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Abstract
Low-light images often suffer from quality degradation, such as low contrast, poor visibility, and latent noise in the dark.
We propose a straightforward and efficient Retinex-based method to enhance the low-light image that is named RME. The
algorithm differs from the existing algorithms. RME is directly improving the reflectancemap to enhance images. Aswe know,
the reflectance map contains many colors and texture detail information. Therefore, we consider the direct enhancement of the
reflectance map yields better visual quality for the low-light image. Extensive experiments show that the RME algorithm gets
better results of the low-light image enhancement than the popular methods. We show the advantages of the RME algorithm
in enhancing low-light images through qualitative and quantitative analysis.

Keywords Low-light image · Image enhancement · Illumination adjustment · Retinex

1 Introduction

The low-light image usually suffers from low contrast and
poor visibility [1, 2]. Besides, many vision tasks such as
autonomous driving, remote sensing, and railway disas-
ter prevention surveillance would suffer from performance
degradation due to the bad quality of low-light images
[3]. Therefore, the LLIE has been extensively studied and
achieved remarkable progression. For example, histogram
equalization (HE) algorithms [4–6], the Retinex-based algo-
rithms [7–29], the de-hazing algorithms [30], and the data-
driven learning algorithms [31–35] have been proposed.
However, it is still a challenge to enhance the low-light image
captured from complex light conditions

This paper briefly reviews the main methods and tech-
nologies of low-illumination image enhancement.
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HE-based methods are the simplest method to enhance
the low-light image [4–6]. However, it may lead to over-
enhancement and color distortion. Some improved methods
[36–41] have been proposed to overcome the above prob-
lems. In recent work, Lee et al. [42] proposed a novel contrast
enhancement algorithm based on the layered difference rep-
resentation of 2D histograms. However, this method results
in loss of image details and noise amplification.

Retinex-based algorithms regarded the image as the prod-
uct of the illumination map and the reflectance map [7–13].
For single-scale Retinex (SSR) [12] and multi-scale Retinex
(MSR) [13], treat the reflectancemap after removing the illu-
mination map from the input image as the final enhanced
result. However, the methods may lead to halo artifacts
and color distortion in the low-light image enhancement.
[14–17] proposed an adaptive filtering algorithm to reduce
the color distortion and the halo artifacts of the image.
Petro et al. [18] proposed a multi-scale Retinex chromi-
nance preservation algorithm (MSRCR) to enhance details
and contrast with color correction. Besides, [19–23] fur-
ther improve the performance of MSRCR. However, these
methods may cause over-enhancement [23]. Fu et al. [24]
proposed adjusting the illumination map by fusing multi-
ple derivations of the initially estimated illumination map
(MF). Since the illumination map structure is blind, MFmay
lose the realism of the texture-rich regions. Guo et al. [25]
proposed a method of low-light image enhancement via illu-
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minationmap estimation to refine the initial illuminationmap
by imposing a structure-aware prior. However, there is the
lack of constraints on the reflectance map, and the noise
in the image may be amplified. Wang et al. [26] proposed
a naturalness-preserving enhancement algorithm (NPEA),
used a bright-pass filter to estimate the illumination, and
presented a bi-log transformation to adjust the illumination
map to avoid over-enhancement. Kimmel et al. [27] pro-
posed a Retinex-based variational framework to transform
the illumination map estimation into an optimal quadratic
programming problem. Although the algorithm is highly
complex, the enhancement result is promising. Fu et al. [28]
proposed a weighted variational model (SRIE) that can esti-
mate the reflectance map accurately while suppressing noise
and processing the illuminationmap to enhance the low-light
images. The algorithm shows impressive results. However,
it does not consider the noise.

The dehazing-based method [30] tried to treat the inverted
low-light image as a hazy image. However, the low-light
image enhancementmethod based on dehazing lacks the nec-
essary physical explanation [30].

