GainR. A), one R.A. attribute (1-RA. E),
Relief-F attribute (Rel-FA. E), and symmetrical uncertainty
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Table 2 p-Value and range (median (25–75 percentile)) of all 32 entropy features for T2DM and healthy group

Features/SBs Healthy group T2DM group p-value

LogEE-SB1 −947050 [−971702 to (−9208)] −930302 [−956131– (−9022)] 0.000

LogEE−SB2 −839087 [−863689 to (−8130)] −822208 [−848077 to (−7942)] 0.000

LogEE−SB3 −383772 [−396026 to (−3705)] −375061 [−388354 to (−3611)] 0.000

LogEE−SB4 −357089 [−369499 to (− 3437)] −348290 [−361580 to (−3342)] 0.000

LogEE−SB5 −159327 [−165650 to (− 1527)] −154886 [−161590– ( −1477)] 0.000

LogEE−SB6 −146042 [−152604 to (−1392)] −141186 [−148245 to (−1340)] 0.000

LogEE−SB7 −63817 [−67384 to ( −6016)] −61015 [−64970 to ( −5742)] 0.000

LogEE−SB8 −27319 [ −29,329 to (2533)] −25710 [ −27,969 to (−2373)] 0.000

LogEE−SB9 −24049 [− 26,394 to (2193)] −22228 [−24680 to ( −2020)] 0.000

LogEE−SB10 −9623 [−10918 to (8511)] −8643 [− 9928 to ( −7605)] 0.000

LogEE−SB11 −7907 [−9268 to ( −6811)] −6857 [−8252 to (−5870)] 0.000

LogEE−SB12 −2802 [−3444 to (−2221)] −2310 [−2932 to ( −1795)] 0.000

LogEE−SB13 −893 [−1202 to (619)] −641 [−993.19 to (−421)] 0.000

LogEE−SB14 −829 [(−1144 to (−507)] −590 [−964.3 to (310)] 0.000

LogEE−SB15 −561 [(−814 to (−392)] −516 [−780.8 to (−285)] 0.001

LogEE−SB16 −1090 [ (−1248 to (−945)] −1021 [(−1184.1 to (−825)] 0.000

FuzzyE−SB1 0.7307 [0.548825 to 0.8363] 0.6780 [0.5334 to 0.7988] 0.001

FuzzyE−SB2 0.7800 [0.54613 to 0.904] 0.7840 [0.6405 to 0.896] 0.137

FuzzyE−SB3 0.7199 [0.2942 to 0.9957] 0.8719 [0.61842 to 1.0432] 0.000

FuzzyE−SB4 0.6567 [0.3096 to 0.9406] 0.8744 [0.57455 to 1.0219] 0.000

FuzzyE−SB5 0.5078 [0.2505 to 0.9619] 0.8444 [0.44903 to 1.1165] 0.000

FuzzyE−SB6 0.6645 [0.3493 to 1.0295] 0.9387 [0.54996 to 1.1343] 0.000

FuzzyE−SB7 0.8123 [0.4401 to 1.1590] 1.0618 [0.6644 to 1.2695] 0.000

FuzzyE−SB8 1.0923 [0.6678 to 1.3563] 1.2107 [0.9081 to 1.4004] 0.000

FuzzyE−SB9 1.1872 [0.9579 to 1.3209] 1.1494 [ 0.96242 to 1.3033] 0.294

FuzzyE−SB10 1.2532 [1.0112 to 1.4057] 1.1631 [0.94208 to 1.3802] 0.000

FuzzyE−SB11 1.2165 [0.9814 to 1.4106] 1.0715 [0.831014 to 1.2987] 0.000

FuzzyE−SB12 1.5007 [1.2656 to 1.6961] 1.2824 [1.04627 to 1.5303] 0.000

FuzzyE−SB13 1.6017 [1.37301 to 1.8776] 1.3863 [1.1256 to 1.7182] 0.000

FuzzyE−SB14 1.7433 [1.3787 to 2.1220] 1.4640 [1.1411 to 1.8425] 0.000

FuzzyE−SB15 3.0798 [2.3679 to 3.7877] 2.8022 [1.8884 to 3.6406] 0.000

FuzzyE−SB16 3.4852 [2.8811 to 4.3172] 2.9848 [2.3304 to 3.7801] 0.000

attribute (SUA), and onewrappermethod namelyCfs subsets
eval (Cfs- SE) were used for selection of most relevant fea-
tures. All filter-based FSTs organize the features rank-wise.
In our work, a total of seven filter-based and one wrapper-
based FST were applied independently and selected the top
20 features from each filter-based FST, and the wrapper-
based FST (Cfs- SE) revealed only nine features. Based on
the majority vote, the most optimal features were selected [8,
21]. To perform all FSTs, the Weka software version 3.9 was
used.

