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Abstract
Using high-resolution image as reference (Ref) to recover a low-resolution (LR) image with similar texture can get the
lost texture details and achieve more promising super-resolution (SR) results. Nowadays, existing reference-based image
super-resolution approaches use a texture transformer network to add texture features to SR network. However, they neglect
the importance of the structural consistency of texture transformer network and SR network. We propose a novel image
super-resolution algorithm with unified structure and reverse network (SR-USRN), which uses the same network to transform
texture and process image SR. SR-USRN consists of three steps, including training SR main network (SR-MainNet) without
Ref, training reverse network (ReverseNet) to recover the features in SR-MainNet by Ref image and combining SR-MainNet
and ReverseNet to train final SR-USRN. We use Ref image and LR image together to train SR-MainNet in first step and share
the parameters in the process of SR and texture transformation. This design makes best use of the Ref images and the same
structure of network makes texture transformer know what SR network really needs. The ReverseNet is trained to transform
the Ref image to the corresponding features in SR-MainNet. Extensive experiments demonstrate that SR-USRN achieves
significant improvements over state-of-the-art approaches on both quantitative and qualitative evaluations.

Keywords Reference-based super-resolution · Share parameters · Reverse network · Texture transformer

1 Introduction

Image SR is a traditional but popular research in low-level
vision tasks. Image super-resolution (SR) can be divided into
single image super-resolution (SISR), and reference-based
image super-resolution (RefSR). In recent years, research on
SISR has a great progress. Convolutional neural networks
(CNNs) [1] has greatly advanced the SOTA of SISR. How-
ever, due to the ill-posed nature of SISR problems, some
essential features of the images have been lost. If the texture
or content of the images does not occur in training dataset, the
effect of the network will decrease. From this point of view,
RefSR has a better theoretical basis. RefSR enables the algo-
rithm to transfer similar features from reference images to
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SR images. Therefore, these algorithms have better general-
ization ability.

Comparedwith SISR, there are few studies onRefSR. The
main idea of those researches is to utilize the high-resolution
(HR) textures from given Ref image to produce visually
pleasing results. However, these approaches have limitations
in some aspects. Zhang et al. [3] adopt a feature space defined
by a pre-trained classification model to search and transfer
textures between theLRandRef image.As a follow-upwork,
Yang et al. [4] proposes a learnable texture extractor and uses
a hard-attention module and a soft-attention module to trans-
fer and fuse texture features. Nevertheless, these approaches
only use Ref image to extract texture features, which does
not take full advantage of the important training data. These
methods train a texture extractor completely different from
the SR network in structure. The network utilization is not
high and the texture extractor does not directly give SR net-
work what it needs. To address these problems, this paper
proposes a novel image super-resolution network which inte-
grates texture extraction and super-resolution. Specifically,
several innovative designs of our network are carried out to
break out the limitations of TTSR [4] and SRNTT [3]. The
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overall improvement and innovation enable our method to
make full use of Ref image which achieves a better visual
result compared with SOTA approaches. The main contribu-
tions of this paper are as follows.

To the best of our knowledge, we are one of the first to use
same architecture of network to accomplish super resolution
and texture transfer. More specifically, the same architecture
increases the amount of training data implicitly. We train
a reverse network for reference images to generate corre-
sponding texture features. The texture features generated by
the reverse network are used to carry out texture transfer.
This design makes HR features provide the SR network with
what it really needs.

2 Related work

In this section, we review previous works of SISR and RefSR
which are the most relevant to our work.

2.1 Single image super-resolution

SISR has been studied for a long time.With the development
of deep learning, SISR has a great improvement over tradi-
tional non-learning-basedmethods. These SISRmethods can
be divided into several groups according to the most distinc-
tive features in their model designs such as linear networks,
residual networks, attention-based networks, etc. For more
details, Anwar et al. [5] and Wang et al. [6] can be referred.

Super-resolution CNN (SRCNN) [7] proposed by Dong
et al. firstly adopts deep learning into SISR by using a three-
layer CNN to represent the mapping function. To speed up
the SR process, Dong et al. [8] replace the interpolated LR
image with the original LR image and adopt deconvolution
at the very last layer to enlarge the feature map. VDSR [9],
DnCNN [10], etc. proposed lately are linear networks like
SRCNN.Enhanced deep residual network (EDSR) [12]mod-
ifies the ResNet architecture [13] to work with the SR task.
Deeply-recursive convolutional network (DRCN) [15] uti-
lizes recursive learning to solve SR problem. Its motivation
is to progressively break down the harder SR problem into a
set of simpler ones, which are easy to solve.