The significant effect of deep convolutional neural net-
works (CNNs) leads to the development of data-driven image
enhancement algorithms [31]. Thesemethods usually require
paired images to train the model. However, obtaining images
of different luminance in the same place is a challenge [31].

The low-light enhancement methods tend to improve vis-
ibility by enhancing image luminance. However, this way
may cause the visual effect to be unnatural.DeepRetinex-Net
combines deep learning with Retinex to decompose images
into illumination and reflectance maps using the neural net-
work and gets good low-light image restoration results [32].
Chen et al. [33] develop the processing of low-light images,
based on end-to-end training of a fully convolutional net-
work. The network replaces much of the traditional image
processing method, which performs poorly in such data.
Shen et al. [34] propose a semantic-guided zero-shot low-
light enhancement network for low-light images, which is
trained in the absence of paired images, unpaired datasets,
and segmentation annotation, and the model outperforms the
previous state-of-the-art qualitatively and quantitatively.

In low-light image enhancement, the enhancement may
cause dark areas to become brighter, which is an unnatural
visual effect for the human visual system [26], as shown in
Fig. 1b.

In this paper, different from the existing Retinex-based
low-illumination image enhancement methods, we propose a
restoration algorithmbased on enhanced reflectancemaps for
low-illumination images. It is well known that the reflectance
map contains rich texture and color information. Therefore,
we believe that directly enhancing the reflectance map is
more effective than adjusting the illumination map. Adel-
son’s shadow experiments show that reducing the intensity

Fig. 1 The over-enhancement result of the weak light image. (a) Weak
light image. (b) Over-enhance results

of the illumination map can improve the contrast of the
image. Accordingly, we reduce the intensity of the illumi-
nation map to get more color and structure information from
the reflectance map, based on the Retinex model. The details
are described in Sect. 2.

The contributions of this paper are as follows. (1) Our
scheme is the first to use the enhanced reflectance map to
recover low-light images. (2) We propose a novel gamma
correction to maintain the naturalness of the image. (3) We
created a dataset of nighttime railroad scenes. (4) Compared
with the referencemethod, ourmethodhas a faster processing
speed.

The rest of this paper is organized as follows. Section 2
describes the algorithmic details of RME. Performances of
the proposed method are evaluated both quantitatively and
qualitatively in Sect. 3. We conclude in Sect. 4.

2 Method

We propose an effective algorithm for low-illumination
image enhancement. Unlike existing algorithms, our algo-
rithm recovers the low-illumination image by enhancing the
reflectance map. We reduce the intensity of the illumination
map to get an enhanced reflectance map based on Adelson’s
checker shadow experiment and the Retinex model. Then,
we apply an adaptive gamma correction to the illumination
map and the reflectionmap, respectively. Finally, the gamma-
corrected reflectance map and illumination map are fused to
get the enhanced results. The experimental results show that
our method achieves impressive results. The overall frame-
work is shown in Fig. 2.
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Fig. 2 The model of low-light image enhancement is proposed in this
paper

2.1 Retinexmodel and Adelson checkerboard
shadow experiment

2.1.1 Retinex model

In the Retinex model, the input image can be considered as
the product of the reflectance map and the illumination map,
as shown in Eq. 1:

S � R•L (1)

where S is the input image, and operator ‘•’ denotes element-
wise multiplication. R is the reflectance map that represents
the characteristics of texture and structure. L is the illumina-
tion map that represents the distribution of light intensity in
the image. Most of the existing Retinex-based methods are
get enhanced results of low-light images by adjusting the illu-
mination map. However, these methods may lead to image
enhancement results with over-enhancement, color distor-
tion, noise, and unnatural visual effects. It is well known
that reflectance maps contain more information than illumi-
nation maps. Therefore, it is more effective to process the
reflectance map than the illumination map.

