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Abstract
Echocardiography-based cardiac boundary tracking provides valuable information about the heart condition for interventional
procedures and intensive care applications. Nevertheless, echocardiographic images come with several issues, making it a
challenging task to develop a tracking and segmentation algorithm that is robust to shadows, occlusions, and heart rate
changes. We propose an autonomous tracking method to improve the robustness and efficiency of echocardiographic tracking.
Amethod denoted by hybrid Condensation and adaptive Kalman filter (HCAKF) is proposed to overcome tracking challenges
of echocardiograms, such as variable heart rate and sensitivity to the initialization stage. The tracking process is initiated
by utilizing active shape model, which provides the tracking methods with a number of tracking features. The procedure
tracks the endocardium borders, and it is able to adapt to changes in the cardiac boundaries velocity and visibility. HCAKF
enables one to use a much smaller number of samples that is used in Condensation without sacrificing tracking accuracy.
Furthermore, despite combining the two methods, our complexity analysis shows that HCAKF can produce results in real-
time. The obtained results demonstrate the robustness of the proposed method to the changes in the heart rate, yielding an
Hausdorff distance of 1.032 ± 0.375 while providing adequate efficiency for real-time operations.

Keywords Echocardiography · Tracking · Condensation · Kalman filter

1 Introduction

Cardiovascular diseases (CVDs) are one of the major causes
of death for both genders, with over 17.8 million fatalities
in 2017 (∼ 31% of all deaths) according to World Health
Organization [1]. Therefore, fast and reproducible methods
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to evaluate cardiac function are paramount to early detection
of many heart diseases and prevention of related fatalities.
Imagemodalities such asmagnetic resonance imaging (MRI)
and echocardiography can provide cardiac images to evaluate
the cardiac functionality. Among those, echocardiography
provides several advantages including its cost-effectiveness
and portability, enabling examination of the patient’s heart
functionality outside clinics. For these applications, an accu-
rate, robust and efficient tracking algorithm is a key to the
successful assessment of the aforementioned cardiac func-
tionalities. Additionally, real-time tracking of the cardiac
borders is very desirable for interventional procedures and
intensive care unit applications with continuous monitoring
requirements [2].

The primary challenge in detecting echocardiographic
boundaries is the presence of shadows and occlusions [3].
Temporal consistency methods such as optical flow [4],
speckle tracking echocardiography [5,6], and combined
methods [7] track cardiac boundaries by calculating the
current position based on the previously detected position.
However, these methods are susceptible to shadows and
occlusions. Furthermore, they suffer from a high computa-
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tional requirement. Moreover, they are not robust to changes
in the measurements and system dynamics.

Due to the fact that the object of interest moves in cardiac
boundary tracking, it is natural to consider echocardiographic
tracking as a spatio-temporal problem.State estimationmeth-
ods introduced to tracking cardiac boundaries are often based
on Blake’s framework [8]. This framework uses a Kalman
filter to track B-spline contours deformed within a specific
model “shape space.” Jacob et al. [9] introduced real-time
tracking based on state estimationmethods that utilizes shape
space model. Their spatio-temporal contour model consists
of a shape model and training set. However, their approach
is restricted to linear transformations because of the use
of a shape space model. On the other hand, Condensation
algorithms are alternative methods of tracking which do not
necessitate a linear parameterization [10]. These algorithms
could also be used with nonlinear parameterized kinematics.
However, Condensation algorithms are not generally effi-
cient. In fact, accuracy-efficiency trade-off strongly holds
for Condensation algorithm.

