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Abstract
Single-image dehazing is an important problem for high-level computer vision tasks since the existence of haze severely
degrades the recognition ability of computers. Most recent works tend to combine prior-based dehazing method with a
convolutional neural network to improve the dehazing effect in real scenes. However, these methods do not tackle with the
color shifts caused by prior-based methods effectively. In this paper, we propose a prior-combined dehazing network based on
mutual learning. Specifically, we build two sub-networks to achieve dehazing by both supervised and unsupervised ways. The
supervised sub-network is optimized by ground truth, which provides color fidelity but may acquire under-dehazed images
when applied to real scenes. The unsupervised sub-network is optimized by the dehazed images of dark channel prior, which
improves the generalization ability but introduces some color shifts or artifacts. Since the dehazing of these two sub-networks
shows complementary advantages, a mutual learning mechanism is built for the joint optimization. And we propose a feature
fusion module based on the perceptual differences to acquire the final results. The experimental results demonstrate that our
method surpasses previous state-of-the-arts on both synthetic and real-world datasets.

Keywords Prior-combined dehazing · Mutual learning mechanism · Feature fusion

1 Introduction

Haze is a commonly natural phenomenon, which makes the
captured image degraded, and further hinders the recognition
capability of computers. Thus, as a key prerequisite of high-
level computer vision tasks, single-image dehazing has been
extensively studied in recent years [1].

Single-imagedehazing canbe roughly divided intomodel-
based methods and model-free methods. The model-based
methods achieve dehazing via the following atmospheric
scattering mode [2]:

I (x) = J (x)t(x) + A(1 − t(x)) (1)

where I (x) denote the hazy images captured in hazy condi-
tions, and J (x) denote the restored haze-free images. A and
t(x) denote the atmospheric light and transmission maps,
respectively. Moreover, we have t(x) = e−βd(x) with β

and d(x) being the atmosphere scattering parameter and the
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scene depth, respectively. Equation (1) is an ill-posed prob-
lem, which means we cannot directly acquire a clear image
J (x) from a hazy image I (x) since both of A and t(x) are
underdetermined.

To this end, early model-based methods (also called as
prior-based methods) use the priors based on the observa-
tion of clear images to estimate the atmospheric light and
transmission maps. These methods include color-lines prior
(CLP) [3], boundary constraint and contextual regularization
(BCCR) [4], dark channel prior (DCP) [5], color attenuation
prior (CAP) [6], and non-local dehazing (NLD) [7]. Prior-
basedmethods have stronggeneralization for imagedehazing
but always cause color shifts and artifacts since the unilateral
hypothesis cannot estimate parameters accurately especially
in complex scenes. Thus, recent model-based methods tend
to utilize a designed convolutional neural network (CNN) to
estimate the atmospheric light and transmission map [8–11].
However, as a simplified hazy model, the atmospheric scat-
tering model cannot simulate the process of haze thoroughly
and may restrict the final dehazing performance [12].

To this end, more model-free works [13–18] are pro-
posed, which build an end-to-end CNN to directly map the
features between the hazy images and the corresponding
haze-free images. These end-to-end methods have showed
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strong dehazing ability in synthetic scenes, but they always
acquire under-dehazed images when applied to real scenes
due to domain shifts. In other words, the synthetic hazy
images cannot represent uneven haze distribution and com-
plex illumination in natural conditions andmaking the trained
model cannot hold in these scenes. Hence, some more recent
works [19–22] combine traditional priors (i.e., dark channel
prior) with learning-based methods to achieve better dehaz-
ing effect in both synthetic and real scenes. However, the
existing prior-combined dehazing methods cannot alleviate
the distortions caused by prior-based methods effectively,
and a more efficient feature aggregation mechanism should
be studied to combine the complementary advantages of
these two categories.