2.1.2 Adelson checkerboard shadow experiment

In the Adelson checker shadow experiment, for most people,
square A seems to be darker than square B, as shown in
Fig. 3a.However, inFig. 3b, twovertical reference bars reveal
that square A and square B are the same, which is S(A) �
S(B). We noticed that square B is in the cylinder’s shadow, so
the luminance intensity of square A is higher than square B,
which is L(A) >L(B). According to the equation of Retinex
S � R • L , it can derive the reflectance map of square A is
smaller than square B, which is R(A) <R(B).

Adelson’s experiments show that reducing light levels can
improve the contrast of images. The core of our proposed
algorithm is built on this basis.

Fig. 3 Adelson’s checker shadow illusion. (a) The original image of
the illusion. The squares marked A and B are the same shade of gray,
yet they appear different. (b) The original image plus two stripes. By
joining the squaresmarkedA andBwith two vertical stripes of the same
shade of gray, it becomes apparent that both squares are the same

2.2 Reflectancemap enhancing (RME)

The core idea of this paper comes from the Adelson exper-
iment and the Retinex model. The algorithm recovers a
low-light image by processing the reflectance map.

2.2.1 Solving reflectance and illumination map

This paper uses a multi-scale Gaussian low-pass filter to
extract the illumination map from the input image. The
reflectance map is got by R � S/L, based on the Retinex
model.

The illumination map L is formulated as follows:

Li (x, y) �
N∑

n�1

Wn · { log[Si (x, y) ∗ Fn(x, y)]} (2)

where Li (x, y) is the estimated value of the illumination
map, Si (x, y) is the ith channel two dimensional matrices
of the input image, mark ∗ denotes the convolution operator,
n varies from 1 to N different scales, and W represents the
weighting parameters for each scales. Fn(x, y) represents the
Gaussian surround function. It can be defined as:

Fn(x, y) � Kn exp

[−(x2 + y2)

σ 2
n

]
(3)

where Kn is selected so that
˜

Fn(x, y)dxdy � 1, σ is the
standard deviation of Gaussian function.

The different scale filters can extract diverse feature infor-
mation on the input image. In this paper, we set five scales
low-pass filter to get more information from the input image.

To get an enlarged reflection map, we reduce the lumi-
nance intensity of the illumination map, as shown below:

Lw � λ1 × L, s.t . 0 < λ1 < 1 (4)
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where Lω is the illumination map with reduced bright inten-
sity, and λ1 is the weighting coefficient. The value λ1 is
proportional to the brightness of the input image.

To reduce the computational cost, we estimate only the
illumination map. The reflectance map is solved according
to Eq. 1, as follows.

R � S
/
Lw (5)

The low-light images are often got under complex light-
ing conditions, such as non-uniform lighting. This imposes
higher requirements on the algorithm. Therefore, we further
improve themethod by introducing luminance compensation
and gamma correction.

2.2.2 Adaptive gamma correction

We propose an adaptive gamma correction method based
on the radiation intensity of the image environment and
introduce the principle of the proposed adaptive gamma cor-
rection, taking the gamma correction of the reflectance map
as an example. The formula is as follows:

Rg � (R)γ , γ�(λ2)
fmean (V )−(R∗255)

fmean (V ) (6)

where Rg denotes the gamma-corrected reflectance map,
fmean(V ) is the average of the V channel luminance in HSV
space, and λ2 is the intensity control factor for gamma cor-
rection, and we set λ2 as greater than 1.

It is well known that the better result of ambient light
enhancement can significantly improve the visual effect of
low-light images. Therefore, the difference between ambient
light and reflectance map is used as an adaptive variable to
control the gamma factor in our algorithm. The gamma fac-
tor is proportional to the difference in brightness between the
light and dark areas of a non-uniform low-light image. Our
proposed adaptive gamma correction takes fmean(V ) as the
ambient light intensity of the image, and the dark and bright
areas away from the fmean(V ) are the areaswhere the gamma
correction focuses on adjusting. We use the ambient light
intensity as the reference point for image brightness restora-
tion to better maintain the original naturalness of the image.
Therefore, we use the difference between the fmean(V ) and
the ‘R’ map as a control γ -value adaptive factor to balance
the illumination of light and dark areas of low-light images.

