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Abstract
This paper puts forward a denoising algorithm for low-dose computed tomography (LDCT) image based on optimal wavelet
basis and morphological component analysis, which aims to solve the problem of severe noise and artifacts in LDCT imaging.
First, the high-frequency (HF) component coefficients in the horizontal, vertical, and diagonal directions of LDCT after the
stationary wavelet transform (SWT) are weighted to obtain the wavelet basis selection coefficients, and the wavelet basis
with the smallest wavelet select coefficient is selected as the optimal wavelet basis. Second, the artifacts are processed using
the MCA algorithm based on online dictionary learning (ODL) for the HF component. Third, the improved LDCT images
are obtained using the inverse stationary wavelet transform (ISWT), which uses the low-frequency (LF) components and
the denoised HF component. The extensive experiments on simulated and real data demonstrated the images denoised using
the optimal wavelet basis algorithm showed the highest objective evaluation index, followed by the other wavelet-based
algorithms. Additionally, our proposed method outperformed several classical denoising methods on both quantitative and
qualitative assessments. It was therefore verified that the validity of wavelet selection and the feasibility of the proposed
algorithm.

Keywords Low-dose computed tomography · Morphological component analysis · Stationary wavelet transform · Online
dictionary learning · Denoising

1 Introduction

Computed tomography (CT) is a high-resolution imaging
modality with fast imaging speed and clear images. Owing
to these advantages, it is widely used in medical diagnosis,
such as cancer screening [1]. However, high doses of X-
rays directly exposed to the human body during the scanning
process produce ionizing radiation, which can cause damage
to the human body and increase the risk of radiation-related
diseases such as cancer [2]. Therefore, low-dose computed
tomography (LDCT) imaging technology aims to reduce the
radiation dose asmuch as possible on the premise of ensuring
the reconstructed image quality.
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One of the easiest ways to reduce the radiation dose from
a CT scan is to reduce the X-ray tube current [3]. However,
reducing the tube current will increase the noise and degrade
the imaging quality. Currently, the LDCT image quality
improvement algorithms are divided into three categories
[4]: sinogram filtering algorithms, iterative reconstruction
(IR) algorithms, and image domain post-processing algo-
rithms. Sinogram filtering directly smooths raw data before
reconstruction (i.e., filtered backprojection [FBP]). The tra-
ditional denoising methods in the sinogram domain include
multiscale Gaussian filtering [5], nonlinear diffusion filter-
ing [6]. IR algorithms usually integrate prior knowledge into
the objective function as a penalty term, in order to smooth
the noise in the image. Common assumptions include the
total variation (TV) [7], dictionary learning [8]. These meth-
ods have improved the imaging quality of LDCT images,
but all of them suffer from limitations such as difficulty to
obtain projection data, long reconstruction process time, and
occupying a large amount of storage space. In contrast, the
method of processing reconstructed images has the benefits
of fast processing, and does not dependon the projection data,
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avoiding the shortcomings of the methods. Therefore, this
paper studies a post-processing algorithm of image domain.

Unlike sinogram filtering and IR methods, image domain
post-processing algorithms are directly applied to the recon-
structed LDCT images. Li et al. [9] adopted the adaptive
Non-Local Means (NLM) filtering algorithm based on the
local variation of noise level, which suppressed noise and
artifacts, and improved the quality of LDCT images com-
pared to the conventional NLM filtering algorithm. Chen
et al. [10] used the improved block-matching and 3D fil-
tering algorithm for LDCT image processing to effectively
improve the contrast-to-noise ratio of images by exploiting
the similarity of image sequences. Kang et al. [11] presented
wavelet domain residual network (WavResNet) to recover
LDCT images, which suppressed artifacts and maintained
image details.

