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Abstract
Deep neural network algorithms have shown promising results for music source signal separation. Most existing methods rely
on deep networks, where billions of parameters need to be trained. In this paper, we propose a novel autoencoder framework
with a reduced number of parameters to separate the drum signal component from a music signal mixture. A denoising
autoencoder with a U-Net architecture and direct skip connections was employed. A dense block is included in the bottleneck
of the autoencoder stage. This technique was tested on both demixing secret data (DSD) and the MUSDB database. The
source-to-distortion ratio (SDR) for the proposed method was at par with that of other state-of-the-art methods, whereas the
number of parameters required was quite low, making it computationally more efficient. The experiment performed using
the proposed method to separate drum signal yielded an average SDR of 5.71 on DSD and 6.45 on MUSDB database while
using only 0.32 million parameters.

Keywords Audio source separation · Convolutional neural network · Deep learning · Denoising autoencoder ·
U-Net architecture

1 Introduction

Audio source separation involves the separation of the con-
stituent audio signals from a composite audio mixture cap-
tured by an array of microphones. Audio signals of research
interest in entertainment areas generally include speech and
music. Music signals contain certain characteristics that dif-
ferentiate them from speech and other non-musical signals
because of differences in sound producing mechanism [1].
Audio source separation is applied in music editing, musical
remixing, audio information retrieval, etc. The audio source
separation techniques mostly depend on the time–frequency
characteristics of the audio mixture, the number of sources
and the spectral characteristics of sources.
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Various algorithms have been developed for audio source
separation, which mainly fall into two types, namely the
unsupervised and the supervised algorithms. Popular unsu-
pervised algorithms include independent component analysis
(ICA) [2] and nonnegative matrix factorization (NMF) [3].
ICA finds an inverse mixing matrix that estimates the most
independent source signal. In many non-musical scenarios,
audio sources are uncorrelated in their behavior and have
relatively less overlap in time and frequency. However, in
music, sources are often strongly correlated in onset and off-
set times. Music sources often have strong frequency overlap
too. Therefore, time and frequency overlap are significant
features in the music signal mixture, in addition to the strong
correlation between the sources. In such cases, the perfor-
mance of ICA decreases, and hence, ICA-based approaches
are not effective for music source separation.

The NMF works in the time–frequency (TF) domain. It
decomposes the magnitude spectrogram of mixture signals
into additive part-based decompositions, called basis func-
tions. NMF-based drum source separation was performed by
relying on prior information [4]. The NMF method assumed
that the signal mixture is a linear combination of sources.
Hence, NMF is not suitable for handling complex sources.
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Supervised algorithms include support vector machines
(SVM) and deep neural networks (DNN). SVMs are gen-
erally preferred for classification [5,6]. DNNs use nonlinear
models trainedwith a large number of parameters. In general,
these parameters are weights that are learned during train-
ing. The processing time required by the network increases
as the number of network parameters increases. The obvious
benefit of having many parameters is that more complicated
functions can be represented. On the other hand, with fewer
parameters, the network is flexible and the issues arising from
overfitting can be prevented.

Recent deep learning models for audio source separation
use either spectrogram-based or waveform-based models.
Spectrogram-based models are trained to estimate masks
such as binary or soft masks of the desired target source,
which are used to obtain the estimates of the corresponding
sources [7,8]. In contrast, waveform-based models separate
sources directly in the time domain. DNN models working
directly on time-domain waveforms require larger convolu-
tion kernels than spectrogram-based models because of the
higher time resolution in the time-domain waveforms [8].

Waveform-based models such as Wave-U-Net [9], Meta-
TasNet [10] and Demucs [11] are used for music source
separation. Even though the separation results are at par with
the spectrogram-based models, the number of trainable net-
work parameters in the waveform-based models is generally
higher than that of spectrogram-based models [8].

The main objective of this study was to achieve good
source separation while using a smaller number of param-
eters. The deep learning models for source separation using
spectrogram outperformed NMF models as observed by
Huang et al. [12]. Therefore, a spectrogram-based model is
employed in this study. The main contribution of this paper
is a U-Net architecture with skip connections in which a
dense block [13] is introduced to ensure reduction in train-
ing parameters.

The rest of this paper is organized as follows. The
state-of-the-art spectrogram-based music signal separation
techniques using neural networks are described in detail in
Sect. 2. The proposed drum signal separation approach is
described in Sect. 3. The experiment along with ablation
study is explained in Sect. 4. The results of the investigation
and comparison with other popular methods are presented in
Sect. 5, followed by concluding remarks in Sect. 6.

