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Abstract
Deep Learning (DL) has turned into a subject of study in different applications, including medical field. Finding the irregu-
larities in Electrocardiogram (ECG) is a critical part in patients’ health monitoring. ECG is a simple, non-invasive procedure
used in the prediction and diagnosis of Cardiac Arrhythmia. This paper proposes a new transfer learning-based end to end
approach to automate the cardiac arrhythmia classification. The proposed approach begins with gathering ECG Dataset and
extracting beats after ECG beat segmentation. Developing aModel from scratch is time-consuming, so the concept of transfer
learning is used. For transferring the knowledge to our ECG classification domain, the last layers of the model are fine-tuned
such that model becomes more domain-specific to our target ECG data. Three pre-trained Convolutional Neural Networks
(CNNs), AlexNet, Resnet18, GoogleNet are explored, and then, our model is designed by block wise fine-tuning each layer
with different model training parameters. To update the weights and offsets, Adaptive moment estimation, Root means square
propagation and Stochastic gradient descent with momentum (SGDM) are three different optimizers used. Investigating the
results obtained by training fine-tuned models, we select the model which gives the system’s best accuracy. MIT-BIH arrhyth-
mia database is considered in this study. Performance of each Fine-tuned Model is evaluated by calculating Precision, Recall,
Specificity,F-score and Accuracy. Moreover, our proposed fine-tuned Deep-CNN Model is effective and outperformed the
existing models in the literature with accuracy of 99.56%.

Keywords Deep learning · Convolutional neural network (CNN) · Fine-tuned deep-CNN · Transfer learning · Electrocardio-
gram (ECG)

1 Introduction

Heart attacks are the significant reason for death all around
the world. 17.9 million individuals are deceased every year
because of cardiac anomalies, assessing 31% of overall
deaths [1]. Major part of cardiovascular deaths is due to car-
diac arrhythmia. Cardiologists regularly prescribe patients
with Arrhythmia to wear Holter for ceaseless observing of
ECG for 24 h. As this recorded data are enormous, there
is a need to arrange kind of every heartbeat naturally utiliz-
ing the computer-aided diagnosis tools [2]. The development
and adoption of deep learning (DL) have flooded over the
most recent couple of years. Conventional Machine learn-
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ing procedures or kernel-based neural network (NN) needs
domain experts to recognize significant features for investi-
gation of abnormalities in ECG [2, 3]. Artificial Intelligence
(AI) techniques have emerged as a boon in the advancement
of technologies.

Various Scholars in the literature have proposed various
techniques for cardiac arrhythmia classification [4].Machine
learning methods needs features for classification. Hence,
significant features need to be extracted, which without a
doubt needs a domain expert. DL models learn features in a
gradual manner without the need of experts. These are the
layered architecture that learns various significant features at
various layers. All the initial input layers extract features, and
these features are classified by output layers. Convolutional
neural networks (CNN) are preferred in DL approaches for
extracting significant features and classification [5, 6]. The
Deep-CNNmodel comprises of at least one convolution lay-
ers. The convolution layer performs convolution by sliding
the kernel or filter over the data. Each receptive field gener-
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ates a feature map, which is added to obtain output feature
maps.

Many approaches for classifying ECG beats utilizing
CNN have been proposed. Kiranyaz et al. [7] proposed CNN
to classify ECG beats utilizing time series data and further
modified it to 2-D CNN. Rajendra et al. [8] solved dataset
imbalance problem and did a five-class classification uti-
lizing a nine-layer CNN. Zhai et al. [9] designed a CNN
architecture with just seven convolution layers. Sellami and
Hwang [10] introducedCNNwith batch-weighted losswhich
gave incredible results while training but failed to produce a
better accuracy. Wenhan liu et al. [11] used a patient specific
approach and developed CNN to learn intrinsic features. The
CNN proposed by Li [12] performed well for five class clas-
sification but the model has some cons while training from
scratch. W. Yin et al. [13] proposed an integrated UW radar-
based CNN. This model classified ECG data even in moving
state. Using the concept of transfer learning CNNmodel was
proposed by Salem [14]. Themodel performedwell, but only
four classes of arrhythmia were considered.

