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Abstract
Deep convolutional neural networks perform well in the field of computer vision, but exhibit undesirable behaviors such as
memorization and sensitivity to adversarial examples. Therefore, proper regularization strategies are needed to alleviate these
problems. Currently, regularization strategies with mixed sample data augmentation perform very well, and these algorithms
allow the network to generalize better, improve the baseline performance of the model. However, interpolation-based mixed
sample data augmentation distorts the data distribution, while masking-based mixed sample data augmentation results in
excessive information loss for overly regular shapes of masks. Although mixed sample data augmentation is proven to be an
effective method to improve the baseline performance, generalization ability and robustness of deep convolutional models,
there is still room for improvement in terms of maintaining the of image local consistency and image data distribution. In
this paper, we propose a new mixed sample data augmentation-LMix, which uses random masking to increase the number
of masks in the image to maintain the data distribution, and high-frequency filtering to sharpen the image to highlight
recognition regions. We applied the method to train CIFAR-10, CIFAR-100, SVHN, and Tiny-ImageNet datasets under
the PreAct-ResNet18 model to evaluate the method, and obtained the latest results of 96.32, 79.85, 97.01, and 64.16%,
respectively, which are 1.70, 4.73, and 8.06% higher than the optimal baseline accuracy. The LMix algorithm improves the
generalization ability of the state-of-the-art neural network architecture and enhances the robustness to adversarial samples.

Keywords Mixup · Data augmentation · Deep convolutional neural networks · Regularization strategies

1 Introduction

Deep convolutional neural networks have shine in various
computer vision tasks, such as image classification [1,2,5],
object detection [29,30], anomaly detection [33,34], seman-
tic segmentation [14], and image super-resolution [15]. Deep
convolutional neural networks follow the empirical risk min-
imization principle [16] to minimize the average error when
performing training. Also, when the deep convolutional neu-
ral network is used to extract features from an input image,
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the larger the training sample, the greater the learning effect
and generalization capacity of the model. For instance, the
network of Foret et al. [1] was modeled using the JFT-
300M dataset [31] with 4.8 billion parameters. Mahajan et
al. [2] used the ImageNet-22k dataset to model their net-
work, which has 8.2 billion parameters. Tan et al [3]. used
the ImageNet-22k dataset to model their network, which has
1.2 billion parameters. To further improve the training accu-
racy and speed, many scholars have proposed some training
strategies, such as regularization techniques, data augmen-
tation strategies [6,8–10], etc. The regularization technique
prevents overfitting in networks with more parameters than
input data, as well as algorithmic generalization by avoiding
training coefficients of perfect-fit data samples. Data aug-
mentation can prevent model overfitting and increase the
number of samples to improve model generalization, mainly
including geometric space change, pixel color transforma-
tion, and multiple sample fusion.

Currently, mixed sample data augmentation [8–12] tech-
niques based on Vicinal Risk Minimisation [13,36] have
obtained good results in a variety of applications, particu-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11760-022-02332-x&domain=pdf


1246 Signal, Image and Video Processing (2023) 17:1245–1253

larly classification tasks. Lu et al. [35] employs CutOut [6]
and Mixup [8] to alleviate the impact of the above problems,
improving the performance of the model. The Vicinal Risk
Minimisation based data augmentation approach extracts
additional dummysamples from the training samples to boost
support for the training distribution. This also leads to the
goal of expanding samples to increase data space without
distorting the data distribution, nevertheless, larger samples
unavoidably have distorted data distribution [13]. To ensure
that the data enhancement strategy can produce good results
for the network, the following characteristics should bemain-
tained: the virtual samples and the real samples should have
a good acquaintance; the data augmentation strategy can
improve the model’s generalization ability; and the data
augmentation strategy can improve the model’s robustness
against noise.