Based on wavelet transform and morphological compo-
nent analysis (MCA) [12] methods are also popularly used
in LDCT denoising. Chen et al. [13] proposed a sparse rep-
resentation algorithm to suppress artifacts and achieve good
results. Yang [14] presented a dictionary learning and equiv-
alent number of looks LDCT artifacts suppression algorithm
based on the wavelet domain to improve image quality. Cui
[15] used MCA for the high-frequency (HF) component of
LDCT images to separate the artifactual part from the tis-
sue part, thus achieving the denoising effect. Zhang [16]
introduced the MCA method into LDCT image denoising,
and combined it with wavelet transform to suppress artifacts,
thereby achieving desirable results, but did not consider the
influence of different wavelet basis selection.

Therefore, to overcome the shortcomings of the existing
LDCT image denoising methods, we propose a LDCT image
quality improvement algorithm based on optimal wavelet
basis and MCA. The method is based on improving the opti-
mal wavelet basis selection method proposed by Cheng et al.
[17] and combined with related studies such as the MCA
method.

The main contributions of this paper are as follows:

1. LDCT image decomposition using stationary wavelet
transform (SWT) to obtain HF and low-frequency (LF)
components of the same size, ensuring consistent image
resolution before and after decomposition.

2. The wavelet selection method of literature [17] is
improved by increasing the diagonal directional coeffi-
cients and weighting the artifact information of different
directional components, and then selecting the wavelet
selection coefficient with the smallest as the optimal
wavelet basis.

3. The MCA artifact separation algorithm is used to com-
pare the processing effects of different wavelet basis.

The rest of this paper is organized as follows. Section 2
introduces the principle of relevant algorithms. Section 3 pro-
vides a detailed description of themethod implementation. In
Sect. 4, the experiments that were conducted to validate the
effectiveness of our proposed method are presented. Finally,
Sect. 5 provides the conclusion.

2 Principles of algorithms

2.1 SWT

In the classical wavelet transform algorithm, each compo-
nent of the image becomes half the size of the original image
after decomposition, resulting in the loss of HF information,
which in turn reduces the denoising effect of the recon-
structed image. After the image is decomposed using the
SWT with redundancy and translation invariance, the HF
and LF components with the same size as the original image
are obtained, thus solving the problem of image distortion
due to lost information [18].

Figure 1 shows how the LDCT image was schematically
decomposed by the smooth wavelet level 2. The decomposi-
tionyieldedoneLFcomponent aswell as sixHFcomponents.
Sincemost of the noise artifacts information existed in theHF
components of the image, the improved quality image was
reconstructed after processing the HF components using an
image denoising algorithm.

2.2 MCA principles

The MCA image decomposition method was proposed by
Starck et al. [19] in 2004 to decompose the image into poly-
morphic components of the “geometric structure,” “oscilla-
tion or texture,” and “noise.” The main idea was that the
image was separated by using the differences between the
different components of the image, and the image was a
linear combination of multiple components with different
morphologies. For each component, there existed a dictio-
nary that could sparsely represent that component, while
other components could not be sparsely represented by that
dictionary.

The core of the MCA method lies in the dictionary selec-
tion of different components. As such, an online dictionary
learning (ODL) algorithm was chosen for dictionary learn-
ing.

3 Methods

The principle of the LDCT artifacts suppression algorithm
based on optimal wavelet basis and MCA is presented. First,
SWT is performed on the image based on the wavelet basis
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Fig. 1 Algorithm flowchart

database, and the wavelet selection coefficients are calcu-
lated. The wavelet basis with the smallest coefficient is
selected as the optimal wavelet basis. Second, the optimal
wavelet basis is used to decompose the image in level 2
to obtain a LF component Ya2 and six HF components:
level 1 horizontal component Yh1, vertical component Yv1,
diagonal component Yd1, and level 2 horizontal compo-
nent Yh2, vertical component Yv2, diagonal component Yd2.
For the six HF components, the ODL-based MCA method
is used to separate the structural information from the
noise artifacts to obtain the HF components that remove:
Y h1,Y v1,Yd1,Y h2,Y v2 and Y d2. Third, the LF image with the
processed HF image processed using the inverse stationary
wavelet transform (ISWT) is used to obtain the quality-
improved image. Figure 1 shows the denoising flowchart.