To solve the SR problem, a lot of related technologies are
carried out. Residual channel attention network (RCAN) [17]
designs a channel attention mechanism for each local resid-
ual block. To improve perceptual quality of the images, Justin
et al. [19] introduces perceptual loss into SR tasks. SR gen-
erative adversarial network (SRGAN) [20] adopts generative
adversarial networks (GANs) [22] and introduce adversarial
loss to increase the SR result. Guo et al. [23] propose a novel
dual regression scheme for paired and unpaired data, which
carries out a new solution to SR problem.

2.2 Reference-based image super-resolution

Compared to SISR, there are few studies on RefSR which
can obtain more accurate details from the Ref image. The
early work is to use image aligning or patch matching. Image
aligning methods, such as [2,28], must have a good align-
ing quality between LR and Ref image. The time-consuming
aligning approaches are adverse to real applications. Vivek
et al. [25] and Zheng et al. [26] used patch match to search
proper reference information earlier. Recent years, SR by
neural texture transfer (SRNTT) [3] applied patch match-
ing between VGG [27] features of the LR and Ref image
to swap similar texture features. In SRNTT, VGG features
are untrainable and SRNTT feeds all the swapped features
equally into the main network. As a follow-up work of
SRNTT, texture transformer network for image SR (TTSR)
[4] uses a learnable texture extractor and applies the atten-
tion mechanism to the texture features confusion. Due to the
different network structure, the features from texture extrac-
tor cannot meet the requirements of the main network. These
methods only consider Ref image as reference and do not
make the most of the reference images. To address these
problems, we use the same network structure as main net-
work and texture extractor. Moreover, in the train process of
texture extractor which shares the parameters in main net-
work, we make the better use of Ref image.

3 Approach

In this section, we introduce the proposed SR-USRN. Our
method is trained in three steps. The processwill be discussed
in Sects. 3.1, 3.2 and 3.3.

3.1 SR-MainNet

As shown in Fig. 1, the SR-MainNet is the main component
of the whole method. Here, we apply the same network to
the SR-MainNet and texture extractor. In Fig. 1, ILR, IRef ,
IHR and IRef↓ represent the input LR image, the reference
image, ground truth of the input image and 4× bicubic-
downsampled reference image. In this step, we train two
parallel networks. ILR and IRef↓ are fed to SR-MainNet as
follows:

I SR = SR-MainNet
(
ILR

)
(1)

IRefSR = SR-MainNet
(
IRef↓

)
(2)

where I SR and IRefSR denote the predicted HR image IHR

and Ref image IRef , respectively. The overall loss function
consists of three components in this step. The overall loss
can be interpreted as:
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Fig. 1 The proposed novel
RefSR structure. The orange
dotted line represents that it is
calculated only during training
process. SR-MainNet and
ReverseNet in different
positions share the parameters,
respectively. The Q, K and V are
the texture features extracted
from a LR image, a
down-sampled Ref image and an
original Ref image, respectively

Loverall = λrecLrec + λadvLadv + λperLper (3)

The reconstruction loss is essential:

Lrec = 1

CHW

∥∥∥IHR − I SR
∥∥∥
1
+ 1

CHW

∥∥∥IRef − IRefSR
∥∥∥
1

(4)

where (C, H ,W ) is the size of the HR and Ref. To ensure the
shape performance and easy convergence, we utilize L1 loss
but not L2 loss. Our method has two parallel paths, thus the
loss has two parts. The following loss functions also have
two parts. The adversarial loss is adopted to increase the
naturalness of the SR image. As disscussed in [4], we adopt
WGAN-GP [28] as well. This loss can be interpreted as:

LD = E
x̃∼Pg

[D(x̃)] − E
x∼Pr

[D(x)]

+ λ E
x̂∼Px̂

[(∥∥∇x̂ D(x̂)
∥∥
2 − 1

)2]

LG = − E
x̃∼Pg

[D(x̃)] (5)

where Pr and Pg are the model distribution and real distribu-
tion respectively. The aim of adversarial loss is to make the
model distribution approximate to the real distribution. For
more details, you can refer [28].