In Fig. 2b, a schematic of our gamma correction curve is
shown.

In Fig. 4a, b, the black dashed line indicates the gamma
correction for γ � 1, and the blue solid line in Fig. 4a indi-
cates the gamma correction for γ < 1. The solid green line in
Fig. 4b indicates our gammacorrection curve,which is equiv-
alent to translating the gamma correction curve for γ>1 in
Fig. 4a.

Fig. 4 Schematic of our gamma correction curve. (a) The blue curve
indicates the gamma correction commonly used in existing methods for
LLIE. (b) The green solid line indicates our gamma correction curve

It improves the overall brightness of low-light images,
avoids overexposure of bright areas, and suppresses noise
amplification in dark areas.

2.2.3 Image naturalness preservation

As we know, the illumination map is essential for image
naturalness preservation [2, 3]. We apply the same adaptive
gamma correction on the illumination map to ensure it is
consistent with the reflectance map. This way maintains the
naturalness of the image and improves the visual effect. The
formula is as follows:

Lg � 255

(
L

255

)γ

, γ�(λ2)
fmean(V )∗Ie−L
fmean(V )∗Ie , s.t. 0 <Ie < 1 (7)

where L is the estimated illumination map, Ie is the ambient
light intensity coefficient, and Ie is inversely proportional to
the ambient light intensity of the image. The curvature of
the curve for gamma correction will affect the light–shadow
relationship of the enhanced image. In this paper, the value
of λ2 is close to 1 to maintain the naturalness of the image.

In this paper, the enhanced result Se is obtained by fusing
the reflectance map Rg and the illumination map Lg. The
formulation Se is given as follows:

Se � Lg • Rg (8)

Finally, we convert Se back to RGB space to get the final
image enhancement result. Figure 5b shows enhancement
results of the low-light image under non-uniform luminance.
The dashed box represents the results in the bright and dark
areas of the image with an enlarged display, respectively. As
you can see, the method improves the contrast and visibility
of the image. Significantly, the dark area noise of the image
is not amplified, and the bright area is not over-enhanced.
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Fig. 5 The result of keeping the image natural and enhancing the bright-
ness. (a) Non-uniform and low-light image. (b) Our method enhances
the results of (a). Some areas are highlighted by red and green rect-
angles, and zooming-in is commended for better visualization and
comparison

Fig. 6 Intermediate results and effectiveness of the algorithm. (a) Input
image. (b) The reflectance map was obtained via our algorithm. (c) The
reflectance map Rg was obtained by adaptive gamma correction

Algorithm: Low-Light Image Enhancement by RME
Step-1. Obtain the illumination map L of the input image according 

to Eq. (2).

Step-2. Obtain the reduced illumination map , and compute 

via Eq. (4).

Step-3. Obtain the enhanced reflectance map according to Eq. (5).

Step-4. Obtain the and by adaptive gamma correction and 

compute via Eq. (6,7).

Step-5. Obtain LLIE result and compute via Eq. (8).

2.2.4 Ablation study

In this section, we show the intermediate results of our algo-
rithm and verify the utility of each part of the algorithm
through ablation experiments.

Figure 6b shows the reflectancemapR, andFig. 6(c) shows
the reflectance map Rg via adaptive gamma correction by
our algorithm. One can see that the Rg better balances the
illumination of light and dark areas of the image, and the
visualization of image details is better than R.

As shown in Fig. 7, the middle row, one can find that the
bright and dark areas of the image appeared overexposed and
underexposed, respectively. Comparing the middle row and
the bottom row in Fig. 7, we can find that the visual effect of
the bottom row is significantly better than that of the middle
row.

In conclusion, the above analysis proves that our pro-
posed method is effective for adaptive gamma correction of
reflectance and illumination maps.