3.1 Wavelet basis selection

Different images have different structural characteristics, and
different wavelet basis exhibits different properties when
decomposing and reconstructing images. Commonly used
wavelet basis databases include Haar, Biorthogonal, Coiflet,
Daubechies, and Symlet.

In [17], a wavelet basis selection method was proposed
to calculate the wavelet selection coefficients based on the
horizontal and vertical components of the image where the
wavelet basis with the smallest wavelet selection coefficient
was selected as the optimal wavelet basis. Careful analy-
sis of the characteristics of the LDCT images showed that
the horizontal and vertical directions contained more infor-
mation and that certain noise artifacts were present in the
diagonal direction. In view of the difference in the degree of
artifacts in different components, the coefficients in the hori-
zontal, vertical, and diagonal directions were weighted when
thewavelet coefficientswere calculated. Figure 6a shows that
since the LDCT image had obvious artifacts in the horizontal
direction, and these artifacts constituted the largest weight.
Further, the diagonal direction contained relatively less arti-
facts information and constituted the second largest weight.
Finally, the vertical direction contained the least amount of

(a) (b) (c) (d) (e) (f)

Fig. 2 The HF component dictionaries. a–c Level 1 horizontal com-
ponent dictionary Dh1, vertical component dictionary Dv1, diagonal
component dictionary Dd1;d–f level 2 horizontal component dictionary
Dh2, vertical component dictionary Dv2, diagonal component dictio-
nary Dd2

artifacts information and therefore constituted the smallest
weight.

Based on the above-mentioned analysis, the wavelet
selection coefficient formula, as proposed in [17], was
improved by (1) adding the diagonal direction compo-
nent to calculate the wavelet selection coefficient; and (2)
weighting the horizontal, vertical and diagonal direction
coefficients. By applying the wavelets presented in wavalet
basis database to the images one by one, the horizontal
direction coefficients H

(∣∣∑
x∈H x

∣∣), the vertical direction
coefficients V

(∣∣∑
x∈V x

∣∣), and the diagonal direction coeffi-
cients D

(∣∣∑
x∈Dx

∣∣), the wavelet selection coefficients x can
be defined as follows:

x � 0.4 ∗ H
(∣∣∑

x∈H x
∣∣) + 0.25 ∗ V

(∣∣∑
x∈V x

∣∣) + 0.35 ∗ D
(∣∣∑

x∈Dx
∣∣)

6 ∗ m ∗ n
(1)

where x is the wavelet selection coefficients, is the wavelet
selection coefficients, m ∗ n is the picture size of horizontal,
vertical and diagonal components. Further, 0.4, 0.25 and 0.35
are the weighting coefficients of the horizontal, vertical and
diagonal components set empirically, respectively.

3.2 Combined dictionary construction

As per Fig. 1, “choose the optimal wavelet basis first, then
decompose, finally process the image,” we first combined the
simulation data, then selected the optimal wavelet basis as
the haar, and then obtained the LF and HF components using
SWT, which are as follows:Ya2 and Yh1,Yv1,Yd1,Yh2,Yv2,Yd2.
The decomposed HF components were then trained subse-
quently using the ODL method to obtain the dictionaries:
Dh1, Dv1, Dd1, Dh2,Dv2,Dd2. Figure 2 shows the HF com-
ponent dictionaries.