2.6 Classification based on least-square support
vector machine (LS-SVM)

As the name suggests, the least-square type of SVM[22]. The
design of the LS-SVM classifier is based on kernel mapping
theory and the marginal maximization principle. For solv-
ing optimization issues, the SVM uses quadratic equations,
but LS-SVM uses linear equations [23]. The mathematical
equation of the LS-SVM can be represented as [15]:

y(x) � signum

(
N∑

n�1

αn ynk(x , xn) + b

)

(10)
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Table 3 Results of voting score of features using majority vote score-
based feature selection techniques (FSTs)

Voting score Name of features

8 LogEE-SB11, LogEE-SB12,
FuzzyE-SB11, Fuzzy SB11

7 LogEE-SB8, LogEE-SB9, LogEE-SB10

6 LogEE-SB16, FuzzyE-SB14,
LogEE-SB13, FuzzyE-SB13

5 LogEE-SB7, LogEE-SB15, LogEE-SB2,
LogEE-SB3, LogEE-SB4, LogEE-SB5,
LogEE-SB6, FuzzyE-SB5, FuzzyE-SB7

4 FuzzyE-SB15, FuzzyE-SB16,
FuzzyE-SB6

where yn and αn is the input data and Lagrange multipliers,
respectively. The b and, k(x , xn) � k(φ(x), φ(xn)) denotes
the bias and kernel function, respectively. The xn denotes the
binary class target/ class label of input data.

We have used different kernel functions, namely linear
(Lin), polynomial (Poly), and radial basis function (RBF)
in the LS-SVM classifier. Each kernel’s formulation is
explained in [23]. The kernel’s regularization parameters and
optimal values were calculated by a procedure that associates
a simplex and coupled simulated annealing (CSA)method as
demonstrated at www.esat.kuleuven.be/sista/lssvmlab/. LS-
SVMwas used to identify alcoholism [15], and septal defects
[14]. In Refs [12], LS-SVMwas also used to classify T2DM
using RR interval.

3 Results and discussion

A total of 151 participants including 77 healthy controls and
74 T2DM participants were utilized in this study. Subjects
who suffered from lower limb amputation, excessive limb
movement, leg inflammation, suffering from cardiac pace-
makers, and being affected by cardiac arrhythmia were not
included in the study. Detailed information about the dataset
can be acquired from Nirala et al. [8]. Table 1 represents
the demographic information of all participants. The pro-
posed method for the detection of T2DM is a step-by-step
process including TQWT, extraction of features, selection
of features, and classification. All experiments were imple-
mented usingMATLAB2018a software. An input PPG (30-s
duration) signal was decomposed into 16 SBs, namely SB-1
to SB-16 using TQWT. Two entropy-based features namely
Log energy entropy (LogEE) and Fuzzy entropy (FuzzyE)
were extracted from all 16 SBs. We denote these features as
LogEE-SB1 to LogEE-SB16 and FuzzyE-SB1 to FuzzyE-
SB16, respectively. Initially, 32 features were extracted, then
Kolmogorov–Smirnov and Shapiro–Wilk tests were applied

to check the normality. Out of 32 features, only nine fea-
tures were found normal and non-homogeneous. The rest
features were non-normal. Therefore, the non-parametric
Mann–Whitney U test was applied to all 32 features. The
results of the statistical analysis are shown in Table 2. The
probabilistic values (p-value) of the Mann–Whitney U test
were used to perform the discriminative analysis of the result-
ing features. Table 2 shows that out of 32 features, the
majority of features continuously obtained lower p-value
except for only two SBs (FuzzyE-SB2 and FuzzyE-SB9).