2 Related work

A variety of spectrogram-based models have been presented
in the literature for audio source separation [14–24]. Uhlich
et al. [14] proposed a fully connected neural network (FNN)
for instrument sound extraction. It discovers global features
but does not exploit local time–frequency features. Chandna

et al. [15] used a convolutional neural network (CNN) to sep-
arate vocals, drums, and other instruments from the mixture.
This model has an encoding stage and decoding stage with
horizontal, vertical and fully connected convolution layers to
separate the vocals, drum and other instruments. The CNN
proved to be faster than the FNN.

A convolutional denoising autoencoder (CDAE) is a spe-
cial type of CNN that can efficiently denoise a signal. CDAE
has been implemented for speech andmusic signal separation
[16]. Grais and Plumbley [16] used CDAE for audio source
separation in which the input spectrograms were compressed
and later re-expanded to the size of the target spectrogram.
It was successful in discovering global patterns, but local
details were lost during contraction. Although the method
yielded satisfactory results, some high-resolution informa-
tion was lost during downsampling.

To ensure the reconstruction of finer high-resolution
details, a U-Net architecture with skip connections between
the encoder and decoder at the same hierarchical level was
used. Initially, U-Net was proposed by Ronneberger et al.
[25] to segment biomedical images. The U-Net architecture
was later adopted by Jansson et al. [17] for audio source
separation to separate vocals and instruments. The model
uses skip connections, which allow information propagation
between the encoder and decoder.

Apart from CNNs, models based on recurrent neural net-
works (RNNs) have also been employed for audio source
separation. Liu and Yang [18] compared a convolution skip
connection with a recurrent skip connection in a denoising
autoencoder. Uhlich et al. [19] recommended data aug-
mentation where random swapping of the left/right channel
was performed for each instrument. The data augmentation
strategy improved the effectiveness of source separation.
To model longer temporal contexts, an RNN with long
short-term memory (LSTM) was imparted into the network.
Despite its good performance, the model requires a relatively
long training time [20].

In an audio spectrogram, different patterns occur in dif-
ferent frequency bands [21]. To capture the local patterns,
Takahashi and Mitsufuji [20] used a multi-scale multi-band
densenet (MMDenseNet) to split the input into multiple
bands. This model can efficiently learn both fine-grained
local and global structures. The source separation was
improved. MMDenseLSTM was proposed by Takahashi et
al. [21] to utilize the sequencemodeling capability of LSTMs
in conjunctionwithMMDenseNet. Thismodel outperformed
theMMDenseNetmodel. Thismodel improves the capability
of source separation with fewer parameters.

Recently, Satya and Suyanto [22] have proposed a genera-
tive adversarial network (GAN) for music source separation.
Here, the concept of the U-Net model was implemented on
the generator. In [23], the sliced attention mechanism was
used formusic source separation. This is a recently developed
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Fig. 1 General framework for signal source separation

neural network technique, which helps to learn the impor-
tance of each feature interaction from every segment of the
magnitude spectrogram. The attention mechanism helped to
improve the SDR in the music source separation.

3 Proposed approach

The primary goal of this study was to effectively separate
the drum signal present in a polyphonic music signal. The
proposed method utilizes CDAE with a U-Net architecture
and a dense block.

The general framework used for the study is shown in
Fig. 1. The input music mixture to be separated was a poly-
phonicmusic signal obtained fromacommonaudio database.
Typical spectrogram-based models apply short-time Fourier
transform (STFT) to a mixture waveform to obtain the
mixture spectrogram.Thesemodels estimate the source spec-
trogram from the mixture spectrogram and restore the source
signal using inverse STFT (ISTFT). The time-domain signal
x(t) was converted to the TF domain during the preprocess-
ing stage. The magnitude spectrogram was fed to the DNN,
while the phase spectra were used later during the synthesis
stage. The DNN uses the autoencoder framework to predict
the target drum spectrogram, which is later subjected to post-
processing to recover the time-domain drum signal denoted
by x̂d(t).

3.1 Dataset

The DSD1 and MUSDB2 datasets [26] were used in this
study. Both DSD and MUSDB are databases of profession-
ally recorded music sources, available in stereo format with
a sampling rate of 44.1 kHz. The DSD dataset contains
100 professionally recorded songs. Similarly, the MUSDB
dataset has 150 songs. Each song has five wave files associ-
ated with it: the mixture signal (x(t)), drum signal (xd(t)),

1 https://sigsep.github.io/datasets/dsd100.html.
2 https://doi.org/10.5281/zenodo.1117372.

the vocals, bass and other instruments. In this paper, the drum
signal xd(t) is the target, whereas the vocals, bass, and other
instruments are considered as the “interference.”

3.2 Preprocessing

In the preprocessing stage, the actual input for the DNN is
created. The stereo wave songs were converted to mono by
averaging both channels. The resultant audio signals were
transformed to the corresponding spectrograms using the
STFT. A Hanning window of length 2048 samples was cho-
sen with a hop size of one-fourth the window length. The
complex STFT X of signal x(t), has magnitude spectra
XMag and phase spectra XPhase. The magnitude spectra were
converted to log-scale and normalized in energy. These spec-
trograms are treated as a two-dimensional (2D) array that
exposes spatial patterns from which a machine can learn.
Only the magnitude spectra were fed as inputs to the DNN
model.