A DL model learns the basic features adaptively and cre-
ates end to end DL framework. It takes the ECG signal,
extracts intrinsic features and the predicts cardiac arrhyth-
mia [15–18]. The effect of noise when DL model is used
was studied using a nine-layer CNN [19]. Results show that
when DL models are trained from scratch the effect on noisy
signal do not have much impact on classification results. For
extracting significant feature maps time–frequency spectral
entropy can be used [20]. Real time detection of abnormal
cardiac rhythms using a robust CNN [21] may help cardiolo-
gist in early diagnosis. Detection myocardial infraction at an
early stage can save life of diseases [22, 23].When the dataset
is large the performance of model is improved [24, 25]. The
major challenge is to collect patients’ data, which can be
time-consuming and expensive. In the absence of real-time
data, most widely used public database is MIT-BIH arrhyth-
mia database [26].

In this study, our main motto is to detect cardiac arrhyth-
mia from ECG signals. Noise is removed from signals using
discrete wavelet transform (DWT) [27, 28]. ECG beats are
segmented and labelled according to the annotations men-
tioned in database [29]. This labeled database is used for
further processing. Using concept of transfer learning, deep
learning models are adapted to our ECG signal database.
These models are fine-tuned with different model training
parameters. Further, these fine-tuned models are validated
by testing for detection of cardiac arrhythmia.

The rest of work is systematized as follows. Section 2
defines our proposed methodology which includes pre-
processing data extraction of feature maps and classification
with fine-tuned models. In Sect. 3, investigative results are
presented and compared with existing state-of-the-art model.
Section 4 concludes our work.

2 Methodology

Transfer learning approach helps us to transfer the learned
knowledgeof pre-trainedmodels andhelps us to collect infor-
mation required to handle newdata. In this study,we explored
DLmodels like AlexNet, ResNet18 andGoogleNet, utilizing
MIT-BIH datasets and extract intrinsic features by applying
a block-wise fine-tuning strategy to each layer. Utilizing a
fully-connected layer along with SoftMax layer, classifica-
tion of these features is done. Figure 1 represents the block
diagram of proposed methodology. The proposed strategy
begins with gathering signals from MIT-BIH Dataset, pre-
processing the data to extract ECG beats, Feature extraction
using Fine-tuned Deep Learning Models and Classification
of ECG beats.

2.1 Pre-processing

Signals are taken from MIT-BIH Arrhythmia Database [1].
It consists of 48 records, each with a duration of 30 min.
All records together contain 16 types of beats; of which one
is normal, 14 are arrhythmia classes and one unclassified
beat. Among all, Records 102, 104, 106, 107, 109, 111, 118,
124, 200, 207, 208, 212, 214, 217, 223, 231, 232, 233 are
considered. These 18 Records (captured from 18 different
patients) are sufficient to extract required type of ECG beats.
Beats considered in these records are Normal Beats (N),
Left Bundle Branch Block Beats (L), Right Bundle Branch
Block Beats (R), Premature Ventricular contraction Beats
(V), Paced Beats (P), Atrial Premature Beats (A) and Fusion
of Normal and Paced Beats (F).

In thiswork,Noise removal is done usingDiscretewavelet
Transform (DWT) filters. DWT decomposed signal into
low- and high-frequency components commonly known as
approximation and detailed coefficients. Let z( j) be the sig-
nal which decomposes as follows

z( j) � zl0( j) +
l0∑

l−∞
dl( j) (1)

where zl0( j) denotes approximated coefficients, l0 is the scal-
ing factor and dl( j) are the detailed coefficients.