From Fig. 2, it can be seen that the HF dictionaries
contained many detailed feature atomic information blocks
in addition to a significant amount of artifactual atomic infor-
mation blocks, which were arranged in a disorderly fashion.
Since the focus of MCA was on combining the different
component dictionaries, it is necessary that the atomic blocks
of detailed features in the HF dictionaries are separated
from the atomic blocks of pseudo-shadow information; i.e.,
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(a) (b)

Fig. 3 Information entropy curves of HF dictionaries atomic image
blocks. a, b Level 1, level 2 decomposition the atomic block infor-
mation entropy curves of HF dictionaries, respectively

(a) (b) (c)

Fig. 4 Level1 vertical dictionary partition diagram. a The detail fea-
ture sub-dictionary Dd

v1, b the pseudo-shadow sub-dictionaries Da
v1,

c Combination Dictionary DMCA
v1

dictionary partitioning. The dictionaries with detailed fea-
ture atomic information blocks were designated as detailed
feature sub-dictionaries, and with pseudo-shadow atomic
information blocks were designated as pseudo-shadow
sub-dictionaries. Then, the detail feature sub-dictionary
were Dd

h1,D
d
v1,D

d
d1,D

d
h2, Dd

v2, Dd
d2, and the pseudo-

shadow sub-dictionaries were Da
h1,D

a
v1,D

a
d1,D

a
h2,D

a
v2,D

a
d2.

Combining the two types of sub-dictionaries;
i.e.,DMCA

h1 ,DMCA
v1 ,DMCA

d1 ,DMCA
h2 ,DMCA

v2 ,DMCA
d2 ,DMCA �{

Dd , Da
}
. Dictionary partitioning using atomic block-

based information entropy [16]: detailed feature atomic
blocks had a stable structure and insignificant pixel value
variations with small information entropy, while artifacts
atomic blocks have rich pixel value variations and have a
larger information entropy relative to detail feature atomic
blocks.

Figure 3 shows the information entropy curves of the cor-
responding horizontal, vertical and diagonal HF components
of the simulated pelvic data after level2 wavelet transform.

Here, we used the atomic block information entropy
method to partition the dictionary. The process calculated
the value of information entropy of each atomic block in the
dictionary, if the value was greater than the selected thresh-
old, the atomic block was classified into the pseudo-shadow
sub-dictionaries and vice versa, the atomic block was classi-
fied as a feature sub-dictionary, which resulted in dictionary
partitioning. From Fig. 4, the reorganized dictionary DMCA

was clearly partitioned into the detail feature sub-dictionary
Dd and the pseudo-shadow sub-dictionaries Da .

3.3 Quality improvement of LDCT image
reconstruction

The MCA-based artifacts suppression algorithm aimed to
separate the artifacts from the HF components; hence, the
image was considered to have two different morphological
components, detail features and artifacts.

Based on the recombination dictionary DMCA, taking
a vertical combination dictionary DMCA

v1 � [
Dd

v1, D
a
v1

]
,

DMCA
v1 as an example, using Orthogonal Matching Pur-

suit (OMP) algorithm, the corresponding sparse coefficients
αMCA

v1 � [
αd

v1, αa
v1

]
obtained by sparse encoding the atomic

image block of the combination dictionary. Then Y
d
v1 �

Dd
v1 × αd

v1 was expressed as the image block after artifact
removal. The detailed feature part of the image was obtained

by averaging the pixel values of overlapping pixels usingY
d
v1.

Additionally, other HF component images were obtained by
this method. Finally, the unprocessed LF component and the
denoised HF components were transformed by ISWT, which
obtained the image Y with better quality.

4 Experiments and analysis

Here, the proposed algorithmwas applied to simulated pelvic
bone data and clinical human chest data, and the peak signal-
to-noise ratio (PSNR), structure similarity (SSIM), feature
similarity (FSIM) and Visual Information Fidelity (VIF) to
evaluate the algorithm performance.

The algorithms were run on the following hardware and
software environments: Matlab 2017b; 64-bit windows 10
operating system; Intel(R) Core (TM) i7-9700 CPU @
3.00 GHz; 4 GB RAM.

