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Abstract
The Thermal Image Processing Technique (TIPT) is the most prominent tool for observing an object at night. It is vastly used
in many domains like security, healthcare, process control, and surveillance especially in defense vehicles where visualization
at night would also mandatory for checking. In this paper, a thermal imaging camera is proposed to only be felicitated in
regular as well as automated vehicles for better identification of objects especially at night when visibility is very less. Due
to the huge variation in grayscales and pseudo-coloring values in the thermal image, a fuzzy-based CNN [FCNN] model is
proposed to be applied to identify the boundaries of the objects. In this technique, the correlation between the thermal images
of the moving object and its types is proposed to be trained with the novel FCNN model. The framed methodology is not
only implementable in benched marked video datasets but also applicable in real-life conditions on the ground experimental
scenario on a live feed video streaming. The results significantly indicate the enhancement of visual capacity in the TIPT
compared to normal visual technique.
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1 Introduction

In today’s fast-developing world, communication plays the
most crucial role in our day-to-day lives and transportation
[1] is one of the vital among them. In this round-the-clock
working lifespan, transportation is required to being run
throughout the night [2] also. However, the exponentially
increasing road accidents, especially in India, are the main
concern of road safety [3] today, and at night, the rate of rush
driving is spiked. In this condition, automated vehicles are
extremely important to control traffic and accident rates [4].
Though the visual camera in the object detection could be
able to acquire the objects in front of the car in a day, it is
completely useless at night [5]. The headlights of the car also
have limited perceptibility [6] up to a few meters only. So, it
is instantly essential to implement thermal imaging cameras
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in object detection [7] for better identification of objects at
night.

A thermographic video camera [8] is proposed tobe imple-
mented as the data acquisition tool to recognize the objects in
front of the car. This technologywould be used to train [9] for
four types of objects: pedestrian, vehicles, two-wheeler, and
cattle. The basic data generation process is proposed to be
modeled by the training [10] of a deep-learning-based identi-
fication technique. The modeled data and the trained process
will be executed in the real-life scenario [11] on-road and cap-
ture live thermographic video of an object moving in front
of the car. From the trained model [12], the objects would
be classified into four groups as indicated above. The basic
detection system would be trained to recognize the objects
moving in front of the car. Due to the huge variation [13] in
grayscale and pseudo-coloring values in thermal images, a
fuzzy-based edge detection process is planned to be applied
for distinguishing the boundaries [14] of the objects.

In this paper, the correlation between the thermal signa-
ture [15] of the moving object and its type is planned to be
trained with the time-aspect ratio. The data collected [16]
from the different points of implementation are also ideat-
ing to compare with the driving experts. By this linking
technique, a real-time [TIPT] [17]-based object identifica-
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tion model would be designed. The produced results would
also be compared with the road safety transportation [18]
board for further analysis. In this modern working lifespan,
transportation is required to being run throughout the night
also. However, the exponential [19] increase in road acci-
dents especially in India is the main concern of road safety
today [20], and during the night, the rate of rash driving gets
spiked. In this condition, automated vehicles are extremely
important to control traffic and accident rates.

Thermography, thermal imaging, and thermal video work
on the basic principle of infrared radiation. Thermal cameras
usually detect radiation in the long-infrared range [21] of the
electromagnetic spectrum (roughly from 9 to 14 µm) and
produce images of that radiation signature, called thermo-
gram [22]. Since infrared radiation is emitted by all objects
with any temperature absolute zero (− 273 °C) according
to the black body radiation law [23], thermography makes it
possible to observe any object beyond visible illumination.
The object detection is only taken as the applicable area in
this paper. To measure the temperature patterns of an object
using an infrared imager [24], it is necessary to estimate
or determine the object’s emissivity. To get a more accu-
rate temperature measurement, a thermographer may apply
high emissivity to the surface of the object. It shows a visual
picture so temperatures [25] over a large area can be com-
pared. It is capable of catching moving targets in real-time
scenarios. It is used to measure or observe in areas inacces-
sible or visually blind for other normal methods. The basic
workingmethodology for the proposed thermographic image
processing-based object detection [26] is framed into four
basic stages.

