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Abstract
In this study, we introduce a measure for machine perception, inspired by the concept of Just Noticeable Difference (JND) of
human perception. Based on this measure, we suggest an adversarial image generation algorithm, which iteratively distorts an
image by an additive noise until the model detects the change in the image by outputting a false label. The noise added to the
original image is defined as the gradient of the cost function of themodel.A novel cost function is defined to explicitlyminimize
the amount of perturbation applied to the input image while enforcing the perceptual similarity between the adversarial and
input images. For this purpose, the cost function is regularized by the well-known total variation and bounded range terms
to meet the natural appearance of the adversarial image. We evaluate the adversarial images generated by our algorithm both
qualitatively and quantitatively on CIFAR10, ImageNet, andMSCOCO datasets. Our experiments on image classification and
object detection tasks show that adversarial images generated by our JND method are both more successful in deceiving the
recognition/detection models and less perturbed compared to the images generated by the state-of-the-art methods, namely,
FGV, FSGM, and DeepFool methods.

Keywords Adversarial image generation · Adversarial attacks · Just noticeable difference

1 Introduction

Contemporary Computer Vision algorithmsmodel the visual
information by deep neural networks, which yield human-
like performances in some applications, such as face recog-
nition and image classification [1,2]. However, these algo-
rithms fail unexpectedly for intentionally designed test
images even if they look very similar to the images in the
training data set [3–5]. Such examples are called adversar-
ial images, and they create vital problems in high-technology
products. Unfortunately, most of the current image classifiers
and/or object detectors are not secure enough against these
types of deceptions. One way to support the efforts towards
robustness is to design effective algorithms that generate

B Adil Kaan Akan
kaan.akan@ceng.metu.edu.tr

Emre Akbas
emre@ceng.metu.edu.tr

Fatos T. Yarman Vural
vural@ceng.metu.edu.tr

1 Computer Engineering Department, Middle East Technical
University, Ankara, Turkey

adversarial imageswith lower perturbations and a higher suc-
cess rate in deceiving the models.

Applying a large perturbation to an image, e.g., by
completely changing it with another image, would not be
considered as a valid adversarial example generation method
since the notion of minimal perturbation is implied in the
definition of the adversarial image. For example, the Fast
Gradient Sign Method (FGSM) [3] inherently uses the L∞
norm by searching for a minimal ε (magnitude of change),
and the DeepFool [5] method explicitly minimizes the L2

norm of the perturbation. However, keeping the amount of
perturbation minimal to preserve the perceptual similarity
to the original image as much as possible has not been the
main focus of these state-of-the-art studies. In particular, reg-
ularization techniques have not been explored to minimize
perceptual perturbation.

In this paper, we propose a method called, Just Noticeable
Difference (JND) to generate adversarial images as an exten-
sion and generalization of our preliminarywork [6]. The JND
method is a gradient-based white-box adversarial attack that
focuses on preserving the perceptual similarity to the orig-
inal image by using image regularization techniques while
minimizing the perturbation. Inspired by experimental psy-
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chology, we adopt the concept of Just Noticeable Difference
of human perception to machine perception. We define JND
for a machine learning model as the just noticeable distortion
of an image to cheat a machine learning algorithm. In order
to keep the distortion as small as possible and consistent with
human perception,we define a perceptuallymeaningful addi-
tive noise, which is proportional to the gradient of the cost
function of the model. The cost function is enriched by two
regularization terms, namely, bounded range and total varia-
tion [7] to assure that the adversarial images are as close as
possible to the original images with respect to human per-
ception. In other words, the regularization terms enforce the
machine perception to human perception to a certain extent.

The major contribution of this study is to introduce
the concept of Just Noticeable Difference, JND(M) for a
machine learningmodel,M , which is associated with a novel
cost function regularized by additional terms to reduce the
discrepancy between machine and human perception. A for-
mal definition of Just Noticeable Difference is provided for
machine perception. A true image is distorted by the gradient
descent method iteratively with a small additive noise pro-
portional to the cost function’s gradient to capture the JND
adversarial image.