In this paper, we propose a novel hybrid Adaptive Kalman
Filter (AKF) and Condensation technique to achieve a robust
and real-time cardiac boundary tracking algorithm. Thanks
to the combination of AKF and Condensation algorithm, the
resulting approach will be robust against noise and changes
in the heart beat rate. The integration of AKF circumvents
the issue of accuracy-efficiency trade-off in Condensation
algorithm by reducing the size of the samples. Further-
more, adaptation capability in AKF enables coping with
the changes of measurement and system dynamics. When
compared to solely Condensation algorithm, the proposed
hybrid algorithm provides superior accuracy. The introduced
structure enables using a smaller number of samples, yet
producing sufficient accuracy and robustness to dynamic
changes. A side contribution of this work relates to the
initialization (segmentation) procedure. To the best of the
authors’ knowledge, this paper for the first time integrates
active shape model (ASM) for initializing echocardiograms
tracking. Due to the difficulties associated with manual seg-
mentation [11], such as inconsistent results and the fact
that it is a time-consuming process, automated segmentation
method by ASM could potentially improve convergence and
accuracy. Therefore, ASM is used in this manuscript to feed
the tracking algorithm with a number of positions (features)
to track.

The paper is structured as follows. Second section intro-
duces the framework for hybrid tracking algorithm. The third
section provides the simulations results. Finally, we sum-
marize the major conclusions and perspectives in the last
section.

2 Background

2.1 Condensation tracking

TheCondensation algorithm employs samples spread around
a specified image feature to estimate the current object posi-
tion. The tracking result of an image feature n, Ψ̂ i (n, :),
which is an n × 2 matrix will require a set of randomly
distributed samples around it, Sn(:, :), to predict the current
position of the tracked point.We use N samples to ensure that
the algorithm is efficient and capable of producing acceptable
results.

Condensation algorithm is built upon an assumption
which states that, given a learned prior, an observation den-
sity z, and a curve state Ψ i , a posterior distribution can be
estimated forΨ i (n, :) given Sn(:, :) at successive time i . This
algorithm keeps track of the point by updating the state den-
sity, which is estimated as follows:

1. Generate random sample set Sn(N , :) from a distri-
bution that approximates the conditional state density
p(zi (n, :)|Ψ i−1(n, :)) at frame i , where z represents the
detected points.

2. Calculate the weight of each sample as in (2).
3. Regenerate the samples distribution Ŝn(l, :) based on the

calculated weights �n(Sn(:, :)).
4. Calculate the averagepositionusing the calculatedweights

and the samples as follows:

Ψ̂ i (n, :) =
N∑

m=1

�n(m)Ŝn(m, :), (1)

�(Sn(l, :)) = p(zi (n, :)|Sn(l, :))
∑N

j=1 p(z
i (n, :)|Sn(:, :)) , l = 1 . . . N (2)

and the observation data zi are defined as

zi (n, :) =
[
xin
yin

]
. (3)

This procedure will approximate the posterior distribu-
tion, which defines the current state of the Condensation
algorithm. The distributed samples will be used to initiate
the tracking in the next frame.

The Condensation algorithm suffers from degeneracy
after a few iterations in the tracking procedure. In the simu-
lations and results section, we will evaluate the regularized
Condensation algorithm ( mitigating degeneracy in the Con-
densation algorithm).
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2.2 Kalman filter smoother

Kalman filter (KF) provides an estimation of a linear state
system that follows a Gaussian distribution.Mainly this filter
processes the observed data and the states to provide a smooth
prediction of the current state. KF is composed of two steps,
prediction and assimilation of observation. To calculate the
next position using the previous output Ψ̂ i (n, :) from (1), the
following dynamic equation is used:

[
xin yin ẋ in ẏin

]T = A
[
xi−1
n yi−1

n ẋ i−1
n ẏi−1

n

]T + wi
n, (4)

where wi = N (0, Qi ) is white process noise, Qi is the pro-
cess noise covariance matrix, and A represents the transition
model.

The calculation of the measurement residual is carried
out by calculating the error between the detection method
results and the predicted position. The relationship between
the state and themeasurement at the current step is calculated
as follows:

Zi
n = Hzi (n, :) + vi , (5)

where observation model H maps the required data in the
tracking process and is defined as

H =
[
1 0 0 0
0 1 0 0

]
, (6)

where v ∼ N (0, R), and R is the observation noise covari-
ance matrix.