The learning process of the proposed model to correlate
between different levels of temperature patterns and struc-
ture [27] of the specific objects would be developed further
in the steps. The foundation of the proposed model proposed
is analyzed to an abstractive numerical technique for the basic
structural integrity [28]. The connectivity among the Fuzzy
Logic and Convolution Neural Network [29] is designed to
produce the core model. The classification of the obtained
items in the thermal video would be integrated [30] within
the object-frame by the “Jaccard Index” method. The fuzzy-
based convolution neural network (F-CNN)method [31] was
described to predict the traffic flow which was applicable for
the dataset only. This method is completely incompatible in
image processing where numerical datasets are not the pri-
mary investigative constraints. The factor [31] of temperature
was not very effective for the block size of 32×32 indicated
in this paper since it may vary more frequently in real-life
scenarios of thermal images on road.

A deep learning approach targeting an object to track
and classify into its respective category without reconstruc-
tion of any frame was investigated. The approach had two
parts basically: tracking and classification [32, 34, 35]. The

tracking had been conducted by using YOLO technique, and
the classification was done by using the Residual Network
proposed as [ResNet]. The experiments using mid-wave
and long-wave infrared videos had demonstrated the effi-
cacy of a high-performing approach to track and classify
directly the object in their respective domains. By skipping
the time-reconstruction stage to allow performing real-time
tracking and classification based on combination of: YOLO
and ResNet, have been innovated certainly.

An efficient way to enhance detection of small target in
long-range and low-quality infrared videos by unsupervised,
modular and flexible methods was investigated. Though the
indicated approach was suitable where training data were
limited, the inter-connection between temperature and the
tracking object are not discussed. The experimental video
using low andmedium infrared clearly demonstrated the effi-
ciency but the inter-correlation of the technique especially
with the thermal image was not investigated. Though their
comparative approach between ResNet and YOLO might
find the better results, the inter-dependency between func-
tionality of the object frame and temperature value of the
objectwas not foundyet. Tracking and classification of object
especially for compressive measurement using pixel in the
video frames were investigated by deep learning approach
via integrated with YOLO and ResNet. The potential devel-
opment of this model to integrate the demonstrated approach
with real-time tracking and classification directly had miss-
ing the integration of temperature with the methodology.

An unsupervised, modular and flexible method to detect
small objects in long and low-quality infrared videos using
motion information extracted from optical flowmethods [33]
had been investigated. The optical flow methods combined
with contrast enhancement and component analysis were
found effective for target detection. Though the experiments
conducted on long- and mid-wave infrared video dataset
obtained from DSIAC clearly demonstrated the efficacy, the
temperature relation with the detection technique was not
evaluated. It clearly demonstrated that the proposed approach
under different conditions especially in deep learning-based
approachwasmore accurate but the correlation between tem-
perature and detection model was missing.

The technique of vehicle detection and classification at
the presence of human targets were investigated by pixel-
wise code [36] exposure (PCE) camera. The combination
between two deep learning algorithmswas used for detection
in mid-wave infrared (MWIR) videos obtained SENSIAC.
Though the experimental result showed that the framework
was capable for target detectionup to1500m, the temperature
factor in this scenario was completely ignored.

A combined deep learning approach: YOLO and ResNet
were used to achieve for realistic optical and MWIR videos.
Though the approachwasmodular and capable to detectmul-
tiple targets simultaneously, however the target up to 500 m

123



Signal, Image and Video Processing (2022) 16:1631–1639 1633

for small humanwas not effective. Because of this limitation,
the temperature factor was completely overlooked.

2 Proposed workingmethodology

The basic working methodology for the [TIPT]-based object
detection is illustrated in this section. At the initial stage,
the abstractive structure of the proposed fuzzy-based model
is designed and mapped with the convolution neural net-
work (CNN). The mapped technique is compared through
the “Intersection over Union” (IoU) or the Jaccard Index
[37] to frame out the object in the image. The error value
is also measured and used for self-learning for the network.
Then, the algorithmic design of the entire proposed sys-
tem is coined sequentially and designed through the Unified
Modeling Language (UML). Four basic property diagrams
(component, sequence, use case, activity) are demonstrated
to elaborate the operational structure of the proposed model.