This manuscript involves a substantial extension and gen-
eralization of our previous work [6], where we formalized
the concept of Just Noticeable Difference for the generation
of adversarial images. Our extension includes a mathemati-
cal definition of JND(M) for a machine learning model, M .
We also conduct thorough experiments to analyze the power
of the suggested method and comparisons to the state-of-the-
art adversarial image generation techniques, as summarized
below:

– We compare ourmethodwith thewell-known adversarial
image generation algorithms, namely, FGSM [3], FGV
[4] and DeepFool [5] methods, in terms of (i) generation
speed, (ii) image quality and (iii) distance to the original
image.

– We analyze the statistical similarities of the original and
adversarial images by estimating the distribution of the
Kullback-Leibler divergence and that of the L2 distances
between the adversarial and original images.

– We introduced a non-targeted version of our method and
compared its performance to that of FGSM and FGV
methods.

2 Major approaches for adversarial image
generation

The vast amount of adversarial image generation methods
reported in the literature can be grouped under two head-
ings: (i) approaches that modify the whole image and (ii)

approaches thatmodify only a fewpixels.Adversarial images
generated by modifying the whole image are mainly used for
augmenting the training sets. On the other hand, adversarial
images generated bymodifying only a few pixels do not con-
tribute to improve the statistical properties of the dataset for
improving the model. However, they have crucial merit to
show the vulnerability of the models to spurious images.

The type of adversarial attacks can be grouped under two
headings; (i) targeted attacks and (ii) non-targeted attacks. In
targeted attacks, the method aims to trick the model into a
specific target label. In order to achieve this aim, the image is
gradually changed so that the model recognizes the specific
target label. However, in non-targeted attacks, the method
aims to fool the model without the specific target label. This
aim is achieved by gradually changing the image until the
model outputs a label different than the true one.

In this study, we suffice to provide a few pioneering
methods for adversarial image generation and attacks, as
summarized below.

2.1 Approaches that modify the whole image

Adversarial images generated bymodifying the whole image
are more likely to contribute to the estimation of the class
distributions during the training phase of a machine learning
model. Therefore, images generated under this approach are
more suitable to improve the robustness of the models com-
pared to the few pixel modification approaches, summarized
in the next subsection. Since the suggested JNDmethodmod-
ifies the whole image, we suffice to experimentally compare
it to the methods in this group.

In most cases, humans cannot recognize the changes in an
adversarial example, but a model may easily discriminate it
from the true image and may assign it to another category.
Kurakin et al. [8] state that in the physical world scenarios,
adversarial examples are a crucial threat to the classifiers.
They observe this problem by using adversarial examples,
which are obtained from a cell phone camera. They feed
these images to an ImageNet pre-trained Inception classifier
and measure the accuracy of the classifier. They observe that
most of the adversarial examples are misclassified.

A study bySzegedy et al. found some intriguing properties
of neural networks [9]. For example, the adversarial exam-
ples generated on ImageNet were very similar to the original
ones, so that even the human eye failed to distinguish them.
Interestingly, some of the images also got misclassified by
other classifiers that had different architectures, or they were
trained on different subsets of the training data. These find-
ings sadly suggest that deep learning classifiers, even the
ones that obtain superior performances on the test set, do not
actually learn the true underlying patterns that determine the
correct output label. Instead, these algorithms built a model
that works well on frequently occurring data but fails mis-
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erably for the data that do not have a high probability in the
distribution. Szegedy et al. also proposed a box constrained
attack, which tries to change the label of a true image by
adding noise using the L-BFGS method.

Papernot et al. claimed that the adversarial attacks require
the knowledge of either the model internals or its training
data [10]. They introduce a practical method of an attacker,
controlling a remotely hosted deep neural network. The only
capability of the black-box adversary generator is to observe
labels given by the deep neural network to selected inputs.

Moosavi-Dezfooli et al. proposed a method called Deep-
Fool [5], which aims to find the “closest” adversarial example
to the original image with respect to L p norms. The model
generates a perturbation for all classes and selects the one,
which makes the adversarial image the closest adversarial
example to the original image. They also proposed a univer-
sal adversarial perturbations method [11], which estimates
an adversarial perturbation from multiple images to fool the
model with any image. The goal of the algorithm is to find a
universal adversarial perturbation, such that when it is added
to an image, it fools the model.