In this paper, we resort to knowledge distillation to solve
the problem, and propose a prior-combined dehazing net-
work dubbed as PCD. Knowledge distillation [23–25] is a
widely used method for parameter reduction, in which a
cumbersome network (teacher) is used to guide the learning
process of a designed light-weight network (student). Based
on it, recent dehazing works [23, 24] adopt the features of
ground truths to enhance the image restoration. And paper
[25] proposes amutual distillationmechanism to improve the
accuracy of a detection task. Inspired by them, we propose a
mutual learning mechanism to combine the complementary
merits of prior based methods and learning-based methods.
Specifically, we build two sub-networks to achieve dehazing
by both supervised and unsupervised learning. The super-
vised sub-network is optimized by the ground truths, and
the unsupervised sub-network is optimized by DCP dehazed
images. Hence, the outputs of supervised subnetwork pro-
vide color fidelity since the supervision contains completely
correct information, and the outputs of unsupervised sub-
network provide generalization ability to real scenes since the
DCP is a statistical law of clear images. Then a novel mutual
learningmechanism can be used to combine the complemen-
tary merits adoptively and acquire two preliminary dehazed
images. Moreover, since it is highly possible that either of
them is better than the other in some local regions, a fea-
ture fusion method (FFM) based on perceptual differences is
further proposed. The FFM merges the preliminary dehazed
images and then achieves better dehazing effect with real-
ness.

The main contributions of this paper are summarized as
follows:

1. We introduce a prior-combined dehazing (PCD) network
based on mutual learning to combine the merits of prior-
based methods and learning-based methods.

2. We propose a novel mutual learning mechanism to
achieve the joint optimization of the supervised sub-
network and unsupervised sub-network.

3. We propose a feature fusion module based on perceptual
differences to aggregate the outputs of the sub-networks,
which acquires the final dehazed images with clearer tex-
tures.

2 Network architecture

2.1 General architecture

Since it is hard to collect a large number of hazy images and
their haze-free images, the existing learning-based methods
still train the model by synthetic images. The synthetic hazy
images exist apparent differences from real hazy images w.r.t
haze distribution, and the CNN model lacks of the knowl-
edge to natural scenes, which results in that learning-based
methods acquire under-dehazed images in real scenes. Con-
sidering that traditional priors (i.e., dark channel prior) are
statistical laws of clear images, recent works tend to combine
the prior-based method with CNN-based methods to achieve
better dehazing effect in real scenes. However, since the prior
dehazed images contain severe distortion information such as
artifacts, illumination changes, color shifts and halos, these
prior-combined methods also suffer from image distortions
due to insufficient feature aggregation mechanism. Thus, as
shown in Fig. 1, a prior-combined dehazing network based
on mutual learning is proposed to solve the problem, which
consists of a supervised sub-network, an unsupervised sub-
network and a feature fusion module.

2.2 Supervised sub-network

The supervised sub-network achieves dehazing by end-to-
end strategies, which directly builds the mapping between
synthetic hazy images and ground truths. As shown in
Fig. 1, the supervised sub-network is based on a three scales
autoencoder structure. Differently, we replace traditional
convolutions with residual blocks for feature extraction since
the residual structure has been proved efficient for feature
flow. Specifically, we first extract the features of synthetic
hazy images by a convolutional layer, which changes the
channel number from 3 to 64. Then, two residual blocks
enhance the feature representation and a Down-Conv layer
downsamples feature maps to high-level semantic space. We
downsample features by two times and form three scales fea-
ture maps, and the features of the bottleneck layer are sent to
the decoderD to restore high-resolution results. The decoder
D contains the structures symmetric to the encoder E, in
which an Up-Conv is used to restore resolution, and then,
two residual blocks enhance unsampled features. During the
decoding process, the features of encoder E are sent to the
corresponding layer of decoder by skip connection to avoid

123



Signal, Image and Video Processing (2023) 17:1935–1943 1937

Fig. 1 The general architecture of our PCD, which consists of a super-
vised sub-network and an unsupervised sub-network optimized by the
ground truths and DCP dehazed images. The outputs of sub-networks

show complementary merits, and they are fused by perceptual differ-
ences to acquire final dehazed images

