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Abstract
Anomaly detection in surveillance videos is a challenging and demanding task. Autoencoders trained on segments of normal
events are expected to give high reconstruction error for abnormal events than that for normal events. However, the assumption
of autoencoders giving high reconstruction error is not always true in practice. Since the autoencoder sometimes offers better
generalization, it also reconstructs abnormal events well, leading to slightly degraded performance for anomaly detection.
Another issue is that the performance of real-time anomalous activity detection in surveillance videos still needs improvement.
To address these issues, we propose anObject-centric andMemory-guided residual spatiotemporal autoencoder (OM-RSTAE)
to detect video anomalies. The proposed technique achieved improved results over benchmark datasets, namely UCSD-Ped2,
Avenue, ShanghaiTech and UCF-Crime datasets.

Keywords Video anomaly detection · Normality modeling · Memory guided network · Spatiotemporal autoencoders ·
Residual blocks · Anomalous objects

1 Introduction

Real-time video anomaly detection (VAD) systems are of
great demand to ensure private and public safety. There exist
various challenges while building aVAD system. Insufficient
training data for anomalous activities create an imbalance
between normal and anomalous samples. Data points lie in
a higher dimension and formulation of anomalies may dif-
fer based on scenarios, e.g., running in the middle of the
road might be considered anomalous while running in a park
is not. VAD can be posed as an outlier detection problem
in which a normality model is built using data of normal
activities. While testing, any deviations from characteristics
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learned by the normality model are recognized as anoma-
lies. Initially, reconstruction error-based autoencoders such
as Hasan et al. [5] solely depend on a 2D convolutional
autoencoder inwhich the convolution and pooling operations
are performed only in the spatial dimensions, and so it fails to
capture the temporal characteristics. To overcome this issue,
3D-convolution layers and convolutional LSTM (C-LSTM)
layers are augmented to the autoencoder formodelingmotion
information [19].

Recently,weproposed aResidual Spatio-temporalAutoen-
coder (R-STAE) [1]-based normality modeling approach to
learn the spatio-temporal information present in the video
segments. An important issue of normality model-based
approaches is that autoencoders may provide better gen-
eralization so that few anomalous activities might also be
reconstructed well. Another issue is that the performance
of real-time anomalous activity detection in surveillance
videos still needs improvement. We propose an Object-
centric and Memory-guided residual spatiotemporal autoen-
coder (OM-RSTAE)-based normality modeling approach to
detect video anomalies as an extension to our R-STAE-based
approach. We explore the memory-module used in MemAE
[4] approach to capture the significant normality patterns
present in the training data. MemAE approach uses Con-
volutional Autoencoder (CAE) along with memory-module
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to model the normality patterns, whereas in this proposed
work, we augment the memory-module in R-STAE architec-
ture to detect anomalies in surveillance videos. In addition,
the proposed architecture initially detects anomalous objects
in the video using a pre-trained object detection model as
the first level. The anomalies which are not detected in
the first level are further processed using Memory-guided
R-STAE architecture to identify the temporal anomalies.
The overall result of the proposed approach is the weighted
average of first-level detection and second level detec-
tion.

2 Related work

So far in the literature, the techniques proposed for VAD fall
under two categories: (1)modeling events using hand-crafted
feature-based techniques which make use of features such as
histogram of gradients, 3D-gradients, histogram of optical
flow, trajectories [15], etc. Extracting hand-crafted features
is time-consuming, and also their representation capabilities
are limited for complex visual interactions. (2) Unsuper-
vised deep learning-basedmethodswhich involve training an
autoencoder based on normal video events and the anoma-
lous activities are then identified based on the reconstruction
error. A non-deep state-of-the-art approach for such unsu-
pervised modeling involves a combination of sparse coding,
and bag-of-words [9]. However, bag-of-words do not pre-
serve the spatio-temporal structure of the words and require
prior information about the number of words. Additionally,
optimization involved in sparse coding for both training and
testing is computationally expensive, especially with large
data such as videos.

3D-Convolution architectures used to design the 3D
autoencoders to obtain high-level features are invariant to
intra-class spatiotemporal changes [20]. This approach uses
stacked frames as an input to the 3D-filters as done in Fully
connected AE [5] approach. The feature maps obtained out
of 3-D filters are used to model the spatiotemporal changes.
A prediction stream is also used to better handle the issue
of poorly reconstructed normal events by the autoencoder
stream. Local temporal coherence was taken into considera-
tion while designing the prediction loss. A semi-supervised
learning approach for VAD using dual discriminator-based
GAN architecture is proposed in [3]. During training, the
future frames are predicted through the generator, and they
try to coerce the predicted frames to be similar to the
ground truth. Both the frame and motion discriminators
are utilized to force the generator to construct much realis-
tic successive frames. The role of the frame discriminator
is to evaluate whether the upcoming frames are real or
fake.