Mixed sample data augmentation is the modification of
sample data to build an extended dataset for training models.
Mixed sample data augmentation proposed so far is broadly
classified into two types: interpolation and masking. Mixed
sample data augmentation for Interpolation has Mixup [8],
which is amixed sample data augmentation based on the idea
of Vicinal Risk Minimisation, and Mixup suggests a gen-
eral vicinal distribution, the mixed distribution, as illustrated
in Fig. 1a. Mixed sample data augmentation for masking
has CutMix [9], which proposes patches are cut and pasted
among training images where the ground truth labels are also
mixed proportionally to the area of the patches, as illustrated
in Fig. 1b. Both strategies improve the baseline performance
of the deep convolutional model. In terms of picture data
distribution, CutMix trumps Mixup.

In this paper, we propose a new mixed sample data aug-
mentation LMix, as illustrated in Fig. 1c. The main ideas are
as follows: (1) use random masking to increase the number
of image masks while effectively ensuring the local consis-
tency of the image. (2) use high frequency filtering to sharpen
the image to highlight the recognition area. The rest of this
paper is organized as follows. In Sect. 2, we review the exist-
ing work on data enhancement strategies. Then, we present
the implementation of the LMix algorithm in Sect. 3. In Sect.
4, we conduct a large number of experiments to demonstrate
the effectiveness and efficiency of the proposed algorithm.
Finally, we conclude in Sect. 5.

2 Related work

Data augmentation With the deepening of the deep net-
work, the required learning parameters continue to increase,
which inevitably leads to overfitting. When the dataset is too
small, too many parameters can fit all the characteristics of
the dataset rather than the commonalities between the data
[25,26]. Data augmentation generates virtual samples from

real samples to expand the dataset size, which can alleviate
the problemofmodel overfitting andmake the trainingdata as
close as possible to the test data, thus improving the accuracy.
At the same time, data augmentation can force the model to
improve robustness and make the model more generalizable.
Early data augmentation algorithms were transformations
of images using geometric transformations including flip,
rotate, crop, distort, scale, etc., and color transformations
including noise, blur, color transformation, erase, fill, etc.
Lopes et al. [4] added Gaussian blocks to Cutout to make the
model more stable without losing model accuracy by adding
noise to randomly selected blocks in the input image. Also,
this method can be used in combination with other regu-
larization methods and data enhancement strategies. He et
al. [5] trained the deep residual network with random left-
right flipping and cropping of the image data to improve
the generalization ability of the model. This allowed the data
samples to be expanded and greatly improved the generaliza-
tion ability of themodel. DeVries et al. [6] proposedmasking
regularization, a data augmentation approach comparable to
random erasure. They apply random masking on the image,
masking it with a fixed-size rectangle. Within the rectangle,
all values are set to 0 or other solid color values, and the
erased rectangular section may or may not be totally in the
picture. Taylor and Nitschke [7] analyzed the effectiveness
of geometric and photometric (color space) transformations.
They analyzed geometric changes such as flipping, as well as
color space transformations such as color dithering (random
color manipulation), edge improvement, and principal com-
ponent analysis. Simply conducting simple image processing
on individual photographs might lead to a slew of issues. For
instance, operations such as flip, shear, and rotate are not safe
for the dataset [27], while the color transformation enhance-
ment approach is biased from a color space perspective with
more diversity of color variations, resulting in insufficient
enhancement and poor learning and underfitting of the color
space, while the transformation is unsafe.
Mixup The mixed sample data augmentation not only has
good generalization ability, but also has excellent robust-
ness, both for data containing noisy labels and against sample
attacks. The fused images obtained by the mixed sample data
augmentation are difficult to understand under the human
perspective, yet the experimental results are excellent. To
make the model baseline performance better, several data
augmentation algorithms have been proposed by the sample
fusion approach to enhance the accuracy and generalization
of the model. Zhang et al. [8] proposed Mixup (Fig. 1a) one
suchdata-dependent regularizer, synthesizes additional train-
ing examples by interpolating random pairs of inputs xi , x j
and their corresponding labels yi , y j as:

x̂ = λxi + (1 − λ)x j (1)
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Fig. 1 Generated images of CutMix, LMix, and Mixup on the CIFAR dataset