Fig. 2 The architecture of the perceptual feature fusion. The dehazed
images of two sub-networks are converted to LMN color space to esti-
mate the similarity of ground truths, and then, two weighed maps WD1

and WD2 are generated by softmax function to assign the dehazed
images D1 and D2 adoptively

the loss of spatial information. Thus, except for the first scale
in the decoder D, the features from the encoder E and the
previous scale features of D are concatenated as the input of
current scales until restoring the resolution same as the input
hazy images. Finally, the outputs of decoder are sent to a con-
volutional layer with the Tanh activation function to acquire
the dehazed images. Since the supervisions of supervised
sub-network are ground truths, the dehazed images achieve

high information fidelity although some regions are under-
dehazed.

2.3 Unsupervised sub-network

To generate the features of DCP method, we build an unsu-
pervised sub-network. As shown in Fig. 1, the unsupervised
sub-network has the same structures of supervised sub-
network. Differently, we train the unsupervised sub-network
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with the supervisions of the dehazed images of dark channel
prior (DCP) rather than ground truths. Since the supervisions
are fake ground truths (DCP dehazed images), we call it as
unsupervised learning in this paper. The DCP method has
been proved efficient in real haze removal although it may
introduce some distortions, especially in the sky regions. As
shown in Fig. 1, the outputs of unsupervised sub-network
have similar features of DCP dehazed images, which acquire
more discriminative textures although the sky regions suffer
from illumination oversaturations. Since the output images
of two sub-networks achieve complementary advantages, we
apply a mutual learning mechanism to optimize them adop-
tively by two extra distillation losses. The details of the
distillation losses can be seen in Sect. 2.5.

2.4 Feature fusion

In our method, D1 and D2 are dehazed images under the
supervisions of ground truths and DCP dehazed images,
respectively. Since the dehazed images D1 and D2 are
acquired by their own ways, it is highly possible that either
of them is better than the other in some local regions. Hence,
if better regions from either of D1 and D2 are assigned with
larger weights, a better result will be acquired. Since D1

are dehazed images with good fidelity and D2 are dehazed
imageswith visibility, the fusion should consider the realness
of D1 and maintain the same visibility of D2. Thus, we fuse
them based on the ground truths. The process can be divided
into the follows:

(1) Feature Extraction: Recent IQA research [22, 26]
has shown that images in LMN color space can be easily
estimated the color distortions and chrominance shifts. Con-
sequently, to objectively estimate the realness of dehazed
images D1 and D2, we first transform the images into the
LMN color space, which can be expressed as:

⎡
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N

⎤
⎥⎦ =

⎡
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⎤
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⎡
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R
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B

⎤
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(2) Similarity Calculation: We calculate the similarity in
LMN space to evaluate the realness of the dehazed images.
Taking the similarity value between dehazed image D1 and
ground truth as example. Supposing that L1(x), M1(x) and
N1(x) are computed from dehazed images D1; L2(x),M2(x)
and N2(x) are acquired from the ground truth. The similarity
SLMN
D1 at pixel x can be expressed as:

SLMN
D1 (x) = 2L1(x)L2(x) + C1

L2
1(x) + L2

2(x) + C1
× 2M1(x)M2(x) + C1

M2
1 (x) + M2

2 (x) + C1

× 2N1(x)N2(x) + C1

N 2
1 (x) + N 2

2 (x) + C1
(3)

where C1 is a constant set to 130 as suggested in [26].
(3) Weight generation and feature fusion:
To make the final result contains more realistic informa-

tion, we convert the similarity into weights for the feature
fusion process. Supposing that SLMN

D1 denotes the similarity
value between dehazed image D1 and the ground truth at
pixel x; SLMN

D2 denotes the similarity value between dehazed
image D2 and the ground truth. The weights of dehazed
images D1 and D2 at pixel x can be expressed as:

[
WD1(x)
WD2(x)

]
= Softmax

([
SLMN
D1 (x)

SLMN
D2 (x)

])
(4)

where Softmax denotes the softmax function that generating
weighs adoptively based on the similarity SLMN

D1 and SLMN
D2 .