The p-value, median, 25 percentile, and 75 percentile val-
ues for LogEE and FuzzyE are shown in Table 2. We can
observe from Table 2, that the LogEE feature reveals a lower
value for the healthy class in all SB signals which indicates
that the T2DM group has higher energy as compared to
the healthy group. Also, the lower value of LogEE shows
that the PPG signal is less random (high rhythmic) in the
healthy class than T2DM class. FuzzyE estimates similar-
ity in the time series. The estimation of similarity is based
on the exponential function mentioned in [18]. In Table 2,
the FuzzyE value for T2DM subjects is lower than healthy
subjects for low-frequency SB signals (SB9 to SB16). The
FuzzyE value for T2DM subjects is higher than healthy sub-
jects for high-frequencySB signals (SB2 toSB8) except SB1.
All the SB signals presented good discrimination capability
for both groups except FuzzyE-SB2 and FuzzyE-SB9. The
smaller value of FuzzyE in the T2DM class indicates that the
diabetic PPG signals have more regularity as compared to
healthy PPG signals.

Classification of healthy and T2DM was carried out in
two ways. Firstly, all statistically significant features (30
features) were used for classification, and secondly, classi-
fication using features selected by MV-FST. In our study,
feature vector contained a total of 32 features that were
extracted from various frequency scales of SBs and supplied
to different FSTs. Each FST provided ranks of features based
on their criteria. A majority vote was conducted on the fea-
tures obtained from each FST. The results of the voting score
of features are shown in Table 3. Features with maximum
voting score of eight and a minimum voting score of five
were further selected in this study.

The next step was to feed features to the machine learn-
ing classifier to classify healthy and T2DM events. The
classification was performed by LS-SVM using tenfold
cross-validation (CV) to prevent overfitting. Here the whole
data is divided into ten equal parts. For each of the tenfold,
one part (10%) of the data is used for testing and the remain-
ing nine parts (90%) are used for training. Also, for each
fold, a different 10% of data is chosen as a test set. The final
testing accuracy is calculated by averaging the accuracies of
all ten iterations. The classificationwas performed using four
(got the highest majority vote value 8), seven (got majority
vote value 8 and 7), eleven (got majority vote value 8, 7, and
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Table 4 Comparative analysis of
LS-SVM classifier with RBF
kernel using top-ranked 4, 7, 11,
and 20 features obtained from
MV-FST

Performance metrics
(%)

Top 4 features Top 7 feature Top 11 feature Top 20 features

Ac (%) 89.31 95.90 97.37 98.51

Sen (%) 91.40 95.93 97.76 98.64

Sp (%) 87.53 95.86 97.00 98.38

AUC (%) 89.46 95.90 97.38 98.61

Pr (%) 86.31 95.68 96.85 98.31

F-score (%) 88.78 95.81 97.30 98.47

6), and 20 (got majority vote value 8, 7,6 and,5) top-ranked
features. To evaluate the classification model with different
kernels, various performance measures (PM) such as accu-
racy (Ac), specificity (Sp), sensitivity (Sen), area under the
receiving operating characteristics curve (AUC), precision
(Pr), and F-score were calculated. These performance mea-
sures are computed from the confusion matrix in which TP,
TN, FP, and FN expresses true positive, true negative, false
positive, and false negative samples, respectively [8].

Tables 4 and 5 present the obtained classification results.
From Table 5, we can observe that using 20 top-ranked fea-
tures, the LS-SVM classifier along with the RBF kernel
showed the highest average performance such as 98.51%
accuracy, 98.64% sensitivity, 98.38% specificity, 98.61%
AUC, 98.331% precision, and 98.47% F-score after 10 times
trails. In Tables 4 and 5 the highest classification results are
marked in bold.