The final results of the tracked points at the current frame
i are then stored in matrix Ψ i . That is

Ψ i =
[
xi1 xi2 . . . xib
xi1 xi2 . . . xib

]T

, i ∈ {1, . . . , k}, (7)

where xib, y
i
b represent the position of a tracked point b at

frame i . Ψ i is a matrix that represents the state of b tracked
points along the contour in frame i and k is the total number
of frames.

3 Hybrid tracking algorithm

In this section, we are going to explain in details the hybrid
algorithm.

3.1 Initialization step

Conventional ASM requires manual initialization with an
average shape in order to initiate the convergence process.
The manual initialization of ASM is not appropriate in this

application, where it uses an average shape that is created
during the training phase. This average shape has several
drawbacks. First, it is not likely to be near the testing shape
boundary. Secondly, it has soft edges because of averaging
all the training data. These issues slow down the shape con-
vergence, making it difficult to achieve satisfactory results in
a timely manner. Therefore, the process of initializing ASM
must be modified to provide an initial shape that is close to
the test subject boundary and has a similar structure to its bor-
der. The modification is carried out by replacing the average
shape created during the ASM training process with another
shape that has a similar shape to the current cardiac bound-
ary. A multilayer perceptron with back propagation will be
used as artificial neural network (ANN) to predict the nearest
possible fit for the left ventricle (LV) boundary. This neural
network is made up of three layers (an input layer, a hidden
layer, and an output layer), and the cross-entropy is used as a
cost function in this design. Our inputs are echocardiogram
pixel values. Because the images are 128×128, this gives us
16,384 input layer units. The output layer is a vector of eight
numbers that represent the landmark positions in the current
echocardiogram. The network is trained on 200 echocardio-
grams acquired at St. Michael’s Hospital (160 training, 40
testing), which were chosen so that their boundaries were not
obscured by shadows (good quality images). After applying
the model to the testing echocardiograms, it achieved a 93
percent accuracy.

This initial shape provided by ANNwill be used by ASM.
During its initial stage, ASM will zero its parameter vector,
which results in using the average shape as an initial shape.
However, instead of using the average shape, the ANN’s
proposed shape will be used as an initialization shape. The
ANN’s proposed shape is close to the test subject bound-
aries, and as a result, the time required for ASM to converge
is minimal, compared to the time needed for the conventional
ASM. This improvement in the ASM efficiency is because
the number of iterations needed by ASM to converge to the
final shape is very small. The shape produced will be used by
the tracking method to start tracking the cardiac boundary.

3.2 Hybrid condensation algorithm and Kalman
filter (HCKF)

TheCondensation algorithm employs samples spread around
a specified image feature to estimate its current position.
The number of samples is very crucial as the algorithm will
provide better results. On the other hand, increasing the num-
ber of samples will result in increasing the processing time.
Therefore, to make the Condensation algorithm produce
its results in real-time, some trade-off between robustness
and efficiency is needed. Using a small number of samples
will result in another issue, which is the inability to handle
changes in measurement and system dynamics. Therefore,

123



456 Signal, Image and Video Processing (2023) 17:453–461

Fig. 1 The block diagram of
(Adaptive) HCKF

reducing the number of samples will not be effective as the
algorithm’s tracking error would increase. Accordingly, a KF
is used alongside the Condensation algorithm to smoothen
and minimize the issue related to changes in the system
dynamics. A hybrid tracking algorithm that consists of two
tracking methods (HCKF: Hybrid Condensation algorithm
and Kalman filter) is introduced to track the endocardium
boundary. It is essential to provide an appropriate environ-
ment to carry on the process of segmentation and tracking.