Note that WD1(x) + WD2(x) = 1.
In the end, we aggregate the preliminary dehazed image

D1 and D2 based on their weights, and the final result can be
expressed as:

DFin = WD1 ⊗ D1 + WD2 ⊗ D2 (5)

where DFin denotes the final dehazed image, and WD1 and
WD2 are the generated weights of dehazed images D1 and
D2, respectively. ⊗ denotes the pixel-wise product.

2.5 Loss function

Paper [27] has shown that the combination of pixel-wise loss
and feature-wise loss can effectively mimic feature differ-
ences between two images. Thus, we use L1 loss, perceptual
loss and distillation loss to train the proposed PCD, and the
total loss function of supervised sub-network and unsuper-
vised sub-network can be expressed as:

LSup = L1 + λ1LPer1 + λ2L(D1‖D2) (6)

LUns = L2 + λ1LPer2 + λ2L(D2‖D1) (7)

where LSup and LUns are losses of the supervised sub-
network and unsupervised sub-network, respectively. L1 and
L2 denote the L1 loss, and LPer1 and LPer2 denote the per-
ceptual loss. λ1 and λ2 are the weight coefficients equal
to 1. Moreover, L(D1‖D2) and L(D2‖D1) denote the dis-
tillation losses, which make the supervised sub-network
(unsupervised sub-network) mimic the features of unsuper-
vised sub-network (supervised sub-network), respectively.

2.5.1 L1 loss

L1 loss (mean absolute error) can rapidly minimize the fea-
ture differences between hazy images and clear images by
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per-pixel comparison, and thus, we add L1 loss for network
training. Different fromL2 loss (mean squared error), L1 loss
trains network more stably, which can be expressed as:

L1 = ∥∥Jdcp − D1
∥∥
1 (8)

L2 = ‖J − D2‖1 (9)

where Jdcp and J represent DCP dehazed images and ground
truths, respectively. D1 and D2, respectively, represent the
output of supervised sub-network and unsupervised sub-
network. ‖·‖1 denotes the L1 loss.

2.5.2 Perceptual loss

Perceptual loss [28] compares two images by perceptual and
semantic differences, which effectively helps the network
restore more vivid images. In this paper, we pretrain VGG19
network [29] on the ImageNet [30] and extract features of
the convolutions in number 2, 7, 12, 21 and 30 to calculate
losses. The perceptual losses used in supervised sub-network
and unsupervised sub-network are, respectively, denoted as
LPer1 and LPer2, which can be expressed as:

LPer1 =
5∑

i=1

1

Ci HiWi
‖�i (GT ) − �i (D1)‖1 (10)

LPer2 =
5∑

i=1

1

Ci HiWi

∥∥�i
(
Jdcp

) − �i (D2)
∥∥
1 (11)

where �i (·) (i = 1, 2, 3, 4, 5) denotes the five scales per-
ceptual features extracted from the trained VGG19 network.
Ci , Hi and Wi represent the number of channel, height, and
width of feature maps.

2.5.3 Distillation loss

Due to a limited feature aggregation, recent prior-combined
methods cannot deal with the distortions caused by prior-
based methods. Since the supervised sub-network and unsu-
pervised sub-network show complement merits about image
dehazing, we aggregate the features by the mutual learning
mechanism with two designed distillation losses:

L(D1‖D2) = L(D2‖D1) = ‖D2 − D1‖ (12)

3 Experiment and analysis

In Sects. 3.1 and 3.2, we introduce the used datasets and the
experimental details, respectively. In Sect. 3.3, we compare

the proposed PCD with some state-of-the-arts on both syn-
thetic dataset and real-word dataset and analyze the results
by both qualitative and quantitative ways.

