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Abstract
Crowd features are often extracted from RGB images to complete the tasks of density estimation and crowd counting.
However, RGB images will be affected in some particularly poor illumination, resulting in the inability to accurately identify
semantic objects, and thermal images can help solve this problem. Considering the comprehensive utilization of optical and
thermal imaging information, we propose a crowd counting method based on cross-modal coordinated representation and
multi-level supervision. In order to capture the complementary features of different modalities, RGB and thermal images
are used as specific steams of cross-modal cooperative learning. The missing specific information is compensated and the
shared information is enhanced; both are through the aggregation and distribution calculation of specific steams and shared
steam. Furthermore, in order to weaken the influence of the background and strengthen the identification of crowd regions, we
combine the multi-scale crowd feature extraction and region recognition. Multiple output layers are added in the propagation
process of multi-modal streams, so as to achieve the purpose of multi-level supervision. Moreover, we replace the baseline
training loss with the Bayesian loss for monitoring the counting expectation of each annotation point. Finally, comprehensive
experiments on the RGBT-CC benchmark show the effectiveness of the proposed method.

Keywords Crowd counting · Cross-modal collaborative representation learning · Multi-level supervision

1 Introduction

As a challenging computer vision task, crowd counting aims
to obtain rich crowd features and generate the estimated
density map corresponding to the crowd image. With the
development of deep learning, a large number of counting
models have subsequently been proposed. Although substan-
tial progress has been made in relevant studies, there are
still many factors that influence the acquisition of crowd fea-
tures. Besides the problems of complex crowd background,
scale variation within and between images, occlusion exist-
ing between dense crowd, some specific scenes also have
problems such as the difficulty of detecting pedestrians due
to too poor illumination conditions. Because most cameras
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cannot work normally in the dark environment, it will lead
to a sharp decline in the performance of many methods [1],
so other types of visual sensors (such as infrared cameras)
began to be widely used as a supplement to RGB cameras to
overcome this difficulty. Therefore, the research on the com-
bination of multi-modal representation learning and crowd
counting has been further developed.

Early researchers mainly used the complementarity of
RGB image and depth image to complete the counting task.
For example, Lian et al. collected the ShanghaiTech RGB-D
dataset and utilized a depth adaptive kernel for considering
head size variation to improve the quality of density maps
[2]. In addition, depth sensing anchors are also used in the
detection framework to better initialize the anchor size. Zhao
et al. adopted the bifurcated backbone strategy to recombine
multi-level features into teacher and student features, and
they mined informative depth clues from channel and spatial
views and finally fused RGB and depth modes in a comple-
mentary way [3]. The above methods mainly generate pixel
level crowd density map through rich RGB information and
depth information. However, in some unconstrained scenes,
only using the above features may not be able to accurately
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identify semantic objects. In the case of poor lighting con-
ditions (such as backlight and night), it is difficult to detect
pedestrians directly from RGB images. In addition, some
objects with high similarity to pedestrians are easily mis-
taken for pedestrians only relying on optical features [4].
References [5–7] use multi-modal data to directly fuse fea-
tures or input them into deep neural network in a combined
way to connect the representation of all modes and supervise
training, but these cannot make good use of the comple-
mentary information between different modes. Recently,
Liu et al. released the RGBT-CC benchmark and proposed
a cross-modal collaborative representation learning frame-
work for crowd counting [8]. The framework includes two
multi-modal specific branches, a modal shared branch and
multiple information aggregation and distribution modules,
which can fully capture the complementarity between dif-
ferent modalities. However, it does not fully consider the
different characteristics of RGB data and thermal imaging
data, so it is necessary to further enrich the information and
enhance the expression of specific features.