ŷ = λyi + (1 − λ)y j (2)

where λ ∈ [0, 1] is sampled from a Beta distribution such
that λ ∼ Beta(α, α) and (x̂, ŷ) is the new example. Mixup
for training the model in a convex combination of sam-
ple and label pairs. It enhances the linear representation of
the training data, models samples from different domains,
and improves the generalization performance of the model.
Image enhancement algorithms are simple and data indepen-
dent. However, Mixup methods distort the data distribution
of the images, while generating virtual samples that are
not very interpretable. Yun et al. [9] proposed Cutmix, a
mixed sample data augmentation for masking. As shown in
Fig. 2, Cutmix implants an input random rectangular region
into another rectangular region. However, using a regular
cropping approach can cause the image to lose a lot of infor-
mation. Vera et al. [10] proposed an extension of input data
blending to blending the output of the intermediate hidden
layer. Making the network transformed to the input data is
smoother and more uniform, which leads to improved model
performance and generalization. Kim et al. [11] proposed
a blending method based on saliency and local statistics of
the given data. They added significance analysis to CutMix.
Harris et al. [12] proposed an improved method based on
CutMix. They verified that the hybrid method of clipping is
more advantageous than the hybrid method of interpolation
in preserving the image data distribution, and designed an
irregular mask to mask the image when the spatial size of the
data sample is increased. The spatial scale increases.

3 Method

We discover that masked mixed sample data augmenta-
tion is more effective than interpolated mixed sample data
augmentation in preserving data distribution, especially on
convolutional neural networks. Convolutional neural net-
works are locally consistent, means that each neuron is

Fig. 2 The process of generating CutMix

only linked to one portion of the input neuron at a spec-
ified geographical position. Neurons are locally linked in
the spatial dimension but completely connected in the depth
dimension in picture convolution procedures. For the two-
dimensional image itself, the local pixel correlation is also
strong. This local connectedness guarantees that the learned
filter responds to the local input characteristics as strongly
as possible. It is extremely critical for neural networks to
successfully preserve the pictures’ local consistency. Mean-
while, the disadvantage of the interpolative mixed sample
data augmentation is that it only uses regular masking to
operate the image, and the number of masks cannot be well
guaranteed, thuswemust increase the number ofmaskswhile
keeping local consistency.

In this section, we propose LMix, mixed sample data aug-
mentation that provides the greatest results in terms of local
consistency and the number ofmasks in the picture, as shown
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in Fig. 3. LMix employs an masking mixed sample data aug-
mentation to preserve the image’s local consistency.

Its algorithm is implemented as:
Let x ∈ RW×H×C denote a training set, y denote the

training set’s label, and (xA, yA) and (xB, yB) represent two
feature target vectors chosen at random from the training
data. LMix’s purpose is to create a new sample (x̂, ŷ) by
merging two training samples (xA, yA) and(xB , yB). The
resulting training sample(x̂, ŷ) is utilized to train the orig-
inal loss function-trained model. It is defined as follows.

x̂ = mask· xA + (1 − mask)· xB (3)

ŷ = λyA + (1 − λ)yB (4)

where mask ∈ {0, 1}W×H is the binary mask, which refers
to the bits deleted and filled from the two pictures, and ‘1’
represents the binary mask filled with 1. As in Mixup [8],
the combined ratio λ between the two data points is obey-
ing the Beta(α, α) distribution, where Beta() indicates Beta
function, and α ∈ (0,∞). Compared to Cutmix [9], which
directly intercepts a regular patch from a image to replace
the image region of the target image, we use a mask made
by combining a single region and its adjacent regions, which
can reduce the number of binarymask conversions. To obtain
the binary mask, we first apply the two-dimensional discrete
Fourier transform to the image to convert it from the spa-
tial domain to the frequency domain, and then obtain the
low-frequency image of the image, the high-frequency com-
ponent of the image through the low-frequency component,
and the high-frequency filtered and enhanced image of the
image through the high-frequency component. We define
Z as a complex random variable with a value domain of
Z = CH×W and densities of PR(Z) = N (0, IW×H ) and
PI (Z) = N (0, IW×H ), and N (0, I ) denotes multivariate
Gaussian distribution. The real and imaginary components
of the input are denoted by R(Z) and I (Z), respectively. By
attenuating the high-frequency component of Z , a low-pass
filter is created. By attenuating the high-frequency compo-
nent of Z , we may create a low-pass filter.