This paper applies perceptual loss [3,20,29] to improve
visual quality of the SR and RefSR image. Perceptual loss
is used to reduce the difference in feature space between
the predicted image and the target image. This loss can be
interpreted as:

Lper = 1

Ci HiWi

∥∥∥φ
vgg
i

(
I SR

)
− φ

vgg
i

(
IHR

)∥∥∥
2

2

+ 1

Ci HiWi

∥∥∥φ
vgg
i

(
IRefSR

)
− φ

vgg
i

(
IRef

)∥∥∥
2

2
(6)

whereφ
vgg
i (·) denotes the i-th layer’s featuremap ofVGG19,

and (Ci , Hi ,Wi ) represents the shape of the feature map at
that layer.

In this step, the preliminarySR-MainNet is trainedwithout
reference. HR and Ref image are treated equally. This step
serves two purposes. First, we get a SR-MainNet without
reference image. Second, the SR-MainNet works as a texture
extractor as well, providing the features of the LR and Ref↓
image.

3.2 ReverseNet

Step 1 provides the features of the LR and Ref↓ image. To
realize the texture transfer like [4], we should get the fea-
tures of Ref image. In step 2, the ReverseNet is trained to
get the Ref features. The structure of ReverseNet is shown
in Fig. 2. This paper chooses VGG19 as the backbone of
the ReverseNet. More discussion about the backbone of the
ReverseNet is in Sect. 4.3. Then three levels features of Ref
images are generated by VGG19, and fed into several convo-
lution layers, i.e. the interface module in Fig. 2. The output
of the ReverseNet is the features of Ref image, which has the
same form as the features of LR and Ref↓ image. To train
the ReverseNet, the output of the SR-MainNet as the input
is fed into the ReverseNet. The training process is shown as
follows:

FSR = ReverseNet
(
I SR

)
(7)

FRefSR = ReverseNet
(
IRefSR

)
(8)
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Fig. 2 ReverseNet structure.Bluebox is the backboneof the reversenet.
The InterfaceModule includes several convolution layers to process the
feature maps from backbone. F1, F2, F3 are three sizes of feature maps
captured from backbone. L1, L2, L3 are three levels of texture features
which will be fed to SR-MainNet

where FSR and FRefSR are the output of the ReverseNet cor-
responding to different inputs. FSR and FRefSR each have
three levels. Our goal is to make Ref images generate the
same type of featuremap as LR andRef↓ image. To constrain
FSR and FRefSR, the features captured from SR-MainNet are
considered as ground truth.

FLR c= SR-MainNet
(
ILR

)
(9)

FRef↓ c= SR-MainNet
(
IRef↓

)
(10)

where
c= denotes FLR and FRef↓ are the feature maps cap-

tured from the SR-MainNet but not the final output. In this
step, the parameters of SR-MainNet are fixed. FLR and FSR

have the same size in each level. FRef↓ and FRefSR have the
same size in each level as well. The loss function is like this:

Lrev = 1

CHW

∥
∥∥FLR − FSR

∥
∥∥
1

+ 1

CHW

∥∥∥FRef↓ − FRefSR
∥∥∥
1

(11)

where (C, H ,W ) is the size of the feature maps of SR and
RefSR. This loss function enables ReverseNet to recover SR-
MainNet’s middle feature maps from its output. Thus when
Ref image is fed into the ReverseNet, the feature output will
have the same form as the features of LR and Ref↓ image.

3.3 Combine

We train the SR-MainNet without Ref and ReverseNet in last
two steps. In this step, two networks are combined to finetune
the final SR-MainNet with Ref. The ReverseNet trained in
step 2 takes Ref image IRef as input and outputs V (value)
features. The Q (query) and K (key), i.e. FLR and FRef↓, are
catched from the SR-MainNet with the input ILR and IRef↓.

Q
c= SR-MainNet

(
ILR

)
(12)

K
c= SR-MainNet

(
IRef↓

)
(13)

V = ReverseNet
(
IRef

)
(14)

where
c= denotes Q and K are the feature maps captured

from the SR-MainNet but not the final output. As shown in
Fig. 2, the SR-MainNet and ReverseNet generate the features
Q, K , V respectively. Then, Q, K , V are fed into texture
transformer module. In the texture transformer, this paper
applies the similar transform strategy as [4]. But we do not
use the hard-and-soft attention module.