Goodfellow et al. proposed an adversarial image genera-
tion method [3], called Fast Gradient Sign Method (FGSM),
which performs a one-step update on the input image using
the sign of the calculated gradient. However, there is a trade-
off in the method, which requires a well-adjusted epsilon
value to determine the step size. If the epsilon value is too
low, the attack success rate is not sufficient, and if the epsilon
value is too high, the naturalness of the images suffers from
it.

Rozsa et al. proposed the Fast Gradient Value (FGV)
method [4], as a modification to FGSM. In FGV, instead
of using the sign of the gradient, they used its magnitude.
Moreover, they proposed the “hot/cold approach” as a tar-
geted adversarial attack, which takes advantage of the feature
map of the Convolutional Neural Network. In the hot/cold
approach, authors chose two classes, one is the hot class,
which they want the model to approach, and the other is the
cold class which they want the model to move away. Then,
they minimize the distance between convolutional feature
maps of the hot class and maximize the distance between
convolutional feature maps of the cold class.

Note that none of the above-mentioned methods enforce
the perceptual similarity of the adversarial and the real
images. Furthermore, most of the methods do not explic-
itly minimize the amount of perturbation of the adversarial
images in their objective function. The only exception is
the DeepFool method. However, this method is not cautious
about the naturalness of the generated images.

2.2 Approaches that modify only a few pixels

The methods under this group generate adversarial images
that differ from the original image with a minimum num-
ber of pixels. Although the methods are very critical in
showing the vulnerability of the models to slight modifica-
tions, the generated adversarial images may lack statistically
significant contributions to improve the estimation of the dis-
tributions. In the following, we briefly summarize this group
of approaches for completeness.

Su et al. and Vargas et al. introduced “one pixel attacks”
[12,13]. Instead of changing the whole image, these methods
proposed to change only a single pixel in the image. They suc-
cessfully trick the attacked models. However, in most cases,
the change in one pixel looks like an artifact and is detectable
by the human eye.

Papernot et al. proposed changing only a few pixels of the
image instead of changing the whole [14]. Their algorithm
changes one pixel of the image at a time and monitors the
results of the change by checking the results of the classi-
fication. The algorithm computes a saliency map using the
gradients of the outputs of the network layers. Based on this
saliency map, the algorithm chooses the most effective pixel
by choosing the largest value in the saliency map, which
indicates a higher probability of fooling the network.

3 Just noticeable difference for machine
perception

In experimental psychology, Just Noticeable Difference
(JND) is defined as the least amount of variation on some
sensory stimuli in order to detect the change. In this study, we
adopt this concept tomachine perception, where themachine
detects the change on the input image and decides that it is
different from the original image.

Let us start by defining the concept of Just Noticeable
Difference (JND) for a Machine Learning model. This is
a critical step to generate an adversarial image from a real
image, which confounds a machine learning algorithm. The
adversarial image with the least perceptible difference, in
which the network discriminates the true image from the
adversarial image is called just noticeably different (JND)
adversarial image. The formal definition of JND is given
below:

Definition: Just Noticeable Difference for a Machine
Learning Model: Suppose that a machine learning model
M , generates a true label y for image x ,
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M(x) = y.

Suppose, also, that image x is distorted gradually by
adding an incremental noise n(k) to generate an image

x(k + 1) = x(k) + n(k),

at iteration k, where x = x(0).
Assure that M[x(k)] = y, for all k = 1, ...., (K − 1) and

M[x(k)] �= y, for all k ≥ K .

Given an image x , JND for a machine learning model M
is, then, defined as the difference image,

JND[M(x)] = |x(0) − x(K )|, (1)

where |·| indicates an element-wise similaritymetric between
the true image x(0) and the adversarial image x(K ). In the
above definition, the model M detects the perceptual change
in the generated image x(K ) for the first time, at iteration K
and outputs a false label.

Definition: JustNoticeablyDifferentAdversarial Image
is defined as the image x(K ), where the machine learning
model M outputs a false class label for the first time at iter-
ation K :

M[x(K )] �= y.

Note that K is the smallest number of iteration step,
where the machine notices the difference between the origi-
nal image and the adversarial image, as we gradually distort
the original image. Note, also, that the image generated at
iteration K is the least detectable difference from the true
image x by the model M , because for all the generated
images, x(k) for k ≤ (K − 1), M[x(k)] = y. The rest of the
images x(k) for k ≥ K are adversarial, i.e., M[x(k)] �= y.