The simplified procedures for the proposed model are ten-
tatively structured into multiple stages described as sequen-
tially:

• Development of a fuzzy-based learning model: The corre-
lation between different levels of temperature and structure
of the objects is defined in this stage. The CNN-based
learning model is merged with the fuzzy set to incorporate
the temperature-based object detection technique. All the
mathematical development of the coined methodology is
fundamentally designed. The sub-groups of the complete
procedure is shown in following steps:

• Abstract Foundation-Based Modeling: The mathemat-
ical foundation of the proposed model is analyzed
according to abstractive technique where the relation
between the object detection function (g) and classifica-
tion technique function (f) is merged together through
convolution.

• The relationship betweenFuzzy andConvolutionNeu-
ral Network: The inter-connectivity among the Fuzzy
Logic and the Convolution functions is mapped through
the ANN.

• Functional Integration: After completion of classifi-
cation and detection in thermal image, the recognized
object is outlined within a frame by the “Jaccard Index”.

• Complete structure for theFCNNmodel: The complete
architectural design of the proposed model is completed
through the following steps.

• Error calculation technique: The error value of the object
detection method by the camera is measured for further
back-propagation to the neural network.

• Algorithmic designing: The complete algorithmic proce-
dures of the proposed system are molded into sequential
structure.

• System modeling: The connective architecture of the pro-
posed model is designed by UML in multiple diagrams
indicated below.

• Component diagram:The connectivity among different
functioning components of the proposedmodel is shown
in this diagram.

• Use case diagram: The direct relationship between the
objects and detection system of the thermal images is
shown in this diagram.

• Sequence diagram: The stage-by-stage processes from
beginning of acquisition of thermal image to framing of
object in image are shown in this diagram sequentially.

• Activity diagram: The series of activity of the proposed
model concerning different inputs during the overall
operation is shown in this diagram.

The comparison among the planned methodology and
purpose of analysis for the proposed technique is shown in
Supplementary Table 1.

The proposed technique is designed with the help of an
abstract algebraic method to inter-connect the working func-
tions into a single formation. The basic connections are
separated into four stages: Target Object→ (Thermal Cam-
era→Proposed Image Processing Model)→Final Result.
The main research focus of this paper is to produce a more
robust processed thermal image of objects for object detec-
tion only. The respective diagram of the fundamental design
of the proposed [TIPT]-based intelligent object detection
model is shown in Supplementary Fig. 1.

2.1 Complete structure of the FCNNmodel.

The overall procedure of the proposed TIPT for object
detection is designed on back-propagation-based supervised
learning technique. The equations drawn from the mathe-
matics of the back-propagated neural network are modified
according to the proposed fuzzy-based convoluted neural
network model. The step-by-step algorithmic structure of
the proposed system defined according to the multi-layered
back-propagation neural network (BPN) model [38]. The
steps of the BPN enhanced with the fuzzy convolution model
are being begun with the obtaining of initial weight and com-
plete at the ending. The respective phases are denoted as the
main executing module of the proposed technique:

Main ().
[
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– The initial weight to the BPN network and its basic learn-
ing rate would be defined according to the temperature
value of the thermal image;

– The loop of While (epoch � � h || output � � targeted
result, tr) [∀ h � number of epochs to reach tr] would be
executed until the desired results would be obtained.
[

– Now, in the inner layer of the Receiving input � xi in the
BPN network and the weight is sent from the initial layer
to the hidden layer unit [∀ 1 to n | n � total no. of input
units] at the next level.

So, the total input measured at the single jth unit at hidden
layer appeared from the previous layer with the bias (b0j)
value is calculated according to the feed forward process of
the BPN network shown in Eq. (1):
where the parameters in Eq. (1) are defined as:

• b0j � propagating bias value to jth no. of unit of the hidden
layer.

• vij � weight at the ‘j’ number of units of the inputs
appeared from ’i’ number of units at the input layer.

• j� 1 to pwhere p� total number of units present at hidden
layers in BPN.

• Ã� total no. of synaptic of individual unit (i) in the initial
layers according to the fuzzy summation.

– So, the net output from the jth no. of unit of the hidden
layers,Qj �R(Qin j ) where Qin j � total input at the jth no.
of unit of the hidden layers and R(a) � activation function
for arbitrary variable ‘a’.

– Now, total value transmitted in the hidden layers is being
sent to the output layers of the BPN.