As seen from the relevant literature, RGB images may
not be able to accurately identify semantic objects in uncon-
strained scenes. Although the thermal images are not affected
by light and shade, the existing hard negative objects are
difficult to eliminate. Meanwhile, the depth images of out-
door scenes are rough, so they has certain limitations in
application. In general, RGB information and thermal image
information can be complementary, but it is not easy to cap-
ture the complementarity betweenmulti-modal data. In order
to capture the complementary features of different modali-
ties, we refer to the idea of taking RGB and thermal images
as multi-modal- specific branches proposed in [8] and add
crowd region recognition design to the RGB modality, so as
to realize the learning separation and coordinated represen-
tation of multi-modal streams under the constraint of region.
Considering the influence of background and the judgment
of crowd region, we combine multi-scale feature with region
recognition to achieve thepurposeof adaptive attention todif-
ferent regions. And residual learning and skip connection are
adopted. In dealing with reducing over fitting and facilitat-
ing gradient back propagation, we add multiple output layers
and back propagation the gathered loss function in the multi-
modal branch for the multi-level supervision. Besides that,
we adopt the idea of [9] in the calculation of loss function for
combatingwith the problemsof occlusion, perspective effect,
shape change, and so on in the scene. The density contribu-
tion probability model is constructed from the perspective
of point annotation, so as to realize more reliable supervi-
sion on the counting expectation of each annotation point.
To sum up, we propose the method based on cross-modal
coordinated representation and multi-level supervision for
crowd counting.

The rest of the article is arranged as follows. In Sect. 2, we
will briefly introduce the related research of crowd counting
based on deep neural network. Then, the method proposed
in this paper is introduced in Sect. 3. In Sect. 4, we will
report the performance of the method based on a series of
experiments using images from the RGBT-CC benchmark
[8]. Finally, we summarize the paper in Sect. 5.

2 Related work

At present, many crowd counting methods mainly use RGB
image of crowd scene to extract features and generate esti-
mated density map. Meanwhile, they can be divided into
regression-based models [9–14] and models with additional
detection [15–18]. For instance, Liu et al. proposed to use the
pool pyramid to extract the features of supplementary scales
and adaptively assign differentweights to different scales and
regions [10]. The lightweight hierarchical network structure
used by Jiang et al. effectively combines the features from
high level and low level [11]. The conditional random fields
developed by Liu et al. can enable the features of each scale
to obtain information from other scales [12]. And Liu et al.
solved the problem of reduced counting accuracy in high
congestion and noise scenes by adding attention mechanism
and multi-scale deformable convolution in the network [13].
Dong et al. utilized the improved encoder–decoder structure
and advanced loss function tomine the features between adja-
cent scales to cope with scale changes [14]. While Ma et al.
proposed Bayesian loss which is helpful to establish den-
sity distribution probability model from point annotation [9].
When the crowd density is low, the detect-based method is
more effective than the regression-based method; when the
crowd density is high, the regression-based method is better
than the detection-based method. Aim at giving full play to
the advantages of these two methods at the same time, Liu et
al. designed two sub networks for detection and regression,
respectively, and fused the two by the attention mechanism
[15]. However, this method is only suitable for experiments
on datasets with low density. If the scene is very crowded, the
cost of bounding box labeling is very high. Therefore, Liu et
al. suggested changing the initialization of point annotation
to the real annotation of the initial box and updating it in
real time during training [16]. Moreover, Liu et al. employed
additional positioning branches to detect head positions and
scale adaptively in difficult to identify regions [17]. Fur-
thermore, Rong et al. proposed a three branches network
for feature extraction, regional recognition, and judgment of
crowd density [18]. The method simulates a series of steps
when a person actively observes the crowd scene, that is, first
observing the crowd area, then paying attention to the crowd
density of each area, and finally estimating the number of
people.
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While the abovemethods cannot effectively identify invis-
ible pedestrians in the case of poor illumination conditions,
multi-modal representation learning based on deep learn-
ing has attracted extensive attention because of its powerful
multi-level abstract representation ability. Therefore, some
researchers also use depth map or thermal image for object
recognition and crowd counting. Fu et al. proposed a novel
joint learning and densely cooperative fusion architecture
for rgb-d salient object detection [19]. This method mainly
obtains fusion features through element level multiplication
or addition and cascade operation. In order to achieve fully
represented shared features, Li et al. designed a cross-modal
crowd counting method combining cross-modal cycle atten-
tion fusion and fine coarse supervision [20]. While Piao et
al. took the estimated map and attention map as a bridge to
transmit depth knowledge [21], Zhao et al. proposed an effec-
tive multi-scale cross-modal feature fusion method for rgbd
salient object detection [22]. In addition, Lu et al. used the
cross-modal shared feature transfer algorithm to explore the
potential of modal shared information and specific features
in improving the ability of re recognition [1]. These methods
chiefly use the depth data as auxiliary information to assist
the representation and learning of RGB data. Lately, Liu et
al. proposed to utilize the complementarity of RGB image
and thermal image to complete crowd counting [8].