The crucial question is how to generate JND adversarial
images, which trick the model, yet perceptually just notice-
ably different from the original image.

4 Generating the adversarial image by just
noticeable difference

In order to generate an adversarial image with Just Notice-
able Difference, JND(M), for a machine learning model M ,
we adopt the Convolutional Neural Network (CNN) archi-
tecture, suggested by Gatys et al. [15] for style transfer. In
their method, the final style image is obtained by starting
from a random noise image fed at the input of a network.
They update the input by minimizing a cost function defined
between the generated style image and the real image. They
apply gradient descent method not to the weights of the

model, but to the random noise for updating the adversar-
ial image.

On the contrary, in our suggested method, we start from
an original image x , which can be correctly labeled by a
model M and update it until the network notices the differ-
ence between the original image and the distorted image.
Formally speaking, we distort x(k) until M[x(k)] �= y.

At each iteration, the input image is distorted by the gradi-
ent descent method to generate a slightly more noisy image,
x(k), until the model outputs a false label.

We generate JND adversarial images for image classifi-
cation and object detection tasks. For the object detection
task, we use two attack approaches, i) targeted attacks and
ii) non-targeted attacks. In the targeted attack, we gener-
ate an adversarial example with an adversarial label. In this
approach, an image with an adversarial object label is given
at the input and the model is tricked to detect an adversar-
ial label. For example, an image without the car object fools
the network, so that it generates a car label at the output. In
the non-targeted attack, we generate an adversarial example,
where the model assigns a false label to the image. For exam-
ple, an image with a car fools the network as if there is no
car in the image.

4.1 Cost function

The most crucial part of the suggested method is defining
a cost function, which enforces the generated adversarial
image to be perceptually similar to the true image while min-
imizing the error between the true label and assigned label. In
order to achieve this task, we add three regularization terms
to the cost function, as defined below;

Cost(x(k)) = λ1Loss(ŷ, y) + λ2||x(k) − x(0)||22
+ λ3BR(x(k)) + λ4TV(x(k)), (2)

where x(0) is the input image, x(k) is the updated adversarial
image at iteration k, ŷ is the output of the model given the
updated adversarial image, and x(k) and y is the true output
of the model. The first term is the loss function. The defini-
tion of the Loss depends on the model we are tricking. For
example, if the task is image classification, we can use the
cross-entropy loss. The second term of the cost of function,
λ2||x(k) − x(0)||22, is the L2 distance between the perturbed
image and the original image. Interestingly, the adversarial
images diverge from the original image, when we use dis-
tances other then L2. Note that, when the model M is tricked
by the generated adversarial image for the first time at itera-
tion K , this term becomes the JND, defined for L2 norm.

By adding the regularization terms, BR(x(k)) and TV
(x(k)), to the cost function, we try to capture the Just Notice-
able Different image for the model. BR is the bounded range
loss, which ensures the natural appearance of the adversarial
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image, whereas T V is the total variation of the image, which
enforces color similarity in a neighborhood. The formal def-
initions of these regularization terms will be provided in the
next subsection. The parameters, λ1, λ2, λ3, λ4, are experi-
mentally optimized for each training set to establish a balance
among the regularization terms.

After we calculate the cost from Equation 2, we update
the input image, x(k) by using the gradient descent method,

x(k + 1) ← x(k) + n(k), (3)

where n(k) is the noise added to the image at iteration k,
defined below:

n(k) = −∂Cost(x(k))

∂x(k)
, (4)

where α is the learning rate and Cost is the function defined
in Equation 2.

Minimizing the cost function iteratively generates a
slightly distorted image x(k), at each step. The image x(K ),
generated at the smallest iteration K , is the JND adversarial
image.

4.2 Regularizing the cost function for just
noticeable difference

The third and fourth terms of the cost function, namely,
bounded range and total variation, enforce the natural appear-
ance of the generated adversarial images. Mahendran et al.
[7] showed that these techniques make a random image look
more natural for visualizing the Convolutional Neural Net-
works.

4.2.1 Bounded range

We employ the bounded range loss to regularize the cost
function of the model, where each pixel is penalized if it has
an intensity that is not in the range of the natural image.