Tracking a number of points on the cardiac boundary
through a frame sequence requires creating a notation system
to enable one to describe the process of tracking and com-
parison. Therefore, two different matrices are necessary for
this case; the first matrix Ψ i holds the results of the track-
ing method, and the second matrix Ω i contains ground truth
data. That is

Ω i =
[
xi1 xi2 . . . xi1
yi1 yi2 . . . yi1

]T

, i ∈ {1, . . . , k} (8)

where xib, y
i
b represent the ground-truth position of the

tracked point b at frame i . In order to calculate distance
between the ground truth Ω i and the produced points Ψ i ,
Frobenius norm is used. This will aid in quantifying any
improvements in the tracking algorithm’s accuracy.

3.2.1 Tracking procedure

The gray value distribution in echocardiographic images is
highly nonlinear and non-Gaussian, which is the reason for
using a Condensation algorithm in this research. Gradient
values will be used to weigh the sample importance during
the sample importance resampling (SIR) process by giving
higher weights to the samples on the edges. As a result,
the average of those samples will likely result in a point
located on the cardiac boundary. Moreover, this will lead to a
decrease in the number of samples required to only the ones
near edges, which will reduce the computation time. Further-
more, KF is used to overcome the disadvantage of using a
small number of samples in the Condensation algorithm and
provide a smooth tracking path of the cardiac boundary. To
track several points on a cardiac boundary, we initialize the
process by using ASM, which will provide the system with

eight different positions Ψ 0. These positions are chosen to
accomplish two objectives: first, to keep track of the car-
diac boundary; and second, to enable the system to provide
the results in real-time (since our system cannot track more
than eight features simultaneously). Condensation algorithm
will use those positions as the current points to be tracked.
The output of the Condensation algorithm is then sent to KF.
The Condensation algorithm then uses KF outputs during the
SIR stage. The steps of tracking a single position on a cardiac
boundary in our approach are depicted in Fig. 1.

The use of KF results in improving the tracking process
as it reduces the error between the generated points and the
ground truth data. When compared to the expected time after
increasing thenumber of samples, itmanaged to return results
in less than 0.0050 seconds, which is impressive given the
25 frame per second frame rate, making it suitable for real-
time tracking applications. The roles ofKF andCondensation
algorithm are complementary. As a result, combined Con-
densation and KF smoother for tracking performance will
have the advantage of providing good tracking using a small
number of samples while avoiding drawbacks such as high
computation time.

3.3 Hybrid condensation algorithmwith adaptive
Kalman filter (HCAKF)

Another objective of this work is to create a robust tracking
method that can handle the change in the heart beat rate.
HCKF is not able to adapt to the change in the heart beat,
which increases the tracking error. Therefore, an adaptive
Kalman filter (AKF) will be used instead of the conventional
KF as shown in Fig. 1 andwill update the covariancematrices
to keep up with the sudden changes in the heart beat rate.

3.4 Adaptive Kalman filter

The problem with using the conventional KF is that prior
knowledge of the covariance matrix (Qi

n) is required. Unlike
the process noise covariance matrix, the observation noise
covariance matrix (R) depends on the feature used for track-
ing [12]. In contrast, the process noise covariance matrix
depends on the motion of the tracked objects, and because
this motion is unknown, determining Qi

n is not an easy task.
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Some existing methods could be used to estimate this covari-
ance matrix. These methods can be grouped into correlation,
Bayesian, covariance matching, and the maximum likeli-
hood method. In this experiment, the latter approach is used
to update the noise statistics, as it is computationally effi-
cient compared to other methods. This method estimates the
covariance matrix Qi

n by calculating the residual:

r in = Ψ i (n, :) − Ψ i−1(n, :), (9)

and the residual between the estimated state errors in the
current and the previous frame, as

�i
n = HPi−1

n HT − Pi
n , (10)

where Pi−1
n is the a posteriori covariance matrix and

r̄ in = r̄ i−1
n + 1

J
(r in − r i−J

n ). (11)

Here, r̄ in is the average value of the calculated residuals for
frame i and J denotes the number of past measurements.
The performance of the algorithm depends on J , which is
usually chosen empirically. However, while a large window
size offers a more accurate approximation, this will affect the
flexibility of the system dynamicity. The number of compu-
tations performed can be greatly reduced by using the limited
memory filter algorithm [12].