3 Object-centric andmemory-guided-RSTAE

As shown in Fig. 1, Object-centric and Memory-guided
Residual Spatiotemporal Autoencoder (OM-RSTAE) is pro-
posed to detect anomalous objects in the first level using
a pre-trained object detection model. The anomalies which
are not detected in the first level are further processed using
Memory-guided R-STAE architecture to identify the tem-
poral anomalies. In real-time, pre-trained object detection
models can be used to detect anomalous objects in the
sequence of frames in scenarios such as pedestrian walk-
ways and campus scenarios. In addition to the anomalous
object detection model, augmenting the memory module in
the R-STAE architecture [1] helps in memorizing the signifi-
cant normality patterns present in the training data of normal
activities.

3.1 Anomalous object detection

Detecting anomalous objects as the first level simplifies the
VAD system with improved efficacy. A pretrained object
detection model trained on the COCO-17 dataset, taken from
Tensorflow object detection model zoo [13] is used in the
anomalous object detection module. The EfficientDet D7 is
chosen because of its high mean average precision (mAP)
score of 51.2 compared to all the other pretrained models
present in the tensorflow 2 model zoo. EfficientDet D7 uses
BiFPN (Bi-directional Feature Pyramid Network), a bidirec-
tional feature network that takes input frommultiple layers of
the EfficientNet backbone. The BiFPN uses the multi-level
feature fusion technique.

The efficiency is further increased by using a fast normal-
ized fusion technique that takes into consideration the effects
of input features at different resolutions having unequal
contribution to the output features. Therefore, appropriate
additional weights are assigned that allow the network to
learn the importance of different input features. As a result
of which there is a significant 4% increase in accuracy and
50% reduction in computational cost compared to the pre-
viously used feature fusion technique in the NAS-FPN [13]
architecture. The fused features are then used by the class/box
network to predict the location and class of each object. A set
of image frameswith channels, n∗h∗w∗c, are given as input
to the pretrained object detection model as shown in Fig. 1.
The model identifies all the objects in the frame and the iden-
tified objects are stored in a list. The objects in the list are
compared against a predefined list of anomalous objects to
identify whether those set of images are anomalous. Further,
the input frames are fed into the Memory-guided R-STAE
architecture.The anomalous object detectionmodel helped in
finding about 87.62 and 48.03% anomalous frames present in
the testing videos ofUCSD-Ped-2 and ShanghaitechDataset,
respectively.
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Fig. 1 Object-centric and Memory-guided Residual spatiotemporal Autoencoder (OM-RSTAE)-based approach

3.2 Skip connected andmemory-guided network

To detect the unnoticed anomalies in the first level, the input
frames, n ∗ h ∗ w ∗ c, are again passed to the skip con-
nected and Memory guided R-STAE as shown in Fig. 1. The
encoder consists of two 3-D convolution layers and then two
Convolutional-LSTM (C-LSTM) layers. The output chan-
nels of the 3D-convolution layers are fixed as 128, and 64
units, respectively. Simple LSTMs are not able to hold on
to appearance information of video sequences. To address
this issue, C-LSTM was introduced where all the states are
3D tensors and can accommodate spatial dimensions. The
configuration of residual blocks used in the proposed OM-
RSTAE architecture is presented in Table 1. The residual
network makes use of a skip connection apart from the
existing layers. This helps in avoiding the loss of mean-
ingful information from the previous convolution layers and
also bestows for gradient flow while backpropagation, thus
helping in taking control over the vanishing gradients. The
equation of a residual block with input z is given by,

y = F(z) + z (1)

Here, z denotes encoded feature maps before passing them
into the residual block. F(z) refers to encoded feature map
obtained from the residual blocks, and y denotes the encoded
representation. ReLU activation function is used in the resid-

ual layers. Also, Batch Normalization (BN) is employed
to improve the training efficiency of the OM-RSTAE. The
hyper-parameters such as strides, number of kernels, and the
kernel size were chosen empirically, whereas the kernel val-
ues are initialized randomly.