– So, the total input (Yink ) measured at the single kth unit
at outer layer (Y ) appeared from the previous hidden layer
with the bias (b1k ) value is calculated according to theBPN
network model shown in Eq. (2):

where the parameters in Eq. (2) are defined as:

• b1k � propagating bias value to kth no. of unit of the outer
layer

• wjk � weight at the ‘kth’ number of units of the inputs
appeared from ‘jth’ number of units at the hidden layer

• k � 1 to m where m � total number of units present at
outer layers in BPN network

– So, the net output from the kth no. of unit of the outer
layers, Yk � S(Yink ) where Yk � total input at the kth no.
of unit of the outer layers and S(b) � activation function
for arbitrary variable ‘b’.

– Now, the calculation of the error values in theBPNnetwork
according to the proposed FCNN structure is indicated:

– The measurement of Error (ϕk) for the input values
obtained from hidden layers to the output layers is cal-
culated according to error propagation process of the BPN
network, as shown in Eq. (3) where the parameters in
Eq. (3) are defined as:

• �ϕk � the amount of external error measured at the ‘k’ no.
of unit of the output layer backtracked towards the hidden
layer.

• tr � error-correcting-term for the BPN network.
• Differential factor of activation function, S(b) with respect
to temperature, T in thermal image.

– Now, the change in the weights (wjk) of the neurons
transmitting from the hidden layers to the output layer
is calculated according to the updating weight process of
the BPN network with the learning rate, β. The respective
mathematical orientation is shown in Eq. (4):

where the parameters in Eq. (4) are defined as:

– Changes inweights (w jk ) from the ‘j’ no. of units in hidden
layers to the kth unit of the output layer.

– β � learning rate between those layers.
– Yink � total input measured at the single kth unit at outer
layer of the BPN network.

– So, the changes in the values of the bias (b1k ) of the input
weights to the kth unit of the output layers from hidden
layers with the learning rate, β, are calculated according
to the updation process of the BPN network, as shown in
Eq. (5):

where the parameters in Eq. (5) are defined as:

• �b1k � changes in the values of the bias (b1k ) of the input
weights to the kth unit of the output layers.

• Yink � total input at the kth no. of unit of the outer layers.

– Therefore, the changedweights (w jk ) (new) of the neurons
transmitting from the hidden layers to the output layer are
modified according to the weight updation process of the
BPN network as shown in Eq. (6):

– So, the changed bias (b1k ) (new) of the weights to the
kth unit of the output layers from hidden layers with the
learning rate, β, is calculated according to the updation
process of the BPN network, as shown in Eq. (7):

– Now, the changes in learning rate, γ from β to the kth
unit of the output layers from hidden layers is modified
according to the updation process of the BPN network
shown in Eq. (8):
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– Then, the changes in the Error (δ j ) for the input values
obtained from input layers to the hidden layers are calcu-
lated according to error propagation process of the BPN
network, as shown in Eq. (9):

where the parameters in Eq. (9) are defined as:

• �δ j � the amount of internal error measured at the ‘j’ no.
of unit of the hidden layer backtracked towards the input
layer.

• S
′
(tr − Yk) � first order of differentiation of the activation

function S
(
Yink

)
with respect to temperature, T from the

thermal image.

– So, the updated newError (δ j ) values for the FCNNback-
propagated model, shown in Eq. (10), to the jth unit of
hidden layers:

– Therefore, the new changes in the weights (v jk ) of the neu-
rons transmitting from the input layers to the hidden layer
are calculated according to the updating weight process
of the BPN network with the learning rate, γ shown in
Eq. (11): where the parameters in Eq. (11) are defined as:

– �vi j � changes in weights (vi j ) from the ‘i’ no. of units
in input layers to the jth unit of the hidden layer.

– γ � updated learning rate from (β) between those layers.
– Then, the newly changed weights (vi j ) of the neurons
transmitting from the input layers to the hidden layer are
modified according to the weight updation process of the
BPN network as shown in Eq. (12):

– So, the changed bias (b0 j ) of the input weights to the jth
unit of the hidden layers from input layers (0) with the
changed learning rate, γ is calculated according to upda-
tion of the BPN network, as shown in Eq. (13):

– Now, the changed new bias (b0j) of the input values, shown
in Eq. (14), for the jth unit of the hidden layers:

– Then, the changed new learning rate (λ) of the input values,
shown in Eq. (15), for the jth unit of the hidden layers:

– Therefore, the newly calculated value of the “Jaccard
Index, JT (FF , Ψ ), shown in Eq. (16), on the measurable
parameter temperature (T ) is indicated as:

]]

2.2 Error calculation

After processing the FCNN-based proposed TIPT, the calcu-
lation method for the error in the back-propagation model is
measured by basic square’s sum. The basic error calculation,
E, of the BPN network from the error-correcting-term tr is
defined in Eq. (17):

where the differential parameters inEq. (16) definedbelow
are designed according to the chain rule of the partial differ-
entiation to make inter-connection between proposed FCNN

model and temperature-based processing technique as shown
in Supplementary Fig. 2.