Loosely speaking, the bounded range loss penalizes the
pixels with intensity values outside the range of the original
image. For example, an 8 bits/pixel image is forced to stay in
the range of 0 to 255. Since this condition is not guaranteed in
the original formulation [7],we further clamp theoutlier pixel
intensity values. Formally speaking, we define the bounded
range loss as follows:

BR(p) =

⎧
⎪⎨

⎪⎩

−p p ≤ 0

p − 255 p ≥ 255

0 otherwise,

(5)

where p is the intensity of the pixel. This function is applied
to each pixel of the image to assure that all the pixel values

of the image are in the range of [0 - 255]. We normalize the
BR loss by dividing it by the number of pixels.

4.2.2 Total variation

In natural images, a pixel has a “similar” intensity value with
its neighbors. As it is stated by Mahendran et al. [7], this
property can be partially simulated by the total variation regu-
larization technique. In this technique, a pixel is penalized if it
does not have a “similar” intensity with its neighbors. There-
fore, we penalize the image to force all pixels to have similar
intensity values with their neighbors. We use the below for-
mula to penalize the variation among pixels:

TV = 1

HWC

∑

uvk

[(x(v, u + 1, k) − x(v, u, k))2

+ (x(v + 1, u, k) − x(v, u, k))2], (6)

where H ,W ,C are height, width, and the number of chan-
nels, respectively, u, v, and k are values to iterate over the
dimensions height, width, and depth. We normalize the TV
loss by dividing it by the number of pixels.

Note that, in Equation 3, the noise update rule is defined
as the partial derivative of the cost function, which distorts
the image by the least amount of variation, at each iteration.
Due to the bounded range and total variation regulariza-
tion, included in the cost function, the generated images are
expected to be relatively more consistent to the human per-
ception, compared to the cost functions, which exclude these
regularizations. The image, x(K ), generated at iteration K ,
where the machine starts to detect the change for the first
time, resembles just noticeably different image perceived
by a human. Thus, it is called JND image perceived by the
model, M .

5 Experimental results

In this section, we demonstrate the power of the suggested
JNDmethod for generating adversarial images and for trick-
ing the classifiers and object detectors. We compare the JND
methodwith the well-knownmethods, namely, Fast Gradient
Sign (FSGM) [3], Fast Gradient Value (FGV) [4] and Deep-
Fool [5] methods, and the baseline method which correspond
to JND method without regularization terms. Without reg-
ularization terms, the baseline method cannot preserve the
naturalness of the image and produces noisy images.

In order to compare the quality of the adversarial images
generated by the above-mentionedmethods,wemeasure sev-
eral image quality metrics, namely, Peak-Signal-to-Noise
Ratio (PSNR), Structural Similarity (SSIM),Universal Image
Quality Index (UQI), Spatial Correlation Coefficient (SCC)
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andVisual Information Fidelity (VIFP).We also compare the
average distance between the original and adversarial images
using L1, L2, and L∞ norms.

We observe the effect of the regularization terms on the
quality of the generated adversarial images by comparing the
JND method with a baseline method, which omits the total
variation and bounded range regularization terms.

We conduct experiments for image classification and
object detection tasks:

– For image classification, we generate adversarial images
to trick a pre-trained Inception v3 image classifier [16]
on ImageNet dataset and a pre-trained VGG16 classifier
[17] on CIFAR10 dataset.

– For object detection, we generate adversarial images to
trick a pre-trained RetinaNet object detector [18] on MS
COCO dataset [19].

Finally, we analyze the statistical similarities of the orig-
inal images to the adversarial images using two different
measures:

– Kullback-Leibler distances between the color distribu-
tions of the original and adversarial images and

– L2 distances between the original images and the adver-
sarial images.

In order to find optimal parameters for each method, we
conduct hyperparameter optimization using grid search. We
create a held-out validation set, and select parameters that
maximize PSNR∗SSIM

num_iters , where PSNR and SSIM are Peak Sig-
nal to Noise Ratio, [20], and Structural Similarity, [21] of
the generated adversarial image, and num_iters is the num-
ber of iterations to generate an adversarial image. In this way,
we select the hyperparameters that simultaneouslymaximize
the quality of the generated image, PSNR and SSIM, and
minimize the number of iterations to generate an adversarial
image.