fLP(z, δ)[i, j] = z[i, j]
freq(w, h)[i, j]δ (5)

fLP denotes low-pass filter, Let freq(w, h)[i, j] denote the
magnitude of the sample frequency corresponding to the
i, j th bin of the w × h discrete Fourier transform, z[i, j]
denote a complex random variable with a value domain of
z = Ci× j , δ denote decay power, The image high-pass filter
is obtained by the obtained low-pass filter.

fHP(Z , δ) = 1 − fLP(Z , δ) (6)

fHP denotes high-pass filter, The sharpened image is then
obtained by passing it through a high-pass filter.

gmask(x, y) = f −1{[1 + k · fHP(Z , δ)]F(u, v)} (7)

where gmask(x, y) denotes the high-frequency filtered
enhanced image, F(u, v) denotes the Fourier variation of
the original image, fHP(Z , δ) denotes the high-pass filter,
δ is the given attenuation frequency, and f −1 denotes the
discrete Fourier inverse transform. Finally obtaining the sam-
pled binary mask mask now all that remains is to convert the
grayscale image to a binary mask such that the average is
some given λ. Let top(n, x) return a set containing the top n
elements of the input x . Setting the value of the top λ,w, h
elements of some grayscale image g to ‘1’ and the value of
all other elements to ‘0’, we obtain a binary mask with an
average λ.

mask (λ, g) [i, j] =
{
1, if g[i, j] ∈ top (λwh, g)
0, otherwise

(8)

We first sample a random complex tensor whose real and
imaginary components are both independent and Gaussian
distributed. Then, each component is scaled according to
its frequency by the parameter δ, such that higher δ val-
ues correspond to increased attenuation of high-frequency
information. Next, the Fourier inverse transform of the com-
plex tensor is performed and its real part is taken to obtain a
grayscale image. Finally, the top scale of the image is set to
‘1’ and the rest of the scale to ‘0’ to obtain the binary mask.

4 Experiment

In this section, we apply LMix to ResNet [19], DenseNet
[21], and WideResNet [20] models on the CIFAR-10,
CIFAR-100 [17], Fashion-MNIST, SVHN, and Tiny-
ImageNet [18] datasets for image classification tasks to eval-
uate the enhancements and generalization improvements to
themodel baseline thatLMix canprovide.The samehyperpa-
rameters are used for allmodels in order to fairly compare and
evaluate the performance improvement of different mixed-
sample data augmentation on generalization and augmented
baselines. In addition, the parameters of all mixed sample
data augmentation algorithms are selected to produce the
best results in the corresponding papers.We replicate all stud-
ies when possible and publish the average performance and
standard deviation following the last phase of training. In
all tables, we highlight the best outcomes and those that are
within their margin of error.
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Table 1 The accuracy of the approach for the image classification
task in CIFAR-10 using the PreAct-ResNet-18, WideResNet-28-10,
DenseNet-BC-190 (Dense), and PyramidNet-272-200 models

Data set Model Baseline FMix Mixup CutMix LMix

CIFAR-10 ResNet-18 94.62 96.14 95.67 95.97 96.32

WRN 95.32 96.41 96.69 96.63 96.58

Dense 96.32 97.30 97.01 96.95 97.36

Pyrmid 97.31 98.54 97.90 98.18 98.58

Table 2 Accuracy of the algorithm using PreAct-ResNet-18,PreAct-
ResNet-34, WideResNet-28-10, and DenseNet-BC-190 models to test
the algorithm for the image classification task in CIFAR-100