During optimization with RBF kernel, the average value
of obtained optimal kernel parameters sig 2 (σ) and gamma
(U) are 1.409 and 30.51, respectively, after 10 trials. The
LS-SVM with poly and linear kernel showed an accuracy
of 97.23% and 72.7%, respectively. The LS-SVM classifier
with a linear and poly kernel demonstrated poor performance
compared to the RBF kernel, hence, were avoided in Table 4.
Using 11 features with RBF kernel, LS-SVM also obtained
97.23% average accuracy. Table 5 shows that using 30 sta-
tistically significant features the LS-SVM with RBF kernel
showed average accuracy of 98.49%, a sensitivity of 98.65%,
a specificity of 98.33%, an AUC of 98.49%, a precision
of 98.25%, an F-score of 98.45% and the average value of
obtained optimal kernel parameters sig 2 (σ) and gamma (U)
are 4.79 and 173.23, respectively, after 10 times iteration.
As compared to polynomial and RBF kernels, the linear ker-
nel presented the poorest classification performance in both
cases with MV-FST (20 features) and without FST (30 fea-
tures). The reason is that due to its underlying constraint, the
linear kernel is incapable of managing the nonlinearity com-
prised in its input. From Tables 4 and 5, we can observe that
there is no huge difference in the accuracy of the LS-SVM
classifier with RBF kernel either by using 30 statistically sig-
nificant features or by using the top 20 features obtained by
MV- FST. Even if we increase the number of features tomore
than 20, there was no change in accuracy. This means that

Fig. 4 The ROC plot and values of AUC for LS-SVM classifier with
RBF kernel using top 20 ranked features

Table 5 Performance parameters (Average values of 10-time iterations)
of LS-SVM classifiers using 30 statically significant features

Performance
metrics (%)

LS-SVM RBF
kernel

LS-SVM
polynomial
kernel

LS-SVM
linear
kernel

Ac (%) 98.49 96.27 73.13

Sen (%) 98.65 96.19 71.84

Sp (%) 98.33 96.36 74.4

AUC (%) 98.49 96.27 73.15

Pr (%) 98.25 96.21 74.28

F-score (%) 98.45 96.20 73.04

the top 20 ranked features selected by MV-SVT are relevant
features.

Themain objective of applying theMV-FSTwas to reduce
the number of features and minimize the computational time
and load of classification. Figure 4 shows the area under the
receiving operating characteristic curve (ROC) of the various
LS-SVM classifiers using the top-ranked 20 features. A large
area under the ROC expresses the high classification perfor-
mance [24]. The obtained results indicated that the LS-SVM
classifier with RBF kernel is the most appropriate machine
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Table 6 Comparison with earlier
T2DM identification techniques Author PPG signal and Features Classification algorithm Classification

Performance (%)

Keikhosr-avi et al. [5] Bilateral finger PPG and
singular value
decomposition-based
features

Naïve Bayes Ac � 93.5%,
Sen � 100%,
Sp � 87.0%

Ramu Reddy et al. [6] HRV, shape of PPG signal,
Nonlinear, Time &
frequency domain
features

SVM + fusion method Ac � 89%,
Sen � 90%,
Sp � 88%

Nirala et al. [8] Toe PPG signal, PCA
related & Time-domain
features

SVM Ac � 97.87,
Sen � 98.78%,
Sp � 96.61%

Avram et al. [11] Mobile-phone-based PPG
signal

34-layer CNN deep
learning

Ac � 77.2%

Qawqzh et al. [7] Age and four PPG
morphological-based
features

Neural network Ac � 85.5%

Zhang et al. [10] Features of PPG signal
obtained from
smartphone fingertip
video

Gaussian SVM Ac � 81.49%

Proposed work Toe PPG signal &
TQWT method and log
energy entropy and
fuzzy entropy features

LS-SVM with RBF
kernel

Ac � 98.51%,
Sen � 98.64%,
Sp � 98.38%

learning classifier to distinguish T2DM from healthy PPG
signals.

We now compare the proposed study to the previous PPG-
based T2DM detection techniques. The results are shown in
Table 6. Keikhosravi et al. [5] used bilateral PPG signals for
T2DM screening by using an improved model of the upper
vascularity of the human body. Singular value decomposition
(SVD) was employed for the feature reduction and the Naïve
Bayes was applied for classification. Ramu Reddy et al. [6]
extracted time, frequency, nonlinear, shape, and heart rate
variability-based features from the PPG signal. SVM with
a weighted fusion was applied for T2DM classification. For
comparison purposes, another research utilized time-domain
features with the SVM classification algorithm [8]. Further-
more, smartphone-recorded PPG signals were utilized for
the analysis of T2DM by a 34-layer CNN deep learning
algorithm [11]. In addition, for the analysis of T2DM the
demographic parameter age and four-time-domain features
were used that correlated with the HbA1C test, and a neu-
ral network was applied for classification [7]. Recently, the
PPG signal’s features were extracted from smartphone fin-
gertip videos, and classification was done using a Gaussian
SVM classifier for T2DM identification Gaussian fitting-
based feature extraction approach was used to extract time
and frequency domain features [10]. However, Table 6 shows
that the proposed TQWT method with MV-FST + LS-SVM