• δ � learning rate for the input values to the unit before
output layers obtained from hidden layers

• Ω j � cumulative form of input of the derivative factor of
FCNN concerning Temperature (T )

• Other symbols are already identified in the ‘FCNN model
structure’ earlier

2.3 Systemmodelling

The systematic modeling of the coined mechanism is com-
puted in the UML technique. The UML diagrams of the pro-
posed [TIPT]-based object detection in the object detection
are illustrated in different following images. The components
diagram of the proposed method indicates the connectivity
among different modules functioning in the proposed ther-
mographic system. The component diagram of the proposed
system is indicated in Supplementary Fig. 3.

In the component diagram shown in Supplementary Fig. 3,
the main parts of the model are the thermal camera unit
(TCU), temperature distinguishing unit (TDU), [TIPT] unit
(TIPU), etc. The TCU and TIPU are directly connected with
the temperature – color relation knot and TDU and temper-
ature level segmentation (TLS) are also connected with the
knot proportionally. The observer unit is only linked with
the TLS for requiring information. The sub-components of
the TIPU, e.g., object tracking, detection, framing, classifica-
tion, and recognition, etc., are the basic processing functions
of the model. The activity diagram of the proposed thermo-
graphic system indicates the series of activity and their order
of execution concerning different inputs during the whole
operation. The activity diagram of the proposed system is
indicated in Supplementary Fig. 4.

In the activity diagram shown in Supplementary Fig. 4, the
procedure of the proposed model from the acquiring of ther-
mal infrared radiation to the generation of the object detection
is indicated step-by-step. In the beginning, the thermal vision
is acquired from the infrared emission of the object. Then,
different temperature levels on the thermal image are sig-
nified by various colors distinguishing technique. Then, the
temperature-based segmentation process is applied to detect
an object. Then, the object was classifiedwith help of the pro-
posed model and recognized. The communication diagram
of the proposed technique indicates the connectivity between
different stages of the process beginning from the acquiring
of thermal video of the road to the recognition of various
objects in the captured visual. The communication diagram
of the proposed system is indicated in Supplementary Fig. 5.

In the communication diagram shown in Supplementary
Fig. 5, the communication of the proposed model from the
acquiring of thermal infrared radiation to the generation
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of the object detection is indicated step-by-step. Then, the
detected objects are framed and tracked. The use case dia-
gram of the proposedmethod indicates the direct relationship
between the object on-road and the automated vehicle system
with a Thermographic imaging system. The use case diagram
of the proposed system is indicated in Supplementary Fig. 6.

In the use case diagram shown in Supplementary Fig. 6,
the basic use cases are the thermography, color-scale, and
video capturing of the object. These use cases are at the pre-
liminary level. Then, the use cases at the processing levels
are object tracking, detection, classification, and recognition.
The sequence diagram of the proposed method indicates the
stage-by-stage processes beginning from the capturing ther-
mal video of objects on road to the transmission of processed
images of recognized objects in the video to the automated
vehicle controlling system. The sequence diagram of the pro-
posed system is indicated in Supplementary Fig. 7.

In the sequence diagram shown in Fig. 7, the sequence of
the proposed model from the acquiring of thermal infrared
radiation to the generation of the object detection is indicated
step-by-step. In the beginning, the thermal vision is acquired
from the infrared emission of the object. Then, different tem-
perature levels on the thermal image are signified by various
colors distinguishing technique. Then, the temperature-based
segmentation process is applied to detect an object. Then,
the object was classified with help of the proposed model
and recognized. Then, the detected objects are framed and
tracked.