Data set Model Baseline FMix Mixup CutMix LMix

CIFAR-100 ResNet-18 75.12 79.65 77.34 78.48 79.85

ResNet-34 76.58 81.55 78.54 79.56 81.86

Dense 78.24 82.03 81.95 81.84 81.91

Pyrmid 81.64 83.75 83.23 82.69 83.95

4.1 Image classification

4.1.1 CIFAR classification

This section first discusses the results of the image classifica-
tion task on the CIFAR 10/100 dataset. On the CIFAR dataset
we train: the PreAct-ResNet18 citeref19,WideResNet-28-10

citeref20, DenseNet-BC-190 citeref21, and PyramidNet-
272-200 [22] models. We found that the regularization
methods including cutout [6], Mixup [8], CutMix citeref9,
and FMix [12] need a longer training time to reach conver-
gence. As a result, we set the epoch of all models to 300,
the initial learning rate to 0.1, and decay at 75, 150, and 225
epochs in multiples of 0.1, with a batch size of 128. Table 1
compares the performance of the approach to that of other
cutting-edge data augmentation and regularization methods.
All trials were repeated five times, and the best performance
during training is presented as the average.
Hyperparameter setting We set the hyperparameter α of
LMix to 1 and the decay rate δ to 3. Set the cropping area of
Cutmix [9] and Cutout [6] to 16×16. For Mixup, we set the
hyperparameter α to 1, set the hyperparameter α and decay
rate δ of FMix [12] to 1 and 3, and the hyperparameters α

of Patchup [10],Patchupprob,x , and block size are set to 2,
0.7, 0.5, and 7, respectively.
LMix is applicable to a variety of models As shown in Table
1, LMix applies to various convolutional neural networks,
while LMix significantly improves the baseline performance
of various lightweight models, and for the ResNet-18 [19]
model, LMix improves the most accuracy over the baseline
performance by 1.51% and on the average accuracy over
the baseline performance by 1.68%. For the WideResNet-28
[20] model, LMix improves 1.23% over the maximum accu-
racy of the baseline performance and 1.29% over the average
accuracy of the baseline performance. For the DenseNet [21]

Fig. 3 Virtual sample of sample fusion acquired from CIFAR-100
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Table 3 Accuracy of the image classification task using PreAct-
ResNet-18 test algorithm in Tiny-ImageNet

Model MaxAcc (% ) Acc (% )

Baseline 55.94 55.86

+CutMix 64.08 63.84

+FMix 63.33 62.23

+Mixup 61.96 61.89

+LMix 64.16 63.92

model, LMix improved the maximum accuracy over base-
line performance by 1.05% and the average accuracy over
baseline performance by 1.11%. For the Pyramid [22] model
LMix improved the maximum accuracy over the baseline
performance by 1.32% and the average accuracy over the
baseline performance by 1.33%.
LMix performance on CIFAR-10/100The results in Table 2
show that the same models were trained on the CIFAR-
10 dataset, and LMix provided significant improvements
over the other hybrid sample enhancement algorithms. For
ResNet-18, LMix outperforms cutout by 1.16%, Mixup by
0.72%, Cutmix by 0.42%, FMix by 0.29%, and patchup by
0.62% in terms of accuracy for the image classification task.
LMix also performs very well on the CIFAR-100 dataset,
as shown in Table 2. For ResNet-18, LMix outperformed
the baseline by 4.73%, outperformed FMix by 0.2%, out-
performed CutMix by 0.37%, and outperformed Mixup by
2.51% on the image classification task.

The results obtained in Fig. 4 indicate that LMix has the
highest accuracy for the image classification task trainedwith
ResNet-18 on CIFAR-100 with hyperparameter α = 1, while
outperformingMixup, CutMix, and FMix. we have explored
the performance of LMix for ResNet-18 and ResNet-34 on
CIFAR-100. As shown in Fig. 4, we found an improvement
in accuracy for both classification tasks.