For achieving the purpose of crowd counting, especially
some scenes with poor illumination, we catch the modal
shared information and specific features with RGB—thermal
image, reduce the influence of irrelevant background through
region recognition, and strengthen the supervision of point,
region, and multi-scale feature extraction.

3 Proposedmethod

3.1 Network architecture

Aiming at the counting problem of unconditionally restricted
crowd scenes, we propose the density estimation method
based on multi-modal representation learning and multi-
level supervision. The overall frame structure is shown in
Fig. 1. In considering the learning of deep multi-modal
representation, we learn from the ideas of [1] and [8], com-
prehensively learn the complementarity between different
modes of RGB image and thermal image based on specific
modal features, and make effective use of the shared infor-
mation and specific information of each sample. In addition,
we also consider the visual sense of human observing the
scene image, that is, we will first pay attention to whether
there will be someone in a part or area of the image, and
then follow a series of steps to complete the density estima-
tion processing. Therefore, the design of region recognition
is added to RGB information by referring to [18]. The overall

network of cross-modal collaborative representation learning
is mainly composed of five modules. Each module contains
two modal specific streams, one modal shared stream, and
a shared specific transformation module (SSTM). The RGB
modality-specific stream is represented by blue and green
squares, the modality-shared stream is represented by orange
squares, and the thermal modal modality-specific stream is
represented by purple squares. In the design of network struc-
ture, [1] takes the network design of [23] and [24] to complete
the preliminary extraction of features and combines the the-
ory of graph convolution to determine the similarity within
and between modes. [8] mainly has two backbone networks,
which are based on CSRNet [25] and BL [9], and it veri-
fies the applicability of the method combined with different
classical network models. Our network is based on VGG-
19 [26]. VGGNet has smaller convolution kernel and pooled
sampling domain, which will bring implicit regularization
results and can obtain more control parameters of image fea-
tures. There followed taking the first block as an example to
illustrate the components in the block. Firstly, two streams
take the RGB and thermal images as inputs to extract specific
modal features separately, which retain the specific informa-
tion of a single modality. The shared stream takes the zero
tensor as the input and aggregates the information of specific
modal features in layers. The design of region recognition
likes the attentionmechanism,which divides each pixel in the
feature into crowd and background region through the gen-
erated coarse-grained attention map. The network structure
of area recognition is C (512,3)–U–C (256,3)–U–C (128,3)–
U–C (64,3)–C (1,3), where C represents convolution layer
and U represents up sampling. The later SSTM connected
by specific streams can determine the internal similarity
between RGB mode and thermal mode, as well as the sim-
ilarity between them, and propagate the shared features and
specific features back between the two modes at the same
time to achieve the dual purpose of making up for each spe-
cific information and enhancing the shared information. In
addition to the above design, the five modules are connected
in turn, and the multi-scale problem is considered from the
overall structure and the interior of the module.