Qi
n = Qi−1

n + Wi

J − 1

[(
r in − r̄ in

) (
r in − r̄ in

)T

−
(
r i−J
n − r̄ in

) (
r i−J
n − r̄ in

)T

+ J − 1

J 2 − J

(
r in − r i−J

n

) (
r in − r i−J

n

)T

+ J − 1

J

(
�i−J

n − �i
n

)]
, (12)

where Wi is weighting element.
At the initial stages in the KF, the covariance matrix and

the state vector are initialized with some values where there
is little confidence in their accuracy. Since the initial samples
in the KF are not accurate, a weighting function is required
to minimize the effect of those samples on the calculated
covariance matrix and to give confidence in the samples over
time. Thus,

Wi
n = (i − 1)(i − 2) . . . (i − J )

i J
, i = 1, . . . , k (13)

It is clear in (4) that there is no control over the heart
motion, and the change of heart beat rate is followed by
adaptively changing the process noise covariance matrix Q

(covariance matrix of the motion error). The AKF will adapt
to the increase in the tracked point velocity, which makes it
robust to changes in the system dynamics. AKF will receive
the Condensation output as the input and start the process of
filtering and smoothing those inputs to keep track of the car-
diac boundaries. As a result, the use of AKF helps resolving
the issue by adapting to the changes that happen during the
tracking process. Furthermore, the computation requirement
of the AKF depends on the window size (J ), where using a
limited memory filter algorithm will significantly reduce the
required computation time [12].

3.5 Complexity analysis

The computational complexity of the Condensation algo-
rithm is of order O(N log N ) [10]. On the other hand, it is
known that the computational complexity of the KF when
the number of samples is n is of order O(n3). Cascading
the two algorithms in HCAKF results in the computational
complexity of the sum of these computational complexities.
However, introducing the KF states allows us to reduce the
number of samples in the Condensation algorithm. Our sim-
ulation results show that reducing the samples by a factor
of ten allows us to maintain the algorithm’s accuracy and
efficiency acceptable for many clinical applications.

4 Simulations results

This section will provide an evaluation of the effectiveness
of the proposed hybrid tracking method and its performance
and robustness to noise and heart beat rate change. The mean
square error (MSE) and Hausdorff metric (HD) are used in
this experiment to measure the distance between two subsets
(surfaces) and provides a metric that specifies the maximum
distance between two surfaces. Hausdorff metric measures
the distance from one point on one surface (first surface) to
all points on the other surface (second surface). This method
will produce a b×bmatrix (assuming both surfaces have the
samenumber of points),which represents the distanceof each
point on the first surface to all points on the second surface.
The method then picks the minimum distance for each point,
resulting in a b × 1 vector. The maximum distance between
those b distances is then selected. The same process will
be applied to the second surface. This process will result in
having two values, and the maximum value will be selected.
Hence,

HD(Ψ,Ω) = max(min ‖Ω(:, :) − Ψ (:, :)‖) (14)

Five simulation scenarios were created, each having
to track eight different positions on the LV endocardium
through 28 echocardiographic sequences of 10 patients
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Table 1 The required processing time in seconds to predict eight dif-
ferent positions on the endocardium boundary