4.1.2 Tiny-ImageNet

We trained the PreAct-ResNet18 network on the Tiny-
ImageNet [18] dataset, which contains 200 classes with 500
training images and 50 test images per class with a resolution
of 64×64. We trained the model with an initial learning rate
of 0.1 for 200 epochs, and we used a decay learning rate of
0.1 at 150 and 180 epochs. we set the momentum to 0.9. In
the case of Mixup weights λ, for the Mixup, we set α = 1 as
described in the Mixup. For CutMix, we chose α = 1, which
is the best performance in [0.2, 0.5, 1.0], while for FMix, we
chose α = 1.0, for Cutout and CutMix with a cropping region
of 16×16.

In the experiments using the Tiny-ImageNet dataset, com-
pared with other hybrid baselines, LMix showed significant
improvements in generalization performance and improved

Table 4 Training PreAct-ResNet18 on the Fashion-MNIST dataset to
evaluate LMix

Model MaxAcc (% ) Acc (% )

Baseline 95.70 95.52

+CutMix 96.02 95.93

+Mixup 96.26 96.20

+LMix 96.64 96.62

Table 5 Accuracy of the algorithm using PreAct-ResNet-18, PreAct-
ResNet-34, WideResNet-28-10, and DenseNet-BC-190 models to test
the algorithm for the image classification task in CIFAR-100

Data set Model Baseline Mixup CutMix LMix

SVHN ResNet-18 96.53 96.63 96.57 97.01

ResNet-34 97.04 97.21 97.44 97.66

WRN 97.28 97.48 97.69 97.73

model accuracy (Table 3). With the same number of epochs
trained, LMix achieves an accuracy of 64.06%, which is
0.08% higher than the strongest baseline.

4.1.3 Fashion-MNIST

We train the PreAct-ResNet18 network on the Fashion-
MNIST dataset, a fashion product dataset containing 70,000
28×28 grayscale images in 10 categories with 7000 images
in each category. The training set has 60,000 images and the
test set has 10,000 images. Fashion MNIST shares the same
image size, data format, and training and test splitting struc-
ture as the original MNIST.We trained the PreAct-ResNet18
[19] model, where we trained the model with an initial learn-
ing rate of 0.1 for 200 epochs, and we used a decay learning
rate of 0.1 at 150 and 180 epochs. we set the momentum to
0.9. in the case of Mixup weights λ, for Mixup, we set α =
1 in Mixup. Set the cropping area for Cutout and CutMix to
16×16.

In the experiments using the Fashion-MNIST dataset,
compared with other hybrid baselines, LMix showed sig-
nificant improvements in generalization performance and
improved model accuracy (Table 4). With the same number
of epochs trained, LMix achieves an accuracy of 96.62%,
which is 1.1% higher than the strongest baseline.

4.1.4 SVHN

We trainmultiple image classification networkmodels on the
SVHN dataset, a numerical classification benchmark dataset
containing 600,000 32×32 RGB images of printed digits
(from 0 to 9) cropped from door sign images. The cropped
images are centered on the digit of interest, but nearby digits
and other distractors are retained in the images. SVHN has
three sets: a training set, a test set, and an additional set con-
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Fig. 4 Effect of varying the value of hyperparameter α on the baseline accuracy of various algorithms under the CIRAF-100 data set

taining 530,000 images that are less difficult and can be used
to aid in the training process. To evaluate the effect of LMix
on the SVHNdataset, we appliedLMix onPreAct-ResNet18,
PreAct-ResNet34 and WideResNet-28-10, respectively. We
set the epoch of the model to 300, the initial learning rate
to 0.1, and decay at epochs of 75, 150, and 225 in multiples
of 0.1, and set the batch size to 128. Also, we repeated the
experiments several times to obtain the most reliable results.