3.2 Supervised fusion feature extraction

Region-based two-stream feature extractor For the input
RGB image XRGB and thermal image X I , the features
obtained after multi-layer convolution calculation are repre-
sented by F . Then, F is transformed into multi-scale context
information I through pyramid pooling. The unified calcula-
tion process of thermal modality stream andmodality-shared
stream is as follows:

I = Conv1×1(P
1(F) ⊕ P2(F) ⊕ P3(F)) (1)
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Fig. 1 a Overall structure of method. b Region identification of RGB modality. c Shared specific transformation module (SSTM)

where Conv1×1 expresses 1 × 1 convolutional layer and P
represents the maximum pool layer with different size. The
output sizes of P(F) are 1, 1/2 and 1/4 of the original input
size.

For the RGB modal stream, it is necessary to calculate
the regional information while extracting the crowd charac-
teristics. The region map generated by region recognition
gives different weights to the pixels in different regions of
the image. It is similar to the attention mechanism, which
is mainly realized by multiple full connections and sigmoid
functions, so that the transformation of the feature informa-
tion of the part of interest can be highlighted. The updated
feature FRA is obtained by multiplying the crowd feature
and the regional information F A and then adding it to the
original feature. The calculation process is as follows:

I R = FR′ ⊕ FR′′ + FR′
(2)

Shared-specific feature transfer (SSTM) As shown in
Fig. 1, the residual calculation and gate function are car-
ried out for I RA, I S and I I obtained above to complete
the aggregation and distribution of information. First, the
residual information between the three is obtained, and then,
complementary information is propagated to refinemodality-
shared features FS , through 1×1 convolution adaptively. The
calculation formula of enhanced features F̂ S is:

FRS = Conv1×1(I
RA − I S) (3)

FIS = Conv1×1(I
I − I S) (4)

F̂ S = FS + (I RA − I S) ⊗ FRS + (I I − I S) ⊗ FIS (5)

Next, new modalities are assigned to share feature infor-
mation, and the specific features of eachmodality are refined,
respectively. The context information Î S corresponding to
the enhancement feature F̂ S is dynamically propagated into
F̂ R and F̂ I . F̂ R and F̂ I are calculated as follows:

F̂ R = FR + ( Î S − I RA) ⊗ Conv1×1( Î
S − I RA) (6)

F̂ I = F I + ( Î S − I I ) ⊗ Conv1×1( Î
S − I I ) (7)

F̂ RA, F̂ S , and F̂ I complete the representation learning
through five blocks in turn. Finally, the estimated density
map is obtained through multiple convolution layers, and
then, the density map is summed pixel by pixel to obtain the
estimated counting.

4 Experiments and results

In this chapter, we will give the evaluation indicators and
experimental details based on the newly proposed RGBT-
CCbenchmark. The training and evaluation are performed on
IntelCore i7-7800@3.50GHzprocessor and 31.1Gmemory.
Experimental environment adopts PyTorch [27] framework
and Adam [28] optimizer. At the same time, we use and start
with training each model for 400 epochs and set the learning
rate to 1e-5.

4.1 Evaluationmetrics

Referring to the previous work, we adopt the Grid Average
Mean Absolute Error (GAME [29]) andMean Squared Error
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(MSE) as the evaluation indicators of performance. Com-
pared with Mean Absolute Error (MAE), GAME not only
evaluates the overall area, but also includes the evaluation of
areas with different sizes. The calculation formula of GAME
is:

GAME(l) = 1

N

N∑

i=1

4l∑

j=1

|CE j
i − CG j

i | (8)

where N represents the number of images, and l is a spe-
cific level. The image can be divided into 4l nonoverlapping
regions according to l, and the corresponding regional error
measurement can be carried out. The values of l are 0, 1, 2,
and 3, respectively. When the value of l is 0, the value of
GAME is the same as that of MAE. CE j

i and CG
j
i represent

the estimated count of the lth region and the corresponding
ground-truth count, respectively. And the definition of MSE
is as follows:

MSE =
√√√√ 1

N

N∑

i=1

(CEi − CGi )2 (9)

where CGi is the ground truth of testing image and CEi is
the corresponding estimation.