For finding approximation coefficients of next higher level
of decomposition, we iterate as

zl( j) � zl+1( j) + dl+1( j) (2)

each level of decomposition, input coefficients given is
approximation coefficients obtained by previous level.
Daubechies wavelet 6 (db6) is used to decompose signal into
six levels. Coefficients are obtained from third level to sixth
level and retained and signal is reconstructed using these
coefficients.
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Fig. 1 Block Diagram of
Proposed Approach
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Noise-free ECG Signals are considered to extract ECG
beats. Pan Tompkins algorithm is used to find R peaks [31].
Subtracting the consecutive R peaks gives us the RR interval.
For segmenting ECG beats 30 s signal is considered at a time
and average RR interval is found. An onset duration of one-
third of average RR interval and offset duration of two-third
of average RR interval is selected to segment one ECG beat.

Results obtained after Removal of Noise and Beat seg-
mentation is shown in Sect. 3.1.

2.2 Feature extraction and classification through
deep learning

DL models extracts features by using Convolutional Layers.
These filters in these layers convolved with different kernels
to generate a tensor of features. The filter will move from one
point to next point depending on stride. In order to cover the
entire beat, we use zero padding to filters. These tensor of
features generated are activated using Rectified Linear Unit
(ReLU) function. Let the convolution be defined as

xlk � f

⎛

⎝
∑

i∈Mk

xl−1
i ∗ wik + bk

⎞

⎠ (3)

MK denotes the kernels used with different kernel size of
5 or 3. At layerl, xlk denotes output of kth neuron, bk is the
bias of neuronk, wik is the weight kernel between neuron i
at layer l − 1 and neuron k at layer l. f (.) denotes ReLU
activation.

The model is trained until the loss function is minimized.
The loss function is defined as

L � − 1

N

N∑

n�1

[
yn log(ŷn) + (1 − yn) log(1 − ŷn)

]
(4)

N denotes total neurons, yn is the actual beat, ŷn is the
predicted beat. To fine-tune the model, best hyper-parameter
values and along with some regularization tricks is used to
obtain ideal results. A batch of beats is given for training
utilizing gradient descent algorithm. It optimizes the objec-
tive function J (θ) with model constraint θ ∈ Rd . Gradient
is defined as

g � 1

m
∇θ

∑

i

L
(
f
(
x (i); θ

)
, y(i)

)
(5)

where m denotes batch size, θ denotes the updating param-
eter, f

(
x (i); θ

)
is predicted beat, y(i) is actual beat and L(.)

is the Loss function.
SGDM, ADAMs and RMSprop are optimizers used to

update weights and offsets. SGDM accelerates a descent
inappropriate path to reduce the oscillation. This is done by
adding previous step update vector γ with learning rate η.

vt � γ vt−1 + η∇θ J (θ)

θt+1 � θt − vt (6)
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Fig. 2 Removal of Noise from ECG signal

where vt is the momentum to be updated and θt+1 is updated
parameter.

RMSprop adaptively uses exponential decaying average
to converge and is given as

E
∣∣∣g2

∣∣∣
t
� γ E

∣∣∣g2
∣∣∣
t−1

+ (1 − γ )g2t

θt+1 � θt − η√
E

∣∣g2
∣∣
t+ ∈

gt (7)

where E
∣∣g2

∣∣
t is the running average, gt � ∇θ J (θ) and θt+1

is updated parameter.
Adams optimizer calculates adaptive learn rates. First

moment (mean) mt and second moment (variance) vt esti-
mates are updated as

mt � β1mt−1 + (1 − β1)gt

vt � β2vt−1 + (1 − β2)g
2
t (8)

Corrections made to mt and vt to get exact mean m̂t and
variance v̂t is given as

m̂t � mt(
1 − β t

1

)

v̂t � vt(
1 − β t

2

) (9)

Using mean m̂t and variance v̂t the parameter θ is updated
with step ∈ as

θt+1 � θt − 1√
v̂t+ ∈ m̂t (10)

The final layer is the fully connected layer (FC) associated
alongwithSoftMax layer. ThreeCNNarchitecturesAlexNet,
Resnet18 and GoogleNet are explored with different model
training parameters. AlexNet model contains five convolu-
tional layers and three fully connected layers. GoogleNet
Model introduced a new inception layer that concatenated

Fig. 3 ECG peak detection and RR interval

Fig. 4 Segmented ECG beat

different filters into a single filter. It has two convolutional
layers, nine inception layers and one fully connected layer.
Resnet18 model has one convolution layer, eight Residual
blocks and one fully connected layer. Each residual block
internally has two convolution layers, i.e., ResNet18 has a
total of 18 layers.