Fig. 7 Top row: Input low-light images. Middle row: Enhanced results
of performing adaptive gamma correction on reflectance maps only.
Bottom row: The results enhanced by our method

3 Experiments

In this paper, we compare 6 representativemethods including
LDR [36], MSRCR [20], NPEA [26], MF [24], SRIE [28],
and LIME [23]. We select images with challenging from the
LOL and the self-created dataset, forming an image testing
dataset that includes 150 low-light images under different
luminance conditions, such as backlit, non-uniform light, and
extremely dark. The experiment results reveal the advantage
of ourmethod in comparisonwith other state-of-the-artmeth-
ods.

The results of these methods are produced by perform-
ing codes in MATLAB on a PC with Intel i5-6500, 8 GB
RAM, and these codes are obtained from the authors’ web-
sites. To ensure fair comparisons, we set the parameters of
these methods to be the recommended ones.

The complexity of the proposed algorithm is O (m × n ×
Imax),wherem, n are sizes bypixel of thewidth and theheight
of an image, Imax � 255.Table 1 shows the average run times
of testing 150 low-light images for the various methods. The
underlined Bold and Bold numbers in the table indicate the
optimal and suboptimal running times, respectively.

To test the robustness of the algorithms in complex lumi-
nance conditions, we tested the performance of the algorithm
in different low-illumination scenarios, such as extreme low
illumination, backlit, non-uniform illumination, and actual-
world scenes, as in Figs. 8, 9, 10, 11.

3.1 Color distortion of LLIE

In this section, the group experiment aims to reveal the effect
of color distortion in the low-light image enhancement field.
As Fig. 8 shows, our algorithm restores the original color and
gets a clear image enhanced result. It is better than compari-
son algorithms.

123



1498 Signal, Image and Video Processing (2023) 17:1493–1502

Table 1 Average running time
of relevant methods Method LDR MSRCR NAPE MF SRIE LIME Prop

Average Time (s) 1.38 2.18 87.96 18.20 2.68 2.72 1.93

Fig. 8 The experiment results of the color distortion detection. (a) Test image. (b) LDR [36]. (c) MSRCR [20]. (d) NPEA [26]. (e) MF [24]. (f) SRIE
[28]. (g) LIME [23]. (h) Proposed RME

Fig. 9 Visual results of different methods of the backlit illumination image. (a) Test image, (b) LDR [36], (c) MSRCR [20], (d) NPEA [26], (e) MF
[24], (f) SRIE [28], (g) LIME [23], and (h) our RME are presented

Fig. 10 Visual results of different methods of the non-uniform illumination image. (a) Test image. (b) LDR [36]. (c) MSRCR [20]. (d) NPEA [26].
(e) MF [24]. (f) SRIE [28]. (g) LIME [23]. (h) Proposed RME
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Fig. 11 Visual results of different methods on the self-created Real-
World Dataset. (a) Test image. (b) LDR [36]. (c) MSRCR [20].
(d) NPEA [26]. (e)MF [24]. (f) SRIE [28]. (g) LIME [23]. (h) Proposed

RME. The red and green boxes in the image correspond to the visual
effects of the dark and bright areas, respectively

Table 2 Quantitative performance comparison in Fig. 9 in terms of
NIPE

Image
name

LDR MSRCR NPEA MF SRIE LIME Prop

Building 3.14 2.78 3.11 3.86 3.62 4.84 3.08

River 2.98 3.60 2.74 4.38 3.74 5.02 2.95

Door 3.29 3.27 3.54 4.03 4.08 3.76 3.21

Dome 3.59 3.47 3.45 3.73 3.60 6.06 3.40

Ave.
NIQE

3.25 3.28 3.21 4.00 3.76 4.92 3.16

3.2 LLIE in backlit

The second group of experiments demonstrates the low-light
image enhancement effect of backlit scenes under different
light intensities. As shown in Fig. 9g4, one can find that the
stronger the backlit of a low-illumination image, the more
obvious the over-enhancement in its dark areas, and the nat-
uralness of the enhancement result will decrease, as shown
in Fig. 9c, d, e and g. In Table 2, we show the performance
of the relevant methods in maintaining the naturalness of the
images. The underlined symbol Bold is the optimal and sym-
bol Bold is the suboptimal result in each assessment metric.