4.1 Parameter settings

The algorithms here mainly included: SWT, ODL, dictio-
nary partition, and HF component images denoising. The
parameters were set according to the results of the algo-
rithm processing and the experience. In the SWT, we set
the decomposition level 2.In the ODL,In online dictionary
learning, we set the image block size to 16*16; the number
of dictionary atoms to 900; and the number of iterations to
100.For the dictionary partition, the optimal wavelet basis for
the simulated data is haar; the level 1 and level 2 information
entropy thresholds are 1.89 and 2.13, respectively.The opti-
mal wavelet basis for the clinical data is bior2.2; the level 1
and level 2 information entropy thresholds are 2.12 and 2.10,
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Table 1 Wavelet selection
coefficients for simulation data Wavelet Basis Horizontal Vertical Diagonal Coefficients

haar 2.44e−12 2.42e−13 4.95e−13 2.02e−18

bior2.2 2.43e−13 5.85e−12 2.69e−13 4.05e−18

db17 6.90e−11 3.72e−11 7.81e−13 6.80e−17

db23 1.04e−10 5.22e−11 1.01e−12 9.98e−17

db27 2.24e−10 1.30e−10 7.16e−14 2.25e−16

sym28 2.41e−10 1.67e−10 3.30e−13 2.60e−16

sym16 2.67e−10 1.66e−10 8.14e−14 2.76e−16

sym11 3.40e−10 2.08e−10 1.97e−13 3.48e−16

Table 2 Wavelet selection
coefficients for clinical data Wavelet basis Horizontal Vertical Diagonal Coefficients

bior2.2 3.24e−11 9.16e−11 1.87e−12 8.02e−17

haar 4.50e−10 1.82e−12 2.22e−12 2.89e−16

db17 4.85e−10 3.09e−10 2.06e−13 5.06e−16

db23 5.03e−10 3.25e−10 1.73e−12 5.27e−16

db19 8.47e−10 5.06e−10 3.69e−12 8.67e−16

db27 1.52e−09 9.53e−09 3.04e−12 1.57e−15

sym28 1.82e−09 1.14e−09 2.03e−12 1.88e−15

sym16 1.92e−09 1.18e−09 4.10e−13 1.97e−15

respectively.In the HF image denoising, the sparse constraint
parameter is set to 10 and the error parameter is 0.1.

According to Fig. 1 algorithm flowchart and formula (1),
thewavelet basis databasewas applied to the simulated pelvic
bone data and the clinical human thoracic data for SWT to
obtain the horizontal, vertical and diagonal directional com-
ponent coefficients, where eight wavelet basis were selected
for the experiment. Tables 1 and 2 show the wavelet coeffi-
cients of the two sets of data.

4.2 Simulated pelvic data experiment

The simulated pelvic LDCT images were reconstructed via
the computer simulation of the projection data under low-
dose scans, and then by using the FBP algorithm [16].
Figure 5 shows the (a) LDCT image and the (b) original
image. To verify the consistency of wavelet basis selection
with the final artifacts’ suppression effect, we conducted
experiments based on the eight-wavelet basis selected in
Table 1. Figure 5 shows the experimental results. To seemore
clearly the difference between the resulting images of differ-
ent wavelet basis, the ROI marked with a red block is given
at the bottom right of Fig. 5.

Table 3 presents the objective evaluation indexes of dif-
ferent wavelet basis suppressed artifacts images. From Table
3, it was found that the PSNR values of the artifacts sup-
pressed images after different wavelet basis processing were

different, which showed a decreasing trend according to the
above wavelet basis sorting. Combined with Fig. 5, it was
viewed that the PSNR value of the denoised image based on
haar wavelet basis was the largest, which was 1.74 –6.36 dB
higher compared with other wavelet basis processing effect
pictures, and the SSIM value reached 0.93 in comparison
with the original image in Fig. 5b, which had a high sim-
ilarity. The PSNR value of the denoising method based on
bior2.2, db17 wavelet basis was relatively larger, represent-
ing relatively less distortion in the artifacts suppressed image.
From the detailed information of the local zoom, the texture
details in Fig. 5c were clearer, while Fig. 5d–j introduces
other noise information to different degrees, which led to
poor denoising effect. In conclusion, the artifacts suppres-
sion algorithm based on the optimal wavelet basis(haar) was
the best processing for the simulated data.