3 Results and discussions

The proposed model is simulated and tested on a system
with Intel core i7-9th Gen, 3.6 GHz CPU, 16 GB RAM, and
NVIDIA GeForce GTX 1060 8 GB GPU.

3.1 Pre-processing data

Noises that affect most frequently are baseline drifts, motion
artifacts, power line interference and electromyography
(EMG) noise. Noise is removed using DWT as mentioned
in Sect. 2.1. Simulated result of noise removal is shown in
Fig. 2.

For segmenting ECG beats 30 s signal is considered at a
time and averageRR interval is found (Fig. 3). An onset dura-
tion of one-third of average RR interval and offset duration
of two-third of average RR interval is selected to segment
one ECG beat as shown in Fig. 4.

A total of 40,213 ECGbeats are extracted of which 27,344
beats are training beats, 4826 beats are validation beats and
8,043 beats are testing beats. Table 1 depicts the summary of
total beats.
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Table 1 Total beats extracted
from MIT-BIH Arrhythmia
Database

Beat Type Total Beats Training Beats Validation Beats Testing Beats

N 10,838 7370 1300 2168

L 8075 5491 969 1615

R 7259 4935 872 1452

V 4334 2947 520 867

P 7028 4779 843 1406

A 1697 1154 204 339

F 982 668 118 196

Total ECG Beats 40,213 27,344 4826 8043

Table 2 Model training parameters considered

Parameters Values

Optimizers SGDM, RMSprop, ADAMs

Pooling method Maximum pooling and average pooling

Mini batch size 32,64,128

Initial learn rate 0.0001, 0.001, 0.01

Drop factor of learn rate 0.1,0.2,0.5

Maximum epochs 6,8,10

3.2 Fine-tuning CNNmodels

The Fine-tuned DL models are considered for identifying
normal ECG beats and ECG beats with cardiac Arrhyth-
mia. Pre-trained Model AlexNet, ResNet18, GoogleNet are
fine-tuned to get system’s best accuracy. Table 2 represents
various model training parameters considered to fine-tune a
model to achieve best outcome.

Theoptimumnetwork configurationparameter is foundby
block wise fine-tuning with various model training parame-
ters. The performance changes which occur due to change
in batch size was observed. High batch sizes take less time
to train but are very prone to overfitting. Low batch sized
takes more time to train but improves performance. A batch
size of 128 was considered, and then, it was slowly reduced
to check performance improvement. Reduction in batch size
beyond 32 did not show any significant improvement in per-
formance. Hence, a batch size of 32 is considered. Different
initial learn rate like 0.01, 0.001, 0.0001 were considered
while fine-tuning. Lower the initial learn rate, higher the per-
formance. So, an initial learn rate of 0.0001 is considered.
Sharp features are not identified by average pooling. So, we
here used maximum pooling in fine-tuning. Different drop
factor of 0.1, 0.2 and 0.5 were considered. Increasing the
drop factor more than 0.5 did not improve performance of
model. Hence drop factor of 0.5 with initial learn rate 0.0001
is fixed for GoogleNet, ResNet18. As AlexNet has a few
layers a drop factor of 0.2 is sufficient. So a drop factor of
0.2 is considered for AlexNet with initial learn rate 0.0001.