3 Results and performance analysis

The proposed technique has been implemented on a few ther-
mal images and videos of person, pedestrians, vehicles, and
two-wheeler obtained from the internet: YouTube and Rub-
Tube. Due to the scarcity of standard colored thermal images
and videos, there would be left no other option to obtained
thermal images and videos except from online video library.
Multiple packages from Python are utilized in this experi-
ment: OpenCV, ImageAI, Keras, Numpy, etc. The proposed
method is experimented in multiple thermal videos of human
figure and roads to evaluate the significance.

3.1 Experiment thermal images

The analysis of thermal image—1 indicating a person in a
closed room and its semantic segmented edges are shown in
the pseudo-colored thermal Supplementary Fig. 8.

In the left part of Supplementary Fig. 8, a person in
a pseudo-scaled thermographic image in a closed room is
identified and in the right part, the same person in an edge
segmented thermal image has been framed also. The anal-
ysis of thermal image—2 indicating several persons in an

open space and its segmented edges are shown in the pseudo-
colored thermal Supplementary Fig. 9.

In the left part of Supplementary Fig. 9, multiple persons
in pseudo-scaled thermographic images in an open space
are identified and in the right part, the same persons in an
edge segmented thermal image have been framed also. The
analysis of thermal image—3 indicating a vehicle and its
segmented edges are shown in a pseudo-colored thermal Sup-
plementary Fig. 10. In the left part of Supplementary Fig. 10,
multiple persons in a grayscaled thermographic image in an
open space scenario have been identified and in the right part,
the same per-sons in an edge segmented thermal image are
framed also. The analysis of thermal image—4 indicating
several vehicles and their segmented edges are also shown in
a pseudo-color in Supplementary Fig. 11.

In the left part of Supplementary Fig. 11, several vehi-
cles on an open road scenario in a pseudo-thermographic
image are identified and in the right part, the same vehicles
in an edge segmented thermal image have been framed also.
The analysis of thermal image—5 indicating riding of two-
wheeler and its segmented boundaries are also shown in a
pseudo-colored thermal Supplementary Fig. 12.

In the left part of Supplementary Fig. 12, a two-wheeler
on an open road in a pseudo-thermal image is identified
and in the right part, the same two-wheelers in an edge
segmented thermal image have been framed also. The com-
parative study—1 of the thermal image and its respective
normal visual images are shown in a gray-colored thermal
figure for person detection purpose at night condition in Sup-
plementary Fig. 13.

In the right part of Supplementary Fig. 13, several per-
sons on an open road in the gray-colored thermal image are
identified and frames. However, in the left part of the regular
visual image, recognition of any persons has been completely
failed. Comparative study of thermal image and its respective
normal visual images are also shown in an edge segmented
thermal image for the same person detection purpose at night
condition in Supplementary Fig. 14. Here, the results are as
same as the previous one.

The comparative study—2 of thermal image and its
respective normal visual images are shown in a gray-colored
thermal figure for detection of vehicles in a foggy condition
as Supplementary Fig. 15.

In the right part of Supplementary Fig. 15, several vehi-
cles on an open road in the gray-color thermal image are
identified and frames clearly. However, in the left part of the
regular visual image, recognition of any vehicles has been
completely failed due to the foggy condition. The compara-
tive study of thermal image and its respective normal visual
images are also shown in an edge segmented thermal image
for the same vehicles detection purpose in the foggy condi-
tion in Supplementary Fig. 16. Here, the results are as same
as the previous one.
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3.2 Analysis of the experimented images

The coefficients of the confusion matrix for the detection
of an object by TIPT are indicated in SupplementaryTable
2. In process of calculation for the coefficient values of the
confusion matrix, any mathematical non-dividable factors
are assigned as � 0.

The confusion matrixes for thermal image—2 and its
receptive graphical where the y-axis indicates the range of
numeric value from 0 to 9 are indicated in Supplementary
Table 3.

The respective graph of a Confusion matrix is shown in
Supplementary Fig. 17 where the y-axis denotes the number
of objects (person) observed in the thermal image–2.

InSupplementary Fig. 17, the blue-line indicates the vari-
ation of the number of objects (person) in the thermal image
and the red-line indicates the variation of the number of
objects (person) in the edge-segmented image. Though both
blue and red lines are at their highest position at the TP point,
they came andmerged between TN and FP at zero value. The
coefficient values related to the parameters of the confusion
matrix for the thermal image—2 are calculated in Supple-
mentary Table 4.