4.2 Loss function

The published datasets used for training generally provide
point annotation for each training image. Many counting
methods first use Gaussian kernel to convert the point anno-
tation of each training image into ground truth map and then
train the depth neural network model by regression calcula-
tion of each pixel’s value in the density map. In contrast, the
Bayesian loss function [9] adopted in this paper constructs
a density contribution probability model from the perspec-
tive of point annotation and then calculates the expectation
of each annotation point by summing the product of the con-
tribution probability and the estimated density of each pixel.
The calculation formula of loss function is:

L =
N∑

n=1

F(1 − E[Cn]) (10)

where F(·) is distance function. The ground truthCn of each
annotation point is 1, and E[n] is the expectation ofCn . Com-
pared with the loss function that limits the density value of
each pixel, the Bayesian loss function monitors the count
expectation of each annotation point.

4.3 Performance on comparison

RGBT-CC benchmark [8] contains 2030 pairs of RGB and
thermal images from different scenes, in which 1013 pairs
are from bright scenes, 1017 pairs are from dark scenes, and
there are 138,389 marked pedestrians. The size of all images
used for training and testing is uniformly set to 640 × 480.
A total of 1030 pairs were used for training, 200 pairs were
used for verification, and the remaining 800 pairs were used
for testing.
Experimental resultsTable 1 shows the comparisonbetween
our method and other methods on RGBT-CC benchmark [8].
Each method in the table considers capturing enough scene
details in variousways to complete the task of recognition and
counting. HDFNet [30] and BBSNet [7] fully integrate and
makeuse of cross-modal information (RGB imagewith depth
optical information) to facilitate the task of target detection.
The multi-view crowd counting proposed by MVMS [31]
uses the information from multiple camera views to predict
the scene level density map on the 3D world ground plane.
Compared with CSRNet [25] and BL [9], CSRNet+ IADM
[8] and BL+ IADM [8] combine RGB information and ther-
mal imaging information for density map estimation. Both
use the cross-modal collaborative representation learning
framework to fully capture the complementary information
of different modalities. Besides cross-modal collaborative
representation learning, we add a multi-level supervision
mechanism, which not only integrates multi-modal infor-
mation, but also considers the extraction of coarse and
fine-grained features. From the results, our method is bet-
ter than other methods in the values of GAME and MSE.
Comparison of different condition of illumination Table 2
shows the testing comparison between our method and
BL+ IADM [8] on the bright and dark images given in [8].
And the table also shows the comparison of test results using
RGB information, thermal imaging information, and RGB-
T information, respectively. It can be seen that optical and
thermal imaging information can complement each other,
multi-modal information can obtain more detailed features
than single-modal information, and thermal image can help
to extract crowd features. Moreover, both our method and
BL+ IADM [8] improve the quality of density map by using
the knowledge characteristics of comprehensive information
and obtain more accurate estimation results. Meanwhile, it
can achieve better results in brightness and darkness. In gen-
eral, our method is better than BL+ IADM [8] in MAE and
MSE under the different condition of illumination.

4.4 Ablation experiments

In this part, wewill conduct further experimental comparison
and discuss the details of model design. At the same time,
the effect of cross-scene is also preliminarily considered.
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Table 1 Results comparison of
different methods on the
RGBT-CC benchmark

Method GAME(0) GAME(1) GAME(2) GAME(3) MSE

HDFNet [30] 22.36 27.79 33.68 42.48 33.93

CSRNet [25] 20.40 23.58 28.03 35.51 35.26

MVMS [31] 19.97 25.10 31.02 38.91 33.97

BBSNet [7] 19.56 25.07 31.25 39.24 32.48

BL [9] 18.70 22.55 26.83 34.62 32.67

[25]+ IADM [8] 17.94 21.44 26.17 33.33 30.91

[9]+ IADM [8] 15.61 19.95 24.69 32.89 28.18

Our method 14.10 18.71 23.42 31.81 23.96

Table 2 Performance of different methods on the RGBT-CC benchmark under different illumination conditions