The Natural Image Quality Evaluator (NIQE) is used to
detect the naturalness and distortion of an image. A smaller
NIQE indicates a higher quality of enhancement results. As
shown in Table 2, our algorithm performs well on the NIQE
metric.

3.3 LLIE in non-uniform lighting

The third group of experiments demonstrates the low-light
image enhancement effect of non-uniform luminance scenes
under different light intensities. It is a challenging task that
the existing methods usually cause over-enhancement in the
bright area and noise amplification in the dark zone.

It can be seen in Fig. 10 that some images show noise
amplification, artifact, over enhancement, and color dis-
tortion. Specifically, the enhanced effects of LDR and
MSRCR show significant color distortion, as shown in
Fig. 10b, c. Image distortion can lead to damage to the
information in the image, as shown in Fig. 10d, e, and
g. However, RME can generate more visually appeal-
ing results. In Table 3, we show the performance of the
relevant methods in maintaining the information of the
images.
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Table 3 Quantitative
performance comparison on
Fig. 10 in terms of ENTROPY
(Underlined Bold and Bold
represent optimal and
suboptimal results, respectively)

Image name LDR MSRCR NPEA MF SRIE LIME Prop

Gallery 6.44 6.68 6.95 6.70 5.70 7.11 7.62

Dull 6.39 7.21 6.55 7.42 6.28 7.63 7.86

Thinker 3.41 3.77 4.34 3.99 3.90 6.96 7.76

Lamp 5.16 6.65 7.04 6.78 5.02 6.12 6.93

Ave. ENTROPY 5.35 6.08 6.22 6.22 5.23 6.96 7.54

3.4 LLIE in real-world scene

Wenote that the input images in theLOLdataset are relatively
noise-free. However, real-world images of low-light scenes
have a variety of noise. The fourth group of experiments
demonstrates the influence of real-world scenes on low-light
image enhancement under different light intensities.

We created a dataset of the low-light images, named Rail-
way at Night, to verify the performance of the algorithms.
This paper selects four low-light images of different light
conditions from our dataset to verify the performance of
the related algorithms. Figure 11a1–a4 shows four images
from our dataset, including noise, weak-light, backlit, and
non-uniform illumination, respectively. In Fig. 11, the dark
and light areas of the image are shown enlarged by red and
green rectangles, respectively, for better viewing and com-
parison. All methods enhanced brightness and restored the
image details to a certain extent. However, there also appear
some unsatisfied visual effects. For example, in Fig. 11d1, e1,
e4, and g1, the results make noise amplification. In Fig. 11d2,
g2, c4, and g4, it is easy to find that the results are over-
enhanced. In Fig. 11c3, d3, e3, and g3, it can be seen that
there are obvious halo artifacts in the enhanced result of the
image. Fortunately, our results effectively avoid the problems
mentioned above. Our visual effects are better than the con-
trol group. In summary, experiments verify that our method
is effective in real-world scenes.

In Table 4, we show the performance of the relevant meth-
ods in maintaining the PSNR of the images.

3.5 Quantitative assessments

Image quality assessment (IQA) is divided into two cate-
gories. One is a reference assessment, and the other is a
no-reference assessment. In this paper, we adopt peak signal-
to-noise ratio (PSNR), structural similarity (SSIM), infor-
mation entropy, Natural Image Quality Evaluator (NIQE),
perception-based image quality evaluator (PIQE), and lumi-
nance order error (LOE) to assess the quality of the enhanced
image.