The encoded representation from the last layer of the
residual block is referred as y, which is then fed to the
memory-guided network to obtain ŷ as shown in Fig. 1. The
memory matrix M is randomly initialized with weights of
dimension NxC . N is empirically chosen to be 2000, and
the dimension of C is assumed to be the same as that of y.
The row vector mi denotes each memory item in M , where
mi ranges from 1 to N . The memory unit M is updated via
backpropagation and gradient descent while training. During
the backward pass, gradients for the memory items which
has nonzero weights can remain nonzero. Once an encoded
representation y is passed into the memory-guided network,
the distance of y with respect to all the memory items mi is
calculated as given below:

s(y,mi) = ymT
i

‖y‖ ‖mi‖ (2)

Once the similarity s(y,mi) is computed for the encoded
representation of the test segment with every memory item,
each weightwi of the weight vectorw is computed using the
softmax operation.
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Table 1 Architecture of the
proposed R-STAE

Layer Output-map Dim. Kernel Stride Output channel

Image 227 × 227 × 10 – – –

Conv-3D 2 (tanh) 55 × 55 × 10 11 × 11 × 11 4 128

Conv-3D 3 (tanh) 26 × 26 × 10 5 × 5 × 1 2 64

C-LSTM (conv) 26 × 26 × 10 3 × 3 1 64

Residual block 1

Conv-3D 4 (ReLU) 26 × 26 × 10 3 × 3 × 1 1 64

Conv-3D 5 (ReLU) 26 × 26 × 10 3 × 3 × 1 1 64

Residual block 2

Conv-3D 6 (ReLU) 26 × 26 × 10 3 × 3 × 1 1 64

Conv-3D 7 (ReLU) 26 × 26 × 10 3 × 3 × 1 1 64

Residual block 3

Conv-3D 8 (ReLU) 26 × 26 × 10 3 × 3 × 1 1 64

Conv-3D 9 (ReLU) 26 × 26 × 10 3 × 3 × 1 1 64

Memory-guided network

Conv.LSTM (De-Conv) 26 × 26 × 10 3 × 3 1 128

DeConv-3D 1(tanh) 55 × 55 × 10 5 × 5 × 1 2 128

DeConv-3D 2(tanh) 227 × 227 × 10 11 × 11 × 1 4 128

conv-3D bold to denote that this comes under Residual block 1, 2 and 3

wi = es(y,mi)

∑N
j=1 e

s(y,mj)
(3)

Therefore, thememory-guidednetwork retrieves thememory
items which are similar to y, to obtain the memory-based
representation ŷ for reconstruction. After finding the weight
vectorw, aReLUactivation function is applied onw to obtain
ŵ for inducing sparsity. The newly updated sparse weight
vector ŵ is used to select the memory items that represent
the normality patterns.

The reconstructed frame will have a large margin of error
when the model receives a frame that contains anomalous
activity. But there is still a possibility to reconstruct the
anomaly by combining several parts of the normality fea-
ture vectors contained in the memory matrix. This happens
especially with a densew. One of the potential solutions is to
make sure that reconstruction uses only relevant normal pat-
terns. This can be imposed by a sparse w, which is achieved
based on a certain threshold chosen with respect to the size
(N ) of the Memory matrix M (threshold range: [1–3/N]).
The values in the w vector that are lesser than the thresh-
old are made as 0, which makes the vector ŵ sparse. One of
the simpler methods of implementing this is to use a ReLU
activation function (h) to obtain ŵ.

ŵ = h(wi ; threshold) =
{
wi , if wi > threshold
0 otherwise

(4)

After the shrinkage operation, the new latent representation
ŷ is obtained using the equation,

ŷ =
N∑

i=1

ŵimi (5)

Since the network is forced to store only the most significant
normality patterns, the reconstruction is performed based on
a small set of memory items stored in the memory. This
sometimes leads to loss of information while reconstruct-
ing normal foreground objects since only a minimal set of
significant normal patterns are used while reconstruction. To
overcome this issue, an additional skip connection is also
introduced from the output residual blocks to the output of
the memory module in the OM-RSTAE as shown in Fig. 1
to compensate for this kind of loss of information. Using
the skip connection, the encoding y is concatenated to the
encoding ŷ along the channel dimension to form a represen-
tation P, and this representation is used for reconstruction by
the decoder. This concatenation helps the decoder to recon-
struct the incoming frames using significant normal patterns
present in the memory, slightly compromising the represen-
tation capacity of the convolution layers during normality
modeling.