Illumination Method Input data GAME(0) GAME(1) GAME(2) GAME(3) MSE

Brightness BL+ IADM [8] RGB 41.01 56.22 68.07 80.22 63.59

BL+ IADM [8] T 51.52 52.36 54.10 56.90 73.93

BL+ IADM [8] RGBT 20.04 23.77 29.12 37.31 33.26

Our method RGB 45.48 51.90 58.44 65.69 72.87

Our method T 55.93 56.75 58.35 61.19 77.79

Our method RGBT 17.47 22.11 28.15 37.43 31.00

Darkness BL+ IADM [8] RGB 59.58 69.94 71.38 85.60 94.7

BL+ IADM [8] T 48.80 50.97 52.42 55.61 81.22

BL+ IADM [8] RGBT 17.43 22.24 26.58 34.35 32.14

Our method RGB 73.67 85.36 97.79 107.53 94.16

Our method T 35.50 39.25 42.76 48.58 58.57

Our method RGBT 16.96 22.14 26.48 32.70 31.17

Architecture learning Besides comparing with the refer-
ences, we also consider different schemes in the design
of the network structure. The results of various schemes
are compared as shown in Fig. 2. BL [9] mainly adopts
VGG-19 network, and BL+ IADM [8] adds cross-modal
cooperative representation learning on the basis of BL [9].
Moreover, BL+ IADM+TSF tries to take crowd region
recognition as a specific stream to participate in the sub-
sequent calculation process. While BL+ IADM+RS1 adds
region recognition for the extraction of RGB and thermal
imaging feature, BL+ IADM+RS2 only recognizes the
region of RGB features. From the curve changing trends in
the chart, BL+ IADM+RS2 is lower than other schemes in
GAME value and MSE value. The results show that more
detailed crowd features can be obtained through the compre-
hensive knowledge extraction of cross-modal features, which
is helpful to improve the accuracy of crowd counting. More
than twomodal representations are difficult to learn,while the
coarse- and fine-grained feature extraction of multi-modal
features is helpful to obtain high-quality density map.
Effect of cross-scene In addition to considering the training
and testing on different illumination, we also preliminarily
verify the effect of cross-scene. Firstly, the model is trained

Fig. 2 Results comparison of different structural schemes

on the whole dataset and then tested on the brightness and
darkness sets divided by BL+ IADM [8]. As seen from the
data distribution in Figs. 3 and 4, the effect of using RGB-
T multi-modal information is better than using RGB or T
feature information alone. When using RGB information
alone to extract features, our method is not as effective as
BL+ IADM [8]. But when T information or RGB-T infor-
mation can be used to extract features, our method is better
than BL+ IADM [8], and the MAE and MSE values are
increased by 38%, 31% and 6%, 11%, respectively.
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Fig. 3 Comparison of cross-scene testing and the illumination condi-
tion is brightness

Fig. 4 Comparison of cross-scene testing and the illumination condi-
tion is darkness

5 Conclusion

We propose a method based on coordinated representation
and multi-level supervision for the estimated density map
and crowd counting in the unconstrained crowd scene. The
whole network includes five blocks and density map gen-
erator. Pairs of RGB-thermal images are first input into the
two-stream feature extractor to obtain shared features and
specific features, in which the RGB stream contains both
crowd features and regional information. Then, the multi-
modal features determine the similarity within and between
modalities through SSTM module and transmit shared and
specific features between modalities. In addition, the five
blocks and the later densitymap generator extractmulti-scale
global and local features and form a three-level supervision
mechanism of point, region, andmulti-scale. Meanwhile, the
multi-scale feature map between multiple modules is com-
bined with region recognition and combined with residual
calculation to achieve the purpose of adaptive attention to dif-
ferent regions and extracting different detail features. Finally,
the estimated density map is generated through the density
map generator. We conduct experiments on the RGBT-CC
benchmark to verify the effectiveness of the method. And we

will further consider the application of unsupervised method
in crowd counting in the future work.
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