+ RBF kernel classification-based T2DM identification sys-
tem was a more accurate technique compared to the earlier
methods. In Table 6 the results of proposed method are high-
lighted in bold.

The proposed work is focused on the application of
TQWT-based time–frequency characteristics of the PPG sig-
nal for classification of healthy and T2DM patients. The
primary reason for the good performance of our approach
is appropriate selection of relevant subbands using TQWT
and further using those subbands for feature extraction. We
used the nonlinear features that are useful to depict the
dynamic behavior of the PPG signal for healthy and T2DM
subjects. Also, the LS-SVM classifier with RBF and Poly
kernel provides excellent performance for the classification
of nonlinear data.Hence, the proposedmethod achievedgood
performance due to the appropriate selection of parameters
(Q � 1, r � 3, and J � 15) of TQWT and the kernel for
the LS-SVM classifier. High classification performance was
obtained using 1510 samples. The primary reason of increas-
ing the sample size using segmentation was to improve the
generalization of our proposed methodology. Also, previ-
ous studies such as Ramu Reddy et al. [6], Nirala et al. [8],
Qawqzh et al. [7], Zhang et al. [10] used much lesser num-
ber of samples compared to our study. In TQWT, the tuning
of the Q-factor provides an accurate decomposition of an
oscillating signal with the least information loss. TQWT’s
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time–frequency distributions provide accurate time and fre-
quency localization.Theproposed approachutilizing entropy
features extracted from TQWT SBs of PPG signal with an
LS-SVM classifier can be a promising non-invasive tech-
nique for the identification of T2DM.

Along with advantages, our study suffers from some lim-
itations. First, our data size is very small, we used the PPG
signal of only 151 participants acquired by Nirala et al. [8].
However, the sample size used in this study ismuchmore than
those in previous studies. In addition, this research aimed to
make a non-invasive approach to T2DM identification that
can differentiate between healthy and T2DM patients. Thus,
this system is unable to estimate glucose levels. In future,
optical approach for non-invasive glucose level detection can
be developed. Further, we used only three kernel functions
of the LS-SVM classifier. In future, it is possible to design
new kernel functions and utilize them with the LS-SVM
to improve the classifier’s performance. Although, TQWT
requires parameter adjustment. This limitation can be solved
by employing an optimization method to select the param-
eters of TQWT for a specific signal automatically. Another
limitation of TQWT is that extracting features from the long
duration of the PPG signal takes a very long time. In the
future, we can overcome this limitation by using some more
advanced wavelet transforms like flexible analytical wavelet
transformandFourier–Bessel series expansion.This research
yields encouraging results and makes the groundwork for
the evolution of intelligent non-invasive T2DM identifica-
tion technology that plays a significant role in the treatment
of T2DM.

4 Conclusions

This study proposed a photoplethysmography-based auto-
matic type-2 diabetes (T2DM) detection technique using
tunable-Q wavelet transform and least-square support vector
machine (LS-SVM)classifierwithRBFkernel. The extracted
features are evaluated using classifiers like LS-SVM to clas-
sify normal and T2DM groups. The main findings of the
suggested work are as follows. (1) TQWT-based entropy fea-
tures can be useful for diagnosis of type-2 diabetes with high
accuracy, (2) the LS-SVM classifier along with RBF kernel
achieves high classification performance in detecting T2DM,
(3) the proposed technique classifies two events healthy and
type-2 diabetes with classification performance Ac 98.51%,
Sen 98.64%, and Sp 98.38%. (4) The proposed automatic
type-2 diabetes diagnosis technique can be useful in routing
clinical scenario and telemedicine applications. This tech-
nique can be utilized for the diagnosis and analysis of other
heart diseases using PPG signals in future.
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