Table 3 Investigative results of fine-tuning AlexNet Model

Tested parameter Optimizers

SGDM Adam RMSprop

Batch size 32 32 32

Maximum epochs 10 10 10

Initial learn rate 0.0001 0.0001 0.0001

Drop factor 0.2 0.2 0.2

Training time 37 min 10 s 40 min 8 s 36 min 58 s

Validation accuracy 98.47% 97.78% 97.14%

Table 4 Investigative results of fine-tuning ResNet18 Model

Tested parameter Optimizers

SGDM Adam RMSprop

Batch size 32 32 32

Maximum epochs 10 10 10

Initial learn rate 0.0001 0.0001 0.0001

Drop factor 0.5 0.5 0.5

Training time 64 min 58 s 70 min 3 s 73 min 52 s

Validation Accuracy 97.24% 99.09% 99.50%

The CNN Models-AlexNet, ResNet18 and GoogleNet con-
verged with firm accuracy after 10 epochs. So, 10 epochs
have been considered for training models. Considering these
parameters, Model was trained with different optimizers like
SGDM, RMSprop and Adam.

Investigative Results obtained after fine-tuning the mod-
els are shown in Tables 3, 4 and 5 CNN Model-AlexNet
achieved best training accuracy of 98.47%with training time
of 37min10 susingSGDMoptimizer.CNNModel-Resnet18
achieved best training accuracy of 99.50%with training time
of 73 min 52 s using RMSprop optimizer. CNN Model-
GoogleNet achieved best training accuracy of 98.57% with
training time of 53 min 16 s using ADAMs optimizer. Fig-
ure 5 shows the training progress and loss function of the best
Fine-tuned Models. This projected systems performance is
evaluated by testing process using Test ECG beats.
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Table 5 Investigative results of fine-tuning GoogleNet Model

Tested parameter Optimizers

SGDM Adam RMSprop

Batch size 32 32 32

Maximum epochs 10 10 10

Initial learn rate 0.0001 0.0001 0.0001

Drop factor 0.5 0.5 0.5

Training time 86 min 0 s 77 min 16 s 99 min 3 s

Validation accuracy 96.97% 98.57% 97.70%

Table 6 Confusion matrix for N classes

True Class Predicted Class

class 1 class 2 · · · class N

Class 1 c11 c12 · · · c1N

Class 2 c21 c22 · · · c11
...

...
...

...
...

Class N cN1 cN1 · · · cNN

3.3 Confusionmatrix and performancemeasures

Confusion matrix represents the performance of model. For
a N class classification the confusion matrix obtained is of
N x N dimensions as shown in Table 6.

Figure 6 shows the confusion matrices obtained by our
fine-tuned models. To evaluate the performance, perfor-
mance measures like precision, recall. Specificity, F-score
and Accuracy are calculated. Formulae for calculating per-
formance measures are listed below

Precision(class i) � cii∑N
j�1 c ji

(11)

Recall(class i) � cii∑N
j�1 ci j

(12)

(13)

Speci f ici t y (class i)

�
(∑N

j�1 c j j − cii
)

(∑N
j�1 c ji − cii

)
+

(∑N
j�1 c j j − cii

)

F − Score(class i) � 2 × cii∑N
j�1 ci j +

∑N
j�1 c ji

(14)

Overall Accuracy �
∑N

i�1 cii∑N
i�1

∑N
j�1 ci j

(15)

where T p gives True positives, Tn gives True negatives, Fp
gives False positives and Fn gives False negatives.

Performancemeasures of all the fine-tunedmodels is sum-
marized in Tables 7, 8 and 9. From the tabulated results it is
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Fig. 5 Training process and loss of Fine-tuned CNN Model
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Fig. 6 Illustrations of Confusion Charts of Fine-tuned CNN Models.
a Fine-tuned AlexNet Model. b Fine-tuned ResNet18 Model. c Fine-
tuned GoogleNet Model

obvious that fine-tuned ResNet18 has attained highest test
accuracy of 99.56%, while Fine-tuned AlexNet, GoogleNet,
attained test accuracy of 99.09%, 98.98%.