4.3 Clinical human chest experiment

To verify the effectiveness of this algorithm in processing
clinical data, we selected the clinical human chest low-dose
CT images, i.e., the Mayo dataset [20] as in Fig. 6a, to eval-
uate the proposed method. Additionally, the algorithm of
this paper is compared with the classical NLM, KSVD and
WavResNet.

The clinical data contain noise in both normal dose
CT(NDCT) and LDCT images; however, the strip artifacts
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LDCT Original haar bior2.2 db17

db23 db27 sym28 sym16 sym11

ROI

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 5 Simulated data different wavelet basis artifacts suppression images

in LDCT images were serious, which destroyed the display
of the thoracic tissue structure to some extent. According to
the eight-wavelet basis bior2.2, haar, db17, db23, db19, db27,
sym28, sym16 selected inTable 2 for the experiment to obtain
the improved results (see Fig. 6). The red blocks in the figure
are the selected ROIs of the region of interests. Comparing
the ROIs in Fig. 6b with those in Fig. 6e–j. Figure 6e–j still
contains obvious noise and the edge contours are not clear.
Comparing Fig. 6b with d, it can be seen that a large amount
of noise is removed in Fig. 6d; however, there were differ-
ent degrees of detail loss due to over-smoothing. In contrast,
as can be observed from Fig. 6c, the bior2.2 wavelet-based
denoising algorithm preserved the image edges and details to
a greater extent while also effectively suppressing the noise
artifacts; the thoracic tissue structures are also better dis-
played.

For a more complete comparison, the signal-to-noise ratio
(SNR)was used to quantitatively describe the flat areas of the
CT images with improved quality, in addition to the PSNR,
SSIM, FSIM and VIF evaluations. The SNR was calculated
as the mean value of the pixel values in the ROI region

divided by the standard deviation. The results of the anal-
ysis presented in Table 4 show that the algorithms based on
the different wavelet basis showed different degrees of sup-
pression of image noise artifacts. The bior2.2 and haar basis
denoising algorithms showed higher performance than the
other basis denoising algorithms. The bior2.2 basis wavelet
denoising method had the highest PSNR, SSIM and FSIM
values, and the SNR values in the ROI1 and ROI2 regions
were 9.9355 and 17.5437, respectively, which were approx-
imately 0.2–3.9 higher than those based on the db17, db23,
db19, db27, sym28 and sym16wavelet basis denoisingmeth-
ods. Quantitative analysis of the bior2.2 wavelet basis-based
artifact suppression effect, its objective evaluation index VIS
value was consistent with the subjective evaluation results,
with the best overall visual effect. Combining Tables 2 and
4 as well as Fig. 6, the algorithm proposed here could
effectively remove the artifacts and the basic organizational
structure was maintained, verifying the effectiveness of the
denoising effect based on the optimal wavelet basis and the
MCA algorithm, and verifying that the wavelet basis basi-
cally corresponded to the image artifact suppression effect.

Table 3 Objective evaluation
indexes of different wavelet basis
suppressed artifacts images

PSNR (db) SSIM FSIM VIF

haar 30.5233 0.9288 0.9689 0.5653

bior2.2 28.7872 0.7891 0.9660 0.5487

db17 25.9848 0.6904 0.9647 0.5252

db23 25.9846 0.6899 0.9631 0.5245

db27 25.9905 0.6870 0.9640 0.5244

sym28 25.9908 0.6827 0.9638 0.5250

sym16 24.9848 0.6798 0.9641 0.5238

sym11 24.1594 0.6808 0.9643 0.5243

Bold indidcates the best processed results of all the algorithms
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(a) LDCT (b) NDCT (c) bior2.2 (d)haar (e) db17