Time CondA-C CondB-C CondA-CR CondA-HCKF
N = 100 N = 1000 N = 48 N = 100, n = 8

Mean 0.0014 0.0192 0.0182 0.0042

Std 0.0011 0.0060 0.0053 0.0023

acquired at St. Michael’s Hospital (SMH). These echocar-
diograms were not affected by shadows, and the sequence
represents a single cardiac cycle. In Case 1 (CondA-C), the
Condensation algorithm with 100 samples is used, while
Case 2 (CondA-HCKF) includes the KF in the Case 1, and
Case 3 (CondB-C) uses the Condensation algorithm with
1000 samples. Case 4 (CondA-CR) is the same as Case 1,
except it uses a different re-sampling approach to reduce the
degeneracy issue. The results presented in Table 1 indicate
that the use of HCKF did not increase the computation time
significantly and remained in the same order of magnitude
as Condensation algorithm with 100 samples. Therefore, in
both Case 3 and 4, the time is increased significantly due
to having more operations. This work focuses on providing
an accurate method that is inexpensive in terms of computa-
tion time to be able to provide real-time results. Therefore,
to achieve a reasonable computational complexity, we used
100 samples as it managed to track the points in 0.0034 sec-
onds. Furthermore, as shown in Table 2, the use of the KF
improved the tracking results and helped the Condensation
algorithm concentrate on distributing its samples around the
tracked feature in terms of HD and MSE. Additionally, the
application of the regularized resampling in Case 1 produced
better results. However, it required more computation time
than a conventional Condensation algorithm, as shown in
Table 1. Moreover, we tested Case 4 with only 42 samples,
and it provided similar results to the Condensation algorithm
in Case 1. However, the computation time is still higher than
the original Condensation algorithm with 100 samples.

Table 2 shows that the use of hybrid tracking methods
considerably reduces the error of the Condensation algo-
rithm when using 100 samples. Figure 2 shows the results
of HCAKF after 9 iterations on one patient (red dots are the

Fig. 2 Samples equally distributed around each tracked point

Condensation algorithm output, and green line is the output
of the KF).

The heart beat rate can change in speed as a result of
internal or external effects, such as stress or sickness, or
introduced medications. This issue will affect the tracking
approach, where it will provide a higher rate of errors than
usual. The adaptive Kalman filter is used to provide a real-
time update of the process noise covariance matrix based on
the tracking results in a specified window which is usually
chosen empirically. The results proved that using an adaptive
method enhances the tracking process by reducing the over-
all tracking error compared to the Condensation algorithm,
which cannot handle the increase in heart beat rate as shown
in Fig. 3. Case 5 (HCAKF) represents the results of HCAKF
algorithm using 100 samples. Moreover, Fig.3 demonstrates
the superiority of using HCAKF as it is robust to changes in
the system dynamics, for instance due to sudden changes in
frame 115.

Additionally, we tested HCAKF using a smaller sample
size in the Condensation algorithm. The outcome was unsat-
isfactory, as the landmarks began to lose track of the features,
as in Fig. 4. Another issue we encountered was during the
initialization stage, when the ANN was unable to correctly
identify one of the tracked features (Table 3).

Also, we have tested our method against one of the recent
successful techniques, namely B-Spline Explicit Active Sur-
face (BEAS) [7] with the results shown in Table 4. The key
concept of BEAS is to consider the boundary of a deformable

Table 2 The tracking results of
the four experiment cases

Method CondA-C CondB-C CondA-CR CondA-HCKF

HD Mean 2.097 1.611 1.804 0.619

Std 1.484 1.450 1.295 0.480

MSE Mean 0.863 0.677 0.538 0.364

Std 1.092 0.872 0.613 0.200

Bold numbers correspond to our method
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Fig. 3 The produced error of both applying Condensation algorithm
with/withoutAKF. aACondensation algorithmuses 100 samples (blue)
and HCAKF (red). b Condensation algorithm with 100 samples with
a sudden change in the heart beat rate starting at frame 115 (blue) and
HCAKF (red) (Color figure online)