3.1 Datasets

For training, we use the Indoor Training Set (ITS) in Realis-
tic Single Image Dehazing (RESIDE) [31], which contains
13,990 synthetic indoor hazy images and the corresponding
haze-free images. For testing, we use the Synthetic Objective
Testing Set (SOTS) in RESIDE, which contains 500 paired
images captured in indoor and outdoor scenes, respectively.
To compare the results quantificationally, the peak signal-
to-noise ratio (PSNR) and structural similarity (SSIM) [32]
are used. Moreover, to show the generalization in natural
scenes, some real-world images in URHI dataset [19] are fur-
ther used. Since the real-world images do not contain their
ground truths, we only qualitatively compare the results.

3.2 Implementation details

We achieve our PCD by PyTorch framework. For training,
we reshape all the training images as 256 × 256. Moreover,
we set the training batch size as 4 and set the total epochs
as 20. To optimize the network and accelerate the training
process, theAdam [33] optimizer is usedwith the attenuation
coefficient being β1 = 0.9 and β2 = 0.999, respectively. In
addition, the initial learning rate is set as 0.0002, and we
decrease it to half after every two epochs.

3.3 Experimental results

3.3.1 Results on synthetic images

To show the effectiveness of our PCD, we test on both the
indoor and outdoor images in SOTS. Figure 3 shows the
results, we can find that prior-basedmethods (DCP, NLD and
CAP) dehaze effectively in both indoor and outdoor scenes
but suffer from halos, color shifts and artifacts. By con-
trast, learning-basedmethods (GridDehazeNet andMSBDN)
dehaze effectively in indoor scenes due to trained by indoor
dataset. But unfortunately, GridDehazeNet introduces many
artifacts for outdoor scenes, which shows its poor general-
ization ability. Better than these methods, prior-combined
methods (PSD, RefineDNet andOurs) perform stably in both
indoor and outdoor scenes. However, there is some residual
haze in the results of PSD. And the results of RefineDNet
suffer from some color shifts. Only our PCD can effectively
dehaze and provide color fidelity.

To compare the results quantitatively, we calculate the
average PSNR and SSIM. Table 1 shows the results; for
indoor scenes, our PCD achieves the third-best results with
the PSNR and SSIM being 27.34 dB and 0.971, respectively.
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Fig. 3 Results on images of SOTS. The upper three rows are the results of synthetic indoor images, and the bottom three rows are the results of
synthetic outdoor images

Table 1 Quantitative comparison
on SOTS Dataset SOTS FLOPs (KM)

Indoor Outdoor

PSNR SSIM PSNR SSIM

DCP 19.85 0.872 20.44 0.898 –

NLD 17.29 0.801 18.11 0.871 –

CAP 18.87 0.848 19.01 0.868 –

GridDehazeNet 32.16 0.984 16.21 0.783 247.1

MSBDN 32.67 0.983 20.46 0.916 89.2

PSD 17.23 0.74 15.14 0.77 289.1

RefineDNet 26.14 0.962 18.84 0.764 96.1

Ours 27.34 0.971 23.72 0.934 79.2

Number in bold, italic and bold–italic denote the best, second-best and third-best results, respectively. KM

represents the number of FLOPs setting as 1 × 109
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But for outdoor scenes, our PCD improves PSNR from 20.46
to 23.72 dB and increases SSIM by 0.018 when compared
with the second-best method MSBDN. The results show
that learning-based methods (PSD and RefineDNet) drop the
performance when applied to outdoor scenes. But our PCD
alleviates it by adopting the efficient mutual learning mech-
anism to combine prior-based and learning-based ways. In
addition, the comparison of FLOPS shows our PCD achieves
dehazing with the minimum computational overhead.