3.3 DNN architecture

The DNN with an autoencoder structure is trained to predict
the target, which is the drum spectrogram. The layout of the
CDAE using U-Net with dense block is shown in Fig. 2. The
autoencoder is composed of two parts, viz. the encoder and
decoder. The encoder computes the features on coarser time
scales. Each hierarchical layer of the encoder has a series
of convolution layers and a max-pooling layer. The filters
used in the convolution layers extract the features from the
incoming data. In each hierarchical layer in the encoder, the
convolution layer retains the spectrogram size and increases

Fig. 2 Architecture of U-Net with dense block
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Fig. 3 Details of dense block

the number of channels. Each convolution layer consists of a
kernel size of 3×3 and a padding factor of 1. Max-pooling is
employed for the downsampling of the latent representation.
The pooling layer has no learnable parameters, as it is used
mainly for dimension reduction.

Adense block is introduced at the bottleneckof the autoen-
coder stage. The details of the dense block are shown in Fig.
3. It is composed of four blocks within a single block. Each
block has 16 channels at the output. The features from pre-
ceding layers are concatenated with the successive layers and
hence more information is conveyed from previous layers to
subsequent layers. The input to the dense block has the size
of 64× 40× 64. The input features are passed through con-
volution, batch normalization (BN) and rectified linear units
(ReLU). The output features of the dense layer is fed to the
decoder stage.

The decoder computes the local and high-resolution fea-
tures. It possesses a series of transpose convolution followed
by a convolution layer. The transpose convolution with a
kernel size of 2 × 2 and a stride of 2 doubles the spectro-
gram size. The resultant array is then concatenated with the
features from the encoder path. After concatenation, the con-
volution layer in the decoder retains the spectrogram size and
decreases the number of channels. This process was repeated
for each hierarchical layer. To prevent overfitting, a dropout
of 0.5, is applied to each layer of the decoder. In the final
layer, a 1 × 1 convolution is used to map the features to
restore the original spectrogram size.

During downsampling in the encoder, many low-level
details are lost as we force all the information to flow through
the compression bottleneck. The direct skip connections used
in U-Net between layers at the same hierarchical level allow
information to flow directly from the encoder to the decoder
layers.

Thus, the drum source features are extracted and the DNN
model predicts the magnitude spectrogram ˜Xd of the drum
signal. The DNN model is similarly trained with clean drum
spectra replaced by mixture spectra and the DAE is tuned to
predict ˜X of the mixture spectra.

3.4 Post-processing

The DNN is followed by the post-processing stage, in which
a soft mask was calculated to estimate the magnitude spec-
trogram for the drum source. After decoding, corresponding
denormalization and log-to-linear conversions were applied.
Thus, we obtain the contribution of the drum signal in the
mixture, which is a partial estimate of the magnitude of the
drum spectrogram. The neural network does not have the
constraint that the sum of the predicted masks is equal to the
original mixture. To enforce the constraint, TF masking of
the original mixture was performed. The soft mask Md for
drums was calculated using (1)

Md = ˜Xd

˜X
(1)

The magnitude spectra ̂Xd of the drum signal is

̂Xd = Md � XMag (2)

computed using (2) where � stands for element-wise mul-
tiplication. The estimated magnitude spectra are now com-
bined with the phase spectra of the input mixture to retrieve
the time-domain signals by applying ISTFT as given by (3).

x̂d(t) = ISTFT[̂Xd � XPhase] (3)

The separated drum signal in the time domain x̂d(t) is esti-
mated and compared with the ground truth of the original
drum signal represented by xd(t).

4 Experiment

CDAE with U-Net architecture was trained with both the
DSD and MUSDB datasets. The encoder input (2D array) of
size 1024 × 640 is the magnitude spectrogram. As the 2D
array is progressively processed through a series of convolu-
tion layers, the number of filters is increased to generate 8,
16, 32 and 64 feature maps consecutively. The spatial dimen-
sions of these features are reduced to half the size by 2 × 2
max-pooling. At the bottle neck phase, the dense connectiv-
ity of the dense block extracts the essential features which
are conveyed to the decoder. The final layer of the decoder
computes the penult 3×3 convolution followed by 1×1 con-
volution to produce the predicted magnitude spectrogram of
original array size.

During the training phase, clean drum spectra were used
to train the network. 80% of the dataset is used for training
while the rest was split into validation and test set. The binary
cross-entropy loss function, which summarizes the average
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Fig. 4 Loss curve showing training and validation loss using MUSDB
dataset

difference between the actual and predicted spectrogramwas
used in this model. The training was performed using the
Adam optimizer [27] with a learning rate of 0.0001, for 500
epochs and with a batch size of 8. The hyperparameters of
the Adam optimizer, such as β1 = 0.9, β2 = 0.999 and
ε = 1 × 10−8 were chosen for training the network.