Apart from the anomalous object detection model as the
first level, the architecture details of the skip connected and
memory-guided network in the OM-RSTAE approach are
presented in Table 1. The normality model is learned using
normal video segments given as input to the OM-RSTAE
model. The normality score is computed based on the MSE
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Table 2 Run-time analysis

Method Time taken
(One frame) (s)

Frame-pred [8] 0.12

Sparse-coding [10] 0.02

OM-RSTAE 0.0026

values obtained by computing the frame-wise difference
between the reconstructed and actual frame. The normality
scores will be in the range [0–1]. Finally, a threshold value is
empirically chosen and compared with the normality scores
to detect the anomalous segments at the second level. The
overall result of the proposed approach is the weighted aver-
age of first-level detection and second level detection.

4 Experimental studies

4.1 Datasets

We conducted experiments on the following datasets: CUHK
Avenue [9], Shanghaitech [8], UCSD-Ped 2 [11] and UCF-
Crime [16]. The CUHK-Avenue dataset contains 16 training
videos (15, 328 f rames) and 21 test videos (15, 324 f ra-
mes) with 47 abnormal events, which include a person
walking in the wrong direction, running, throwing objects,
etc. The UCSD Ped2 dataset contains 16 training videos and
12 test videoswith 12 abnormal events,which include driving
a vehicle, skating, riding a bike, etc. The ShanghaiTech Cam-
pus dataset has 13 scenes with complex light conditions and
camera angles. It contains 130 abnormal events and over 270,
000 training frames. UCF-Crime dataset consists of about 13
activities describing the real-world anomalies. The dataset
has a total of 800 normal video sequences for training and
290 sequences for testing. The Area Under the Curve (AUC)
scores are used as an effective metric to evaluate the perfor-
mance since the ratio between normal and abnormal events
in test video is not similar.

4.2 Training and Ablation studies

The proposed model uses Adam Optimizer with a learning
rate of 0.01, and the size of the memory unit is chosen as
2000. The dataset is split into batches of size 16 for training.
Run-time: the proposedmodel has 1,580,801parameters. The
proposed OM-RSTAE detects abnormality at 150 fps with
experiments carried out on an NVIDIA QUADRO-P5000
graphics card. As shown in Table 2, anomaly detection in
one frame takes only about 0.0026 which is much faster than
the deep learning approaches [8,10].

Table 3 Influence ofmemory-guidednetwork in theOM-RSTAEarchi-
tecture

Configuration Avenue (AUC) SHANGHAITECH
(AUC)

W/o skip connected
memory module

0.82 0.68

With skip connected
memory module

0.83 0.71

The number of residual blocks and C-LSTM layers in the
base R-STAE architecture [1] are empirically chosen as 3 and
2, respectively. Table 3 clearly contrasts the difference in the
performance of the proposed approach with and without the
memory-guided network. Augmenting memory-guided net-
work improves the AUC score by 1% for the CUHK-Avenue
dataset. There is an 3% improvement in the AUC score for
the SHANGHAITECH dataset, which clearly shows that the
proposed model is capable of performing better with the
memory-guided network.

4.3 Qualitative analysis

The performance of the EfficientDet D7 object detection
model [13] is illustrated in Fig. 2. The detection of anoma-
lous object, which is a bicycle in the pedestrian pathway
from 3 datasets is presented. As seen in Fig. 2b, even though
the anomalous bicycle is occluded by pedestrians, the pre-
trained object detection model in the first level is capable of
detecting the bi-cycle object. The anomalous object detection
model helped in finding about 87.62 and 48.03% of anoma-
lous frames present in the testing videos of UCSD-Ped-2
and SHANGHAITECH dataset, respectively. The overall
result of the proposed approach is the weighted average of
first-level detection (pre-trained object detection model) and
second level detection (Skip-connected and memory-guided
module). The weighted average results are reported as the
overall results of proposed approach.

4.4 Performance analysis

Table 4 presents the comparison results for the CUHK-
Avenue dataset [9]. Allison et al. [2] proposed a novel
sliding window-based discriminative learning framework for
anomaly scoring. The approach is also independent over con-
textual assumptions of anomalies. Itwas able to performquite
well on the avenue dataset with an AUC of 0.78. A convolu-
tional autoencoder [5] architecture is proposed with standard
HOG,HOF, and raw videos as inputs tomodel the spatiotem-
poral information with the help of reconstruction loss.