To embed the relevance between the LR and Ref image,
the similarity between Q and K is calculated. Q and K are
unfolded into patches, denoted as qi (i ∈ [1, HLR × WLR])
and k j ( j ∈ [1, HRef × WRef ]). Then normalized inner prod-
uct is used to calculate the relevance ri, j between each qi and
k j :

ri, j =
〈

qi
‖qi‖ ,

k j∥
∥k j

∥
∥

〉

(15)

Then we construct a swapped feature map M from the
relevance. The i-th element mi (i ∈ [1, HLR × WLR]) is cal-
culated from the relevance ri, j :

mi = argmax
j

ri, j (16)

This paper considers M as a index map, which repre-
sents the most relevant position in the Ref image to the each
position in the LR image. Then we get the transformed HR
features T from Ref image. The index selection operation is
applied to the unfolded patches of V using the map M as the
index:

ti = vmi (17)

where ti denotes the value of T in the i-th position, which is
selected from the mi -position of V . After the transformation
process, the SR-MainNet gets the transformed features T as
reference features. The operation can be represented as:

Fout = F + Conv(Concat(F, T )) (18)

where Fout indicates the synthesized output features. Conv
and Concat represent a covolutional layer and concatenation
operation, respectively. It can be seen from the above formula
that the equation still holds without T .

Fout = F (19)

The SR-MainNet without reference is the case without T.
Thus the parameters of SR-MainNet trained before can be
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Table 1 PSNR/SSIM comparison among different SRmethods on four
different datasets

Method CUFED5 Sun80 Urban100

SRCNN [7] 25.33/0.745 28.26/0.781 24.41/0.738

MDSR [33] 25.93/0.777 28.52/0.792 25.51/0.783

RDN [34] 25.95/0.769 29.63/0.806 25.38/0.768

RCAN [35] 26.06/0.769 29.86/0.810 25.42/0.768

SRGAN [20] 24.40/0.702 26.76/0.725 24.07/0.729

ENet [36] 24.24/0.695 26.24/0.702 23.63/0.711

DRN [37] 26.03/0.772 29.84/0.811 25.42/0.770

CrossNet [2] 25.48/0.764 28.52/0.793 25.11/0.764

SRNTT-rec [3] 26.24/0.784 28.54/0.793 25.50/0.783

SRNTT [3] 25.61/0.764 27.59/0.756 25.09/0.774

TTSR-rec [4] 27.09/0.804 30.02/0.814 25.87/0.784

TTSR [4] 25.53/0.765 28.59/0.774 24.62/0.747

SR-USRN-rec 26.60/0.786 30.02/0.815 25.84/0.781

SR-USRN 25.66/0.767 29.11/0.793 25.09/0.763

Methods are grouped by SISR methods (top) and RefSR methods
(down). Bold numbers denote the highest scores while Italic numbers
denote the second highest scores

reused and finetuned here. Moreover, this paper uses SR-
MainNet as the texture extractor, whichmakes distribution of
the features similar. This will improve the confusion quality
of the Ref and LR image.

In the training process, this step has the same loss function
as Sect. 3.1.

3.4 Implementation details

For the SR-MainNet, we adopt the same network used in
TTSR [4] except for the soft-and-hard attention module. In
order to simplify the calculation process, this paper just uses
the hard-attention module to generate the transform map.
We use PyTorch to implement the model on an NVIDIA
1080Ti GPU. Throughout the training, we augment the train-
ing images by randomly horizontally and vertically flipping
followed by randomly rotating 90, 180, and 270. We apply
the Adam [30] with β1 = 0.9, β2 = 0.999 as the opti-
mizer. The learning rate is set to 1e−4 and the batch-size is 6
images. In the training stage, the size of the input LR image
is 40×40, and the size of Ref image and the output SR image
is 160×160. The weight coefficients for Lrec, Ladv and Lper

are 1, 1e−3 and 1e−2, respectively in Sects. 3.1 and 3.3. SR-
MainNet without reference in Sect. 3.1 is trained 30 epochs.
In Sect. 3.2, the ReverseNet is trained 15 epochs. Finally,
SR-MainNet and ReverseNet are combined to train another
50 epochs in Sect. 3.3. In the testing stage, there is no size
requirement for the LR image and Ref image, except to be
cropped to a multiple of 4.