The graphical representation of the coefficients related
to the parameters of the confusion matrix for the thermal
image—2 is shown in Supplementary Fig. 18 in which the y-
axis denotes the numeric values of the coefficients calculated
in Supplementary Table 4 from the range 0 to 1.

As shown in Supplementary Fig. 18, the blue-line indi-
cates the variation of the coefficient values calculated in
Supplementary Table 4 for the thermal image, and the red-
line indicates the variation of coefficient values calculated
for the edge-segmented image. Both blue and red lines are
always varying in-between the range of ‘0 to 1’ where they
overlap at some points. From the observation of the graph
in Supplementary Fig. 18, it could be concluded that the
blue line representing the thermal image has a higher aver-
age value than the segmented image shown in the red line.
The confusion matrix for thermal image—4 and its receptive
graphical where the y-axis indicates the range of numeric
value from 0 to 17 are indicated in Supplementary Table 5.

The respective graph of a Confusion matrix is shown in
Supplementary Fig. 19 where the y-axis denotes the number
of objects (person) observed in the thermal image–4.

In Supplementary Fig. 19, the blue-line indicates the vari-
ation of the number of objects (person) in the thermal image
and the red-line indicates the variation of the number of
objects (person) in the edge-segmented image. Though both
blue and red lines are at their highest position at the TP point,
they came andmerged between TN and FP at zero value. The
coefficient values related to the parameters of the confusion
matrix for the thermal image—4 are calculated in Supple-
mentary Table 6.

The graphical representation of the coefficient values
related to the parameters of the confusion matrix for ther-
mal image—4 is shown in Supplementary Fig. 20 in which
the y-axis denotes the numeric values of the coefficients cal-
culated in Table 6 from the range 0 to 1.

As shown in Supplementary Fig. 20, the blue-line indi-
cates the variation of the coefficient values calculated in
Supplementary Table 6 for the thermal image, and the red-
line indicates the variation of coefficient values calculated
for the edge-segmented image. Both blue and red-lines are
always varying in-between the range of ‘0 to 1’ where they
overlap at some points. From the observation of the graph in
Supplementary Fig. 20, it could be concluded that the blue
line representing the coefficients of the thermal image has a
higher average value compared to the coefficients of the seg-
mented image shown in the red line. The confusionmatrix for
the comparative study—1 and its receptive graph in which
the y-axis denotes the number of objects (persons) observed
in the image are indicated in Supplementary Table 7.

The respective graph of the Confusion matrix is shown in
Supplementary Fig. 21 where the y-axis denotes the number
of objects (persons) observed in the comparative study–1.

InSupplementaryFig. 21, the blue-line indicates the varia-
tion of the number of objects (vehicles) in the original thermal
image and the red-line indicates the variationof the number of
objects in the original visual image. And the green-line indi-
cates the variation of several objects in the edge-segmented
thermal image and the violate-line indicates the variation of
several objects in the edge-segmented visual image. Though
all the blue, red-yellow, and gray lines are at their high-
est position at the TP point, they came and merged at the
point TN only at zero value. The coefficient values related to
the parameters of the confusion matrix for the comparative
study—1 are calculated in Supplementary Table 8.

The graphical representation of the coefficients related to
the parameters of the confusion matrix for the comparative
study—1 is shown in Supplementary Fig. 22, in which the y-
axis denotes the numeric values of the coefficients calculated
in Supplementary Table 8 from the range 0 to 1.

As shown in Supplementary Fig. 22, the blue-line indi-
cates the variation of the coefficient values calculated in
Supplementary Table 8 for the original thermal image, and
the red-line indicates the variation of coefficient values cal-
culated for the original visual image. And the green-line
indicates the variation of the coefficient values calculated
for the edge-segmented thermal image and the violate-line
indicates the variation of coefficient values calculated for the
edge segmented visual image. All the blue, yellow, gray, and
red lines are always varying in-between the range of ‘0 to 1’
where they overlap at some points. From the observation of
the graph in Supplementary Fig. 22, it could be concluded
that the yellow line representing the coefficients of the edge-
segmentation of the visual image has spiked twice between
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FNR and FOR. The confusion matrix for the comparative
study—2 and its receptive graph in which the y-axis denotes
the number of objects (vehicles) observed in the image are
indicated in Supplementary Table 9.