5.1 Experiments on CIFAR10 dataset

In this section, first, we conduct comparative quality analy-
ses of the adversarial images generated from the CIFAR10
dataset using several image quality metrics suggested in
previous work [20–24]. Second, we compare the distance
between the original images and the generated adversarial
images. Finally, we compare the classifier attacks of the JND
method with Fast Gradient Sign Method (FSGM) of [3] and
Fast Gradient Value method (FGV) of [4].

We chose the λ values in Equation 2, epsilon values for
JND, FGSM, and FGV by a hyperparameter search, such
that the methods generate the “best quality” images with a

Fig. 1 Sample adversarial images generated by the JNDmethod and the
baseline method, where we omit the total variation and bounded range
regularizations: Top row: Original images taken fromCIFAR10 dataset.
Middle row: JND adversarial images, generated with regularization.
Bottom row: Adversarial images generated by baseline method without
any regularization

small iteration number. In this regard, we maximize Peak-
Signal-to-Noise Ratio (PSNR) [20] and Structural Similarity
Measure (SSIM) [21] while minimizing the average number
of iterations to generate adversarial images from a subset of
images from the training set.

We estimate the optimal JND parameters, for the cost
function as λ1 = 10, λ2 = 1, λ3 = 1, λ4 = 10 and for
the learning rate as α = 0.05. For FGSM and FGV, the best
epsilon value is 0.5 and 0.4, respectively. For DeepFool, we
used the default parameters in the paper.

5.1.1 Comparative quality analyses of the adversarial
images generated from CIFAR10

Let us start by analyzing the effect of the TV (total variation)
and BR (bounded range) regularization on the quality of the
adversarial images. Figure 1 shows sample images generated
by the JND and the baselinemethod, wherewe omit the regu-
larization terms in the cost function of Equation 2. Due to the
low resolution of images (32 × 32) in the CIFAR10 dataset,
none of the images looknatural at all.However, visual inspec-
tion reveals that the JND method generates images closer to
the original images compared to that of the baseline method.

In the next set of experiments, we compare the quality
of the adversarial images generated by JND, FSGM, FGV,
DeepFool, and the baseline methods, where we neglect the
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Table 1 Image quality metrics on generated adversarial images by the
baseline (without the BR and TV regularization terms), suggested JND,
FGSM, FGV and DeepFool methods on CIFAR10 dataset. The metrics
are Peak-Signal-to-Noise Ratio (PSNR), Structural Similarity (SSIM),
Universal Image Quality Index (UQI), Spatial Correlation Coefficient
(SCC) and Visual Information Fidelity (VIFP). For all metrics, the
higher is the better. We report the average values of the metrics cal-
culated over 300 generated examples in the CIFAR10 dataset

Metrics Baseline JND FGSM FGV DeepFool

PSNR [20] 338 382 370 371 373

SSIM [21] 0.953 0.998 0.989 0.985 0.991

UQI [22] 0.952 0.994 0.990 0.987 0.992

SCC [23] 0.917 0.943 0.921 0.918 0.931

VIFP [24] 0.984 0.998 0.994 0.991 0.996

Table 2 The average distances between the original images and the
adversarial examples with JND, FGSM, FGV and DeepFool methods
generated from CIFAR10 dataset. The averages are estimated over 300
images. Lower is better for all of the metrics

Metrics JND FGSM FGV DeepFool

L1 11.64 33.4 42.11 24.08

L2 0.21 0.70 1.12 0.54

L∞ 0.004 0.020 0.082 0.008

regularization terms. We report the image quality assess-
ments for the generated images in Table 1. The images
generated by the JND method outperform all methods with
respect to the image quality measures. This quantifies the
effect of the regularization on the image quality of adversarial
images. Note that the JNDmethod substantially outperforms
other methods in the PSNR metric. The rest of the qual-
ity measures are very similar for the images generated by
JND and the other methods. This result reveals that the low-
resolution images in the CIFAR10 dataset bring an upper
bound to the quality of the adversarial images. Thus, we may
conclude that the resolution of images in the dataset is an
important factor for the generation of high-quality adversar-
ial images.

All of the generated adversarial images with and without
regularization successfully tricked the classifier.

We also compare the suggested JNDmethod with FGSM,
FGV, DeepFool, and the baseline methods, in terms of L1,
L2 and L∞ distances between the original and adversarial
images generated from the CIFAR10 dataset. We report the