4 Experiments

4.1 Datasets andmetrics

Following the same setting as [3,4], we train and test our
model on the recently proposed RefSR dataset, CUFED51

[3]. To evaluate the generalization capacity of the trained
model on CUFED5, we test it on Sun80 [31] and Urban100
[32].2 To evaluate the performance of the methods, we cal-
culate PSNR and SSIM on Y channel of YCbCr space as the
quantitative criteria.

4.2 Evaluation

Toevaluate the effectiveness of SR-USRN, ourmodel is com-
paredwith other SOTASISR andRefSRmethods as shown in
Table 1. These experiments are carried out with a 4× scaling
factor between LR and HR images.

Following the setting in SRNTT [3] and TTSR [4], this
paper trains all the methods on CUFED5 training set, and
tests on CUFED5 testing set, Sun80 and Urban100 datasets.
For SR methods, although adversarial loss and perceptual
loss can improve the visual quality of SR images, it will lead
to the loss of PSNR and SSIM scores. Therefore, for fair
comparison on PSNR and SSIM, we train another version
of our model which is optimized only on reconstruction loss
named SR-USRN-rec. SRNTT-rec and TTSR-rec indicate
SRNTT and TTSR optimized only on reconstruction loss as
well.

The detailed evaluation results are shown in Table 1. As
shown in Table 1, SR-USRN-rec gets the second highest
scores in all three datasets.When trainedwith adversarial loss
and perceptual loss, ourmethod performs better than SRNTT
and TTSR, and achieves the highest scores on CUFED5 and
Sun80. On Urban100, SR-USRN and SRNTT have similar
performance. In Table 1, our method achieves SOTA SR per-
formance whether with or without adversarial loss.

We also compare the number of network parameters and
inference time with other RefSR methods in Table 2. The
inference time is calculated on input of a 128×128 LR image
and a 512×512 Ref image. The time consumption is accept-
able compared to the performance increase. Our approach
has a slight increase in the number of parameters and infer-
ence time over TTSR, which is acceptable.

To compare the differences in visual quality, we show
the performance of different methods in Fig. 3. As shown in
Fig. 3, our method achieves the best visual quality, compared
with existing SISR and RefSR. SR-USRN can recover tex-

1 CUFED5 is available at https://zzutk.github.io/SRNTT-Project-
Page/.
2 Sun80 and Urban100 are available at https://github.com/
jbhuang0604/SelfExSR.
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Table 2 Number of parameters and inference time of different algo-
rithms

Algorithm Parameters (M) Inference time (ms)

CrossNet 35.18 125.6

TTSR 6.73 269.2

SR-USRN 9.23 354.0

ture better than SRNTT and avoid some unpleasant texture
transformation in TTSR.

4.3 Ablation study

4.3.1 the use of parallel structure and ReverseNet

SR-USRN mainly contains two networks: the ReverseNet
and parallel SR-MainNet. Ablation results are shown in
Table 3. In order to verify the effectiveness of the two parts,
this section only uses one part to train two versions.

The version without SR-MainNet means that we do not
use the parallel structure and only use the original input
images without reference images to train SR-MainNet and
ReverseNet. The version without ReverseNet means that the
second step is skipped and ReverseNet initialized by VGG19
is finetuned directly in the third step. As shown in Table 3,
the network with both two parts achieves the highest score.
It proves the indispensable of the two parts.

4.3.2 the use of ReverseNet

The use of theReverseNet is to transform theRef image to the
corresponding features in the SR-MainNet. The ability of the
ReverseNet to recover the MainNet features is important to
the texture transformer. Here, this section tries to find out the
impact of the structure of ReverseNet on test results. Several
typical networks are taken into consideration. These net-
works include VGG19, ResNet18 and ResNet34. As shown
in Fig. 2, this paper catches part of VGG19, ResNet18 or
ResNet34 as the backbone of ReverseNet, and several con-

Fig. 3 Visual comparison among different SR methods on CUFED5 testing set (top one example), Urban100 (the second and third examples),
Sun80 (the fourth example)