(f) db19 (g) db23 (h)db27 (i) sym28 (j) sym16

ROI1

ROI2
ROI3

Fig. 6 Clinical data different wavelet basis artifacts suppression images

To further validate the superiority of the algorithms, as
Fig. 7 shows, we compared three models: NLM, K-SVD and
WavResNet. The red blocks in Fig. 7a are the ROIs, and the
bottom right corner of Fig. 7 shows the ROI3 enlargement.
Based on careful observation, it was found that the noise in
Fig. 7b–d was suppressed to different degrees as compared
to the case presented in Fig. 7a, whereas the image quality in

Fig. 7e is better than that in Fig. 7b–d. Moreover, the image
structure was clear after the processing of the algorithm, and
as such, most of the details were retained. Further, in the
subjective evaluation, the above-mentioned fivemetrics were
used to quantitatively analyze the denoising performance of
each algorithm. As presented in Table 5, the PSNR, SSIM
and SNR values of the proposed algorithm were better than

Table 4 Objective evaluation
indexes of different wavelet basis
artifacts suppression images

PSNR (db) SSIM SNR FSIM VIF

ROI1 ROI2

bior2.2 32.2583 0.9312 9.9355 17.5437 0.9764 0.5893

haar 30.3557 0.9264 9.2977 17.3738 0.9740 0.5804

db17 24.5609 0.9086 8.8065 15.0680 0.9330 0.3871

db19 23.7406 0.9055 8.7627 14.8483 0.9322 0.3811

db23 22.9025 0.8996 8.3409 14.7101 0.9309 0.3752

db27 23.4682 0.8940 7.8065 14.6765 0.9304 0.3805

sym28 23.8196 0.9020 6.6352 14.4365 0.9266 0.3781

sym16 22.7690 0.8885 6.0227 14.3979 0.9152 0.3783

Bold indidcates the best processed results of all the algorithms

LDCT NLM K-SVD WavResNet Ours

ROI1

ROI2
ROI3

(a) (b) (c) (d) (e)

Fig. 7 Clinical data different algorithms artifacts suppression images
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Table 5 Objective evaluation
indexes of different algorithms
artifacts suppression images

PSNR (db) SSIM SNR FSIM VIF

ROI1 ROI2

LDCT 22.2564 0.7384 6.2782 8.3484 0.9589 0.3147

NLM 32.7063 0.9227 9.7364 15.3738 0.9747 0.5781

K-SVD 29.6287 0.9078 9.8389 15.0680 0.9765 0.3804

WevResNet 31.8429 0.9163 9.4518 16.9242 0.9758 0.5413

Ours 32.2583 0.9312 9.9355 17.5437 0.9764 0.5893

Bold indidcates the best processed results of all the algorithms

those of the other algorithms. The FSIM values of all the
compared algorithmswere roughly similar, and the algorithm
here showed the largest VIF value. Therefore, the proposed
algorithm exhibited better performance in terms of both the
visual effect and quantitative analysis index.

5 Conclusion

In this study, we proposed a noise artifact suppression algo-
rithm based on optimal wavelet basis and MCA for the
problems associated with noise and serious strip artifacts in
LDCT. The novelty of the algorithm lied in improving the
wavelet selection formula, increasing the optimal wavelet
basis by weighting the horizontal, vertical and diagonal com-
ponent coefficients. Additionally, the algorithm combined
the advantages of SWT and MCA image decomposition to
suppress the artifacts, thereby avoiding the loss of image
information and improving the quality of the image. The
denoising effect of the proposed algorithm was evaluated
via simulated data experiments and clinical data experi-
ments. The quality improvement algorithm based on optimal
wavelet basis and MCA achieved better denoising effect and
also effectively retained image edge and detail information,
thereby demonstrating better performance than that of the
other wavelet basis-based denoising algorithms in terms of
the subjective visual effect and objective evaluation index.
The proposed algorithm is therefore expected to be of clini-
cal importance in the further promotion and development of
LDCT imaging technology and use in practical applications.
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