Another work [17] explores a convolutional winner -take-
all autoencoder (CONV-WTA) with optical flow sequences
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Fig. 2 Qualitative analysis-Bi-cycle Object detected in a UCSD-Ped2, b Shanghaitech , and c Avenue dataset

Table 4 Performance over Avenue dataset

S. no Method AUC

1 Discriminative framework [2] 0.78

2 Conv-autoencoder[5] 0.70

3 STAE-grayscale [20] 0.77

4 STAE-optflow [20] 0.81

5 Sparse dictionary [9] 0.81

6 Conv-WTA+SVM [17] 0.82

7 sRNN [10] 0.82

8 ST-CaAE [7] 0.83

9 Frame-pred [8] 0.85

10 R-STAE [1] 0.82

11 MemAE [4] 0.83

12 OM-RSTAE 0.84

Bold denotes max result

as inputs to learn the normality model. The CONV-WTA
approach incorporates OC-SVM instead of normality scores
to detect anomalies. The ST-CaAE [7] approach detects
anomalies based on a cuboid-patch-based cascading tech-
nique with the optical flow as inputs to the spatiotemporal
autoencoder network. Still, the approach could only achieve
similar results as the OM-RSTAE on the CUHK-Avenue
dataset. Compared to the sRNN [10] approach, the pro-
posed OM-RSTAE shows a 2% increase in the AUC score.
The Frame-pred [8] approach performs comparable to the
proposed approach since it uses an adversarial learning
framework for which the computational complexity is high
compared to the proposed approach.

In case of SHANGHAITECH dataset, the Frame-pred
[8] approach has achieved 2% improvement over proposed
approach as shown in Table 5 .The Frame-pred [8] approach
uses additional modules for estimating optical flow, which
requires more network parameters and groundtruth flow
fields. Moreover, Frame-Pred leverages an adversarial learn-

Table 5 Performance over SHANGHAITECH dataset

S. no Method AUC

1 Conv-Autoencoder[5] 0.61

2 sRNN [4] 0.68

3 MemAE [1] 0.71

4 Frame pred [8] 0.73

5 R-STAE 0.66

6 OM-RSTAE 0.71

Bold denotes max result

Table 6 Performance over UCSD-Ped 2 dataset

S. no Method AUC

1 Social force [12] 0.56

2 MPPCA+social force [11] 0.69

3 Unmasking[18] 0.82

4 Conv.autoencoder [5] 0.90

5 Narrowed normality clusters [6] 0.89

6 Abnormal GAN [14] 0.93

7 R-STAE [1] 0.83

8 MemAE [4] 0.94

9 OM-RSTAE 0.94

Bold denotes max result

Table 7 Performance over UCF-crime dataset

S. no Method AUC

1 Deep autoencoder [5] 0.56

2 Lu et al [9] 0.57

3 R-STAE [1] 0.64

4 OM-RSTAE 0.65

Bold denotes max result

ing framework, taking lots of effort to train the network.
On the contrary, our model uses a simple skip-connected
and Memory augmented R-STAE for extracting features and
detecting the anomalies.
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In case of UCSD-Ped2, OM-RSTAE approach outper-
formed the MPPCA+Social Force [11] approach with a 25%
improvement in the AUC score as shown in Table 6. Com-
pared to the Unmasking [18] and R-STAE [1] techniques, the
proposedmodel shows a 12 and 11% increase inAUC scores,
respectively. The AbnormalGAN [14] approach achieved
0.93% AUC with generative adversarial network as its base,
which is a heavyweight model and takes more time for train-
ing and testing when compared to the proposed model.

TheUCF-Crimedataset [16] is challenging since the train-
ing video sequences and the corresponding testing video
sequences are from different scenes. UCF-Crime dataset
has data for both normal and abnormal events for training.
We experimented UCF-Crime dataset in an outlier detection
fashion (i.e.,) used only normal events for training, and com-
pared with approaches that follow the same approach and
is presented in Table 7. Still, the proposed was able to sig-
nificantly better than the existing frame-pred [5] and sparse
coding[9] approaches as shown in Table 7.

5 Conclusion

We have introduced an Object-centric and Memory-Guided
Residual Spatiotemporal Autoencoder (OM-RSTAE) for
anomaly detection in videos. The anomalous object detection
model as the first-level, helped in identifying the anoma-
lous objects beforehand. The addition of a skip-connected
and memory-guided network to capture and store signifi-
cant normal patterns helped in the effective reconstruction of
normal events so that the decoder reconstructs the abnormal
events with relatively high error. Further, inducing sparsity
in the memory-guided network helped in achieving mean-
ingful latent representations using only a minimal number of
patterns in the memory unit which is further used for recon-
struction.
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