123



Signal, Image and Video Processing (2023) 17:1077–1085 1083

Table 3 Ablation study on the
use of parallel structure and
ReverseNet

Method SR-MainNet ReverseNet PSNR/SSIM

Base+ReverseNet � 25.372/0.7609

Base+MainNet � 25.561/0.7656

Base+MainNet+ReverseNet � � 25.646/0.7657

Table 4 Ablation study on
different structure of ReverseNet

ReverseNet PSNR SSIM

VGG19 25.646 0.7657

ResNet18 25.536 0.7656

ResNet34 25.352 0.7601

volution layers follow three-level features of main structure.
The second, fourth, eighth ReLU layers of VGG19 are used
for feature swapping. In ResNet18 and ResNet34, the first
layer is a convolution layer with 7×7 kernel-size and 2 stride
and the third layer is a maxpool layer with 2 stride. To avoid
reducing the image size too early, this paper changes the con-
volution layer to a layer with 3 × 3 kernel-size and 1 stride,
and deletes the first maxpool layer. As shown in Table 4, we
can see that VGG19 gets the best result. ResNet34 is deeper
than ResNet18 and ResNet18 is deeper than VGG19, while
the order of PSNR/SSIM scores is opposite. Because of the
limitation of data volume, the ReverseNet with deep struc-
ture can not recover the features in SR-MainNet, resulting
in the decline of the results. In the future work, we will pay
more attention to the design of the ReverseNet.

4.3.3 Effect of reference similarity

As discussed in [3,4], similarity between LR and Ref images
is a key factor to the performance of RefSR methods. This
paper investigates the performance of the SOTA RefSR and
our proposed method at different reference levels. Table 5
lists the results of several algorithms at five levels of refer-
ences. Comparing the scores of PSNR/SSIM in Table 5 , it
is obvious that higher relevant level achieves better scores
in each method. Our method also meets this phenomenon,
which means that our method also has the ability to distin-
guish the relevance of image content and texture.

4.3.4 Ability to find right texture

Our method uses SR-MainNet to transform texture from Ref
image to LR image. In Fig. 4, we uses the transform map
to transform the original image directly. With the reduce of
similarity, the quality of the transformed image is declined.
It proves that SR-MainNet can express the features correctly.
In Fig. 5, it is obvious that only one girl in the right image.
Three boxes with different colors mark the corresponding

index positions in two images. Three boxes in the faces of
different persons map to the same face of the girl in right. It
proves that the SR-MainNet can find similar texture even if
the content of the image is different.

4.3.5 Generalization performance of SR-USRN

To prove the generalization performance of SR-USRN,
several images captured in daily life are processedwith super-
resolution. These images are taken by iPhone 11. In Fig. 6,
images c and f have a more regular and realistic texture than
b and e. This experiment shows good generalization perfor-
mance of SR-USRN.

Table 5 Ablation study on reference images of different similarity

Level CrossNet SRNTT-rec TTSR-rec SR-USRN

L1 25.48/0.764 26.15/0.781 26.99/0.800 26.582/0.7852

L2 25.48/0.764 26.04/0.776 26.74/0.791 26.535/0.7833

L3 25.47/0.763 25.98/0.775 26.64/0.788 26.516/0.7829

L4 25.46/0.763 25.95/0.774 26.58/0.787 26.499/0.7824

LR 25.46/0.763 25.91/0.776 26.43/0.782 26.462/0.7812

From L1 to L4, the similarity is decreasing. LR means using LR image
as Ref image

Fig. 4 Using reference images to recover ground truth. Images with
different similarities are shown in the first row. The corresponding trans-
formed images and the ground truth are shown in the second row.
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Fig. 5 Corresponding positions in LR and reference images. Image a
is the LR image and b is the reference image. The box with the same
color in two images is the corresponding position in transform map

Fig. 6 Image a and d are original images. Image b and e are processed
by DRN. Image c and f are processed by SR-USRN

5 Conclusion

In this paper, we propose SR-USRN which uses the same
network structure to realize texture transform and super-
resolution. SR-USRN consists of three steps, including
training SR-MainNet without reference, training ReverseNet
to recover the features in SR-MainNet by Ref image and
combining SR-MainNet and ReverseNet to train final RefSR
Network. This paper uses Ref image to train SR-MainNet
in first step and shares the parameters in SR and texture
transformation. This design makes full use of the Ref image
and the same structure of network makes texture transformer
know what SR network really needs. Extensive experiments
demonstrate that SR-USRN achieves significant improve-
ments over SOTA approaches on both quantitative and
qualitative evaluations.We find that the ReverseNet structure
affects the extraction of Ref image features and the final SR
results. In the future work, we will refer to the SR-MainNet
structure to design a more efficient ReverseNet.
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