LMix performance in SVHN: The results in Table 5 show
that the samemodel is trained on the SVHNdataset andLMix
provides significant improvements over other mixed-sample
enhancement algorithms. For ResNet-18, LMix provides
0.48% higher accuracy than Mixup and 0.44% higher than
Cutmix for the image classification task. Also when ResNet-
34 and WideResNet-28-10 are applied, there is a good
improvement in the accuracy andgeneralizationof themodel.

4.2 CombiningMSDAs

We trained the PreAct-ResNet-18 network on the CIFAR-
100 dataset and used it to evaluate the effect of the algorithm
combination.We train 300 epochmodelswith an initial learn-
ing rate of 0.1, and we use a decay learning rate of 0.1 at 100,
150, and 225 epochs, with batch size set to 128. for Mixup,
we set the hyperparameter α to 1. We also set the hyperpa-
rameters α and δ of LMix to 1 and 3, respectively. we set the
hyperparameters α and delta of LMix+ The hyperparameter
α is set to 1 for the Mixup combination.

As shown in Fig. 5, the accuracy of LMix for the image
classification task with the PreAct-ResNet-34 model trained
under the CIFAR-100 dataset is significantly higher than the
baseline performance ofMixup and the originalmodel, while

Fig. 5 Training PreAcResNet-34 on the CIFAR-100 dataset

the combined approach further improves the accuracy of the
model after combining LMix with Mixup.

4.3 Robustness

When performing image classification tasks, the neural net-
work is first trained and then minimized with respect to the
error on the training sample, This learning rule is called
empirical risk minimization. When small changes occur in
the data samples it can have a significant impact on the per-
formance of the model. For neural networks, most current
neural networks set themodel in a linear form to obtain faster
computation speed, resulting in a very weak fight against
perturbed samples. Certain data-dependent regularization
techniques can mitigate the vulnerability of adversarial
examples by interpolating the data to train themodel. To eval-
uate the robustness of LMix against adversarial attacks, we
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Fig. 6 Robust FGSM attack, a comparison at CIFAR-10 using the PreAc-tResNet-18model, b comparison at CIFAR-100 using the PreAct-ResNet-
34 model

compared the performance of PreActResNet18, PreActRes-
Net34 on CIFAR-10 and CIFAR-100 with the adversarial
examples generated by the FGSM attack described in.

Figure 6 shows the comparison of the impact of the state-
of-the-art regularization techniques on the robustness of the
model against FGSM attacks. Based on the results, we can
see that LMix achieves the second-best performance in terms
of robustness against adversarial attacks compared to other
regularization methods. Our experiments show that in most
cases, LMix is effective against attacks (Fig. 6).

5 Conclusion

In this paper, we propose LMix, mixed sample data augmen-
tation which improves the classification performance and
generalization ability of a model. The model is improved
by preserving the local consistency of the image and then
maximizing the number of masks, using a random mask-
ing approach to increase the number of masks on the image,
and a high-frequency filter to sharpen the image to high-
light recognition regions. We run a series of analyses to
ensure the feasibility of the idea and then design prelim-
inary experiments and find that LMix performs very well
on the classification task. Applying LMix to the PreAct-
ResNet18 model to train the CIFAR-10 dataset yielded
results that were 1.70% above the baseline, with an optimal
result of 96.32%. Then we applied LMix to WideResNet-28
in the CIFAR-10 classification task, and PyramidNet could
improve the highest baseline accuracy by 1.26 and 1.27%,
respectively. For CIFAR-100, LMix significantly improves
the baseline performance by 4.73%. We conducted experi-
ments on the datasets SVHN, Tiny-ImageNet, and Fashion
MINIST, respectively, which were 0.48% higher than the

baseline accuracy on SVHN, 1.10% higher than the baseline
accuracy on Fashion MINIST, and 8.06% higher than the
baseline accuracy on Tiny-ImageNet. Finally, we conducted
robustness experiments on LMix. Our experimental results
show that LMix has excellent performance in terms of gen-
eralization performance and robustness against interference.
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