The training and validation loss curves for the U-Net with
dense block using MUSDB dataset are presented in Fig. 4.
The validation loss was used to evaluate the progress in train-
ing.During training, theweights of the kernelwere initialized
with “He-Normal” initializer [28]. The algorithmwas imple-
mented using TensorFlow—Keras. After training, the model
was evaluated using the test dataset.

The performance of the proposed method was analyzed
using the standard metric SDR [29], which provides a mea-
sure of distortion between the desired target and unwanted
components and thus an overall assessment of the quality of
the estimated sources. It is computed usingmuseval3 package
generally employed in the music source separation evalua-
tion campaign [30], in which the SDR is calculated using (4)

SDR = 10 log10
‖starget‖2

‖einterference + enoise + eartifact‖2 (4)

The drum signal present in the input mixture is considered
as starget, the vocal and accompanying instrument tones as
einterference and the background noise as enoise. eartifact is the
forbidden distortion of sources or burbling artifacts.

Audio quality metrics are also based on perceptual per-
spective, which predict the difference between the reference
signal and the distorted signal from the view point of human
perception [31]. ThePEASS (PerceptualEvaluationMethods
for Audio Source Separation) toolkit4 was used to measure
the overall perceptual score (OPS) [32].

3 https://github.com/sigsep/sigsep-mus-eval.
4 https://gitlab.inria.fr/bass-db/peass.

Fig. 5 Comparison of parameters in each layer of U-Net

Table 1 Comparison of average SDR (drums) and total parameters

Method SDR in dB Parameters

DSD MUSDB

U-Net without dense block 5.36 5.41 485,673

U-Net with dense block 5.71 6.45 325,225

4.1 Ablation study

An ablation study was conducted to investigate the effective-
ness of the dense block. The dense block was replaced by
convolutional layers in the U-Net. The model was trained
using the basic U-Net structure which has convolution filters
at the bottle neck stage. The SDR values were computed and
the number of parameters required were analyzed in both the
cases. The number of parameters needed in each layer of U-
Net is compared in the Fig. 5. The use of dense block has
resulted in reduction of the parameters in layer 5. The U-Net
without dense block needed 0.48 million parameters, while
U-Net with the dense block needed 0.32 million parame-
ters only. It is observed that the total number of parameters
reduced significantly and the SDR values increased using the
dense block, as listed in Table 1.

5 Results and discussions

A comparative study of the proposed method for drum signal
separationwas carried outwith other state-of-the-artmethods
in terms of the average SDR and the number of parameters
using bothDSDandMUSDBdatabases. The results obtained
are presented in Tables 2 and 3, respectively. The U-Net with
dense block resulted in fewer parameters with at par SDR
values.When the proposedmethodwas testedwithMUSDB,
which hadmore training data, the SDRwas found to increase.

TheOPS computed for theDSDand theMUSDBdatabase
gives an average value of 38.3 and 42.5, respectively.
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Table 2 Performance
comparison of average SDR
(drums) on DSD dataset

Method SDR (in dB) Parameters (in million)

DeepConvSep [15] 2.40 5200.00

Blend [19] 4.00 8.71

MMDenseNet [20] 5.37 0.31

Proposed method using U-Net with dense block 5.71 0.32

Table 3 Performance
comparison of average SDR
(drums) on MUSDB dataset

Method SDR (in dB) Parameters (in million)

Wave-U-Net∗ [9,23] 4.16 10.20

Demucs∗ [11,23] 5.38 648.00

Meta-TasNet∗ [10,23] 5.91 45.50

DeepConvSep [15,23] 3.14 0.32

Spect U-Net [18,23] 4.66 9.84

Open-Unmix [23,24] 5.73 8.90

MMDenseNet [20] 6.27 0.33

MMDenseLSTM [21] 6.62 1.22

Sams-Net [23] 6.63 3.70

Proposed method using U-Net with dense block 6.45 0.32

∗Denotes the waveform-based model

6 Conclusion

In this paper, a method for drum signal separation from a
polyphonic music signal mixture using a denoising autoen-
coder withU-Net architecture and a dense block is presented.
The autoencoder was trained and tested on the DSD and
MUSDB datasets. The results show that while the drum
source separation using the U-Net with a dense block is at
par with other state-of-the-art methods in terms of SDR, the
number of parameters for estimation is less in this architec-
ture, making it computationally efficient. The ablation study
has proved that the contribution of dense block improved the
performance of the model. In the future, better separation
can be achieved by training the network by employing dense
blocks in other layers of the encoder and decoder.
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