Table 7 Performance Measures using Fine-tuned AlexNet Model

ECG beat
type

Precision
(%)

Recall (%) Specificity
(%)

F score (%)

N 99.45 100 100 99.22

L 99.69 99.44 99.86 99.56

R 98.63 99.31 99.84 98.97

V 99.08 100 100 99.54

P 99.64 99.50 99.92 99.57

A 100 89.38 99.57 94.39

F 99.46 94.38 97.74 96.85

Average 99.27 97.43 99.56 98.30

Overall test accuracy of model is 99.09%

Table 8 Performance Measures using Fine-tuned ResNet18 Model

ECG beat
type

Precision
(%)

Recall (%) Specificity
(%)

F score (%)

N 98.81 100 100 99.40

L 99.81 99.93 99.98 99.87

R 100 98.82 99.74 99.41

V 99.85 100 100 99.94

P 100 99.43 99.91 99.71

A 100 99.23 99.92 99.10

F 97.47 98.46 97.67 97.97

Average 99.42 99.26 99.60 99.34

Overall test accuracy of model is 99.56%

Table 9 Performance Measures using Fine-tuned GoogleNet Model

ECG Beat
Type

Precision
(%)

Recall (%) Specificity
(%)

F score (%)

N 98.50 100 100 99.24

L 100 96.26 99.07 98.10

R 100 100 100 100

V 95.69 100 100 97.80

P 100 99.36 99.09 99.67

A 98.20 97.05 99.88 97.62

F 97.97 98.46 97.71 98.21

Average 98.62 98.73 99.39 98.66

Overall Test Accuracy of Model is 98.98%

3.4 Comparisons of state-of-the-art techniques

Performance measures achieved by several state-of-the-art
studies in the literature is given in Table 10. Our proposed
fine-tuned ResNet18 model outperformed existing models in
the literature with an accuracy of 99.56%.
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Table 10 Comparison of State-of-the-art Models

Study No. of beats ECG classes methods Precision (%) Recall
(%)

Specificity (%) F Score (%) Accuracy
(%)

Mousavi et al.
[6]

750 5 CNN-LSTM 79.31 93.88 92.05 85.98 92.50

Wu et al. [16] 8,582 4 CNN – – – 86.00 –

Acharya et al.
[22]

50,728 5 CNN – 93.71 92.83 – 93.53

Manish et al.
[15]

50,977 5 DNN 94.85 85.63 98.27 89.65 98.10

Li et al. [17] 94,031 5 ResNet – 99.38 98.14 – 99.38

Oh et al. [18] 83,648 5 Modified U-Net – – – – 97.32

Ozal et al. [24] 7,326 5 LSTM-WS – – – – 99.39

Yildirim et al.
[25]

1000 13 Deep-CNN 92.52 93.52 99.61 92.45 95.20

Yildirim et al.
[25]

1000 15 Deep-CNN 90.48 88.57 99.39 89.28 92.51

Yildrim et.al.
[30]

10,436 7 DNN 80.31 80.15 98.72 80.04 92.24

Yildrim et al.
[30]

10,588 4 DNN 95.78 95.43 95.43 95.57 96.13

Proposed
Models

40,213 7 Fine-tuned AlexNet
Fine-tuned ResNet18
Fine-tuned GoogleNet

99.27
99.42
98.62

97.43
99.26
98.73

99.56
99.60
99.39

98.30
99.34
98.66

99.09
99.56
98.98

4 Conclusions

In this Paper, AI-based fine-tuned CNN Models have been
proposed to classify ECG beats. Pre-trained CNN Models
AlexNet, ResNet18, GoogleNet are considered as backbone
models in our work.We introduced a block-wise tuning strat-
egy to optimize these backbone models and transfer learned
knowledge to classify ECG beats. While fine-tuning each
block it has been observed that the type of optimizer used
while training has a large impact on the Performance of
the Model. The time taken for training a Model depends on
the depth of fine-tuned layers and the number of parame-
ters considered while fine-tuning. It is observed that among
all Models fine-tuned AlexNet has taken a minimum training
time of 37min 10 s using SGDMoptimizer and produced test
accuracy of 99.09%. Fine-tuned ResNet18 accomplished the
highest accuracy of 99.56% using RMSprop optimizer with
a Training time of 73 min 52 s. In future work, an Inference
Model/working proof Hardware Model can be built consid-
ering real-time ECG Signals to detect abnormalities in ECG
signals.
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