Fig. 4 A failure example after using a small number of samples in
HCAKF (Red circles point those landmarks) (Color figure online)

interface as an explicit function. Surface initialization on the
first frame is performed through an ellipsoid. Propagation of
LV segmentation to the following temporal frames is then
performed using an anatomically affine optical flow frame-
work. Two datasets were used: one from SMH and another
from Stanford dataset [13]. In the first dataset, HCAKF
outperformed BEAS and successfully maintained cardiac
boundaries as in Fig. 5. Additionally, HCAKF was able to
maintain real-time results. However, HCAKF lagged BEAS
in the Stanford dataset. This is because HCAKF encountered
difficulties due to the low quality of the Stanford dataset.
Nonetheless, the results are acceptable and comparable to
competitive methods. Physicians will tolerate an error with a
specified variance expressed in millimeters and represent the
mean surface error. Leclerc et al. [14] addressed the subjec-
tivity of physician opinion by performing a cross-validation
of manual segmentation performed by three different experts
and discovering that the results were not equivalent. Addi-
tionally, the differences between the HCAKF and BEAS
results are less than those observed in Leclerc et al. cross-
validation.

In short, the proposed hybrid approach (HCAKF) man-
aged to keep track of the cardiac boundary despite the change
in the system dynamics as shown in Table 3. Moreover,
HCAKF was able to track cardiac boundaries and provide
its results in real-time.

The study that was used as the source of images for
analysis reported in this manuscript was approved by the
Institutional ReviewBoard of the St.Michael’s Hospital. The
method was implemented in Matlab R2018a using a PC with
Intel(R) Core i7, and 16 GB RAM.

To investigate the accuracy-efficiency tradeoff, we also
compared the performance of the proposed ANN-based car-
diac segmentation technique with the case when the ANN
is replaced with the previously developed ResU technique
[15]. The 40 images from the SMH dataset were used for
the comparison. It was observed that while the accuracy of
ResU-based segmentation was slightly improved (0.951 ±
0.201 vs. 0.92± 0.033 DICE), the ANN-based segmentation
was significantly faster (0.0042± 0.002 vs. 0.051± 0.033 s).
Additionally,ResU requires a significantly larger training set.

5 Conclusion

To provide an accurate yet efficient tracking of boundaries
in echocardiograms, a hybrid algorithm was proposed. To
address efficiency problem of Condensation algorithm, a KF
is integrated to enable using smaller number of samples.
Also, an ASM framework is introduced for initialization of
the hybrid tracking method for a good estimate of the current
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Table 3 The results of tracking
after including a after sudden
increases in the heart beat rate

Method CondA-C CondB-C CondA-CR CondA-HCKF CondA-HCAKF

HD Mean 3.273 2.661 2.249 1.451 1.032

Std 2.182 1.623 1.971 0.627 0.375

MSE Mean 2.308 1.862 1.682 1.285 0.701

Std 1.81 0.952 0.483 0.683 0.233

Bold numbers correspond to our method

Table 4 The Hausdorff metric (HD) and mean square error (MSE)
tracking results of the two methods (BEAS, HCAKF) on two datasets.
(SMH and Stanford data)

Methods SMH Stanford
HD MSE HD MSE

BEAS 1.421 1.241 3.154 1.841

0.215 0.310 0.604 0.312

HCAKF 1.032 0.701 4.281 2.125

0.375 0.233 0.517 0.422

Fig. 5 Tracking results on Ryerson-SMH. Red (reference), Blue
(HCAKF) and green (BEASM) (Color figure online)

position. To enhance the robustness of the method to changes
of the target dynamics (e.g., due to changes of heart beat rate),
an adaptationmethod is introduced into KF (and henceAKF)
to estimate noise covariance matrices during tracking. Sev-
eral scenarios are introduced in this paper to demonstrate
the effectiveness of the proposed hybrid method. In future
research, the initiation process could be improved by intro-
ducing a deep learning approach. Also, the Kernel KF could

be utilized to enable the use of linear estimation methods
to solve nonlinear estimation problems. Using a kernel KF
rather than the Condensation algorithm could improve the
proposed model’s efficiency even further.

Funding The funding was provided by Natural Sciences and Engineer-
ing Research Council of Canada (Grant No. 2017–06930).
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