The respective graph of the Confusion matrix is shown in
Supplementary Fig. 23 where the y-axis denotes the number
of objects (vehicles) observed in the comparative study—2.

InSupplementaryFig. 23, the blue-line indicates the varia-
tion of the number of objects (vehicles) in the original thermal
image and the red-line indicates the variationof the number of
objects in the original visual image. And the green-line indi-
cates the variation of several objects in the edge-segmented
thermal image and the violate-line indicates the variation of
several objects in the edge-segmented visual image. Though
all the blue, red, violate and green lines are at their high-
est position at the TP point, they came and merged at the
point TN only at zero value. The coefficient values related to
the parameters of the confusion matrix for the comparative
study—2 are calculated in Supplementary Table 10.

The graphical representation of the coefficients related to
the parameters of the confusion matrix for the comparative
study—2 is shown in Fig. 24, in which the y-axis denotes the
numeric values of the coefficients calculated in Supplemen-
tary Table 10 from the range 0 to 1.

As shown in Supplementary Fig. 24, the blue-line indi-
cates the variation of the coefficient values calculated inTable
10 for the original thermal image, and the red-line indicates
the variation of coefficient values calculated for the origi-
nal visual image. And the green-line indicates the variation
of the coefficient values calculated for the edge-segmented
thermal image and the violate-line indicates the variation of
coefficient values calculated for the edge segmented visual
image. All the blue, yellow, gray, and red lines are always
varying in-between the range of ‘0 to 1’ where they overlap
at some points. From the observation of the graph in Fig. 24,
it could be concluded that the yellow line representing the
coefficients of the edge-segmentation of the visual image
has spiked twice between FNR and FOR.

3.3 Comparison of the performance of the result

The comparative performance between the confusion matrix
of the thermal image—4 and 8 are shown in a tabular format
indicated in Table 11.

The respective graph of the Confusion matrix is shown in
Supplementary Fig. 25 where the y-axis denotes the number
of objects observed in a comparative study between thermal
image—2 and 4.

In Supplementary Fig. 25, the blue-line indicates the vari-
ation of the number of objects in the original thermal image
and the red-line indicates the variation of the number of
objects in the original visual image. And the green-line indi-
cates the variation of several objects in the edge-segmented

thermal image and the violate-line indicates the variation of
several objects in the edge-segmented visual image. Though
all the blue, red-yellow, and gray lines are at their highest
position at the TP point, they came and merged at the point
TN only at zero value. The coefficient values related to the
parameters of the confusionmatrix for the comparative study
between thermal image—2 and 4 are calculated in Supple-
mentary Table 12.

The graphical representation of the coefficients related
to the parameters of the coefficient for the comparative
study—2 is shown in Supplementary Fig. 26, in which the y-
axis denotes the numeric values of the coefficients calculated
in Supplementary Table 12 from the range 0 to 1.

As shown in Supplementary Fig. 26, the blue-line indi-
cates the variation of the coefficient values calculated in
Supplementary Table 12 for the original thermal image, and
the orange-line indicates the variation of coefficient values
calculated for the original visual image. And the gray-line
indicates the variation of the coefficient values calculated
for the edge-segmented thermal image and the yellow-line
indicates the variation of coefficient values calculated for the
edge segmented visual image. All the blue, yellow, gray, and
orange lines are always varying in-between the range of ‘0 to
1’ where they overlap at some points. From the observation
of the graph in Supplementary Fig. 24, it could be concluded
that the yellow line representing the coefficients of the edge-
segmentation of the visual image has spiked twice between
FNR and FOR. Now, 3D mesh representation of the coeffi-
cient values related to the comparison between the confusion
matrix of thermal image—2 and 4 is shown in Supplemen-
tary Fig. 27 where the x-axis indicates the rows, the y-axis
indicates the columns and the z-axis indicates the range of
the numeric value from 0 to 1:

4 Conclusion

From the development of the paper, it could be concluded
that the proposed model of the thermal image progressing
is better efficient to incorporate the fuzzy-based convolu-
tion neural network architecture with color thermal images
than the normal visual images. The produced methodology
could be then fed to the object detection for further assis-
tant. From this thermal image processing, the visualization
process would also be able to recognize objects in the night
and face-up sunlight also which gives more reliability to the
system about the detection process in any visual scenario.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11760-021-02118-7.
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