We selected 150 low-light images of different luminance
fromLOLand self-created datasets for extended experiments
to verify the performance of the low-light image enhance-
ment algorithm in different scenes. As shown in Table 5, the

Table 4 Quantitative performance comparison on Fig. 11 in terms of
PSNR (Underlined Bold and Bold represent optimal and suboptimal
results, respectively)

Image
name

LDR MSRCR NPEA MF SRIE LIME Prop

Night
Rail

17.98 13.14 8.79 10.19 20.48 7.13 20.14

Station
Field

15.62 11.01 7.89 11.93 21.46 6.82 18.07

Test
Train

19.82 11.57 10.89 13.98 20.09 8.98 20.52

Locomotive18.09 11.97 16.19 17.96 18.96 9.83 18.71

Ave.
PSNR

17.88 11.92 10.94 13.52 20.25 8.19 19.36

Table 5 Average of the quantitative performance on the test image
dataset (Underlined Bold and Bold represent optimal and suboptimal
results, respectively)

Method PSNR↑ SSIM↑ ENTROPY↑NQIE↓ PQIE↓ LOE↓
LDR 17.87 0.69 6.97 3.44 47.64 5.39

MSRCR 14.85 0.44 7.12 3.39 44.57 6.09

NAPE 15.71 0.45 7.47 3.64 44.11 7.53

MF 16.69 0.45 7.15 3.66 42.36 20.41

SRIE 21.51 0.67 6.51 4.04 48.67 7.76

LIME 14.02 0.34 7.45 4.94 47.91 23.24

Prop 20.72 0.69 7.53 3.26 43.67 5.37

quantitative scores of RME are better than other methods
in 4 terms of quantitative evaluation metrics, such as SSIM,
ENTROPY, NQIE, and LOE. In the other two-term quanti-
tative evaluation metrics, the scores of RME are suboptimal
solutions.

Due to the box-plot and the inter-quartile range (IQR) hav-
ing advantages in identifying data outliers and determining
data bias, we introduce box-plot and IQR to test the stability
of the related algorithm in processing low-light images of
different scenes, as shown in Fig. 12.

To unify the evaluation standard, the IQR value is normal-
ized. InTable 6, theRMEmodel gets the best values onSSIM,
NIQE, and AVERAGE, while gets suboptimal on PSNR,
entropy, PIQE, and LOE. SRIE model obtained optimal on
PIQE. In Table 6, underlined symbol Bold and symbol Bold
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Fig. 12 The box-plot and the inter-quartile range evaluation results for
(a) PSNR, (b) SSIM, (c) ENTROPY, (d) NIQE, (e) PIQE, and (f) LOE

Table 6 Robustness comparison of related algorithms in terms of IQR

Method LDR MSRCR NPEA MF SRIE LIME Prop

PSNR 0.55 0.65 1.00 0.82 0.31 0.63 0.54

SIMM 0.88 0.56 1.00 0.77 0.55 0.51 0.37

ENTROPY 1.00 0.72 0.60 0.85 0.87 0.41 0.51

NIQE 0.60 0.64 0.65 0.91 0.60 1.00 0.60

PIQE 0.90 0.98 1.00 0.79 0.68 0.71 0.69

LOE 0.29 0.33 0.25 1.00 0.29 0.83 0.28

AVERAGE 0.70 0.65 0.75 0.86 0.55 0.68 0.49

represent optimal and suboptimal results, respectively. It is
worth noting that theRMEmodel gets the lowestAVERAGE,
which indicates that RME has strong stability, robustness,
and generalization ability.

In summary, our quantitative assessment of ours achieves
or exceeds state-of-the-art algorithms. The experimental
results show that our method is effective, while the enhanced
results for our algorithm are consistent with a quantitative
and qualitative evaluation of image quality.

4 Conclusion

In this paper, we employ the low-light image with a variety
of complex lighting conditions to test the effectiveness of
our proposed algorithm. The experimental results show our
algorithm has achieved impressive results in both qualitative
and quantitative evaluation metrics. We notice that noise in
the low-light images has a significant impact on performing
computer vision tasks. Thus, we will further investigate the
high-noise level low-light image enhancement algorithm.
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