3.3.2 Results on real hazy images

To verify the generalization ability to natural scenes, we fur-
ther evaluate the dehazing performance on real-world images
in URHI [19]. As shown in Fig. 4, prior-based methods
still dehaze effectively and restore most textures for these
scenes. But unfortunately, some color shifts, artifacts or
residual haze may exist. By contrast, learning-based meth-
ods fail to these scenes and there are a large amount haze
in the results of GridDehazeNet and MSBDN. This further
verifies that prior-based method has more stable dehazing
performance than learning-based methods since the perfor-
mance of learning-based methods is restricted by training
data. For prior-combined methods, PSD acquires visually
pleasing results with some illumination changes. RefineD-
Net darkens the images and also removes most haze. Better
than them, our PCD removes more dense haze existing in the
sky regions.

3.4 Ablation study

3.4.1 Ablation study on the overall architecture

To show the effectiveness of the overall architecture, we con-
duct some ablation studies to explore the influences of the
following three key factors: supervised learning (SL), unsu-
pervised learning (UL), mutual learning mechanism (MLM)
and feature fusionmodule (FFM). Thus, we construct the fol-
lowing variants: (1) SL, only train the network by supervised
learning; (2) SL + UL, train the network by both supervised
learning and unsupervised learning, and combine the outputs
by channel-wise concatenation; (3) SL + UL + MLM, train
the network by both supervised learning and unsupervised
learning with mutual learning mechanism; (4) SL + UL +
MLM + FFM (Ours), replace the channel-wise concatena-
tion by feature fusion module. We train these variants on the

ITS dataset for 20 epoch and test on the outdoor dataset of
SOTS. Table 2 shows the results, the proposed PCD achieves
the best metrics with PSNR and SSIM being 23.72 dB and
0.934, respectively. Specifically, by adding UL, the proposed
PCD significantly improves PSNR from 20.15 to 22.46 dB
and increases SSIM by 0.021. Moreover, by adding MLM,
the PCD further combines the merits of prior-based method
and learning-based method, which improves the metrics by
0.96 dB and 0.013. Finally, adding the FFM acquires a better
result and also provides a little gain.

3.4.2 Comparison for different prior

In our PCD, we use the DCP dehazed images as fake ground
truths to achieve unsupervised learning and improve the gen-
eralization ability. Hence, it is important to compare the
effectiveness with different prior-based methods. Thus, we
acquire the dehazed images ofDCP [5], CAP [6] andNLD [7]
and use them to train the network, respectively. The quantita-
tive comparisons of 500 outdoor images of SOTS are shown
in Table 3, and the DCP combined network acquires bet-
ter results than NLD combined network and CAP combined
network, which shows the DCP method may have the best
generalization in various scenes. Due to trained by indoor
images, GridDehazeNet acquires poor metrics. Moreover,
although PSD combines with multiple prior-based methods,
the insufficient fusion mechanism causes severe color shifts
and drops the metrics.

4 Conclusion

In this paper, we propose a prior-combined dehazing (PCD)
network based on mutual learning. The PCD uses two sub-
networks optimized by the ground truths and prior dehazed
images to acquire two preliminary dehazed images and uti-
lizes a novel mutual learning strategy to further aggregate
the complementary features. In addition, a perceptual fea-
ture fusion method is proposed to maintain the dehazing
ability while alleviate distortions. Experimental results on
both synthetic and real-world images have shown that our
PCD achieves better results in real scenes although it only
acquires the third-best results in synthetic scenes. A more
efficient prior-combined strategy will be studied in our fur-
ther work.
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Fig. 4 Results of images in URHI, our method still dehazes effectively in these natural scenes

Table 2 Results of different
variants about the overall
architecture

Metrics SL SL + UL SL + UL + MLM Ours

PSNR/SSIM 20.15/0.895 22.46/0.916 23.42/0.929 23.72/0.934

Table 3 Results of our PCD with
different prior dehazed images as
guidance

Metrics DCP as
guidance

NLD as
guidance

CAP as
guidance

GridDehazeNet PSD

PSNR/SSIM 23.72/0.934 23.42/0.927 22.69/0.926 16.21/0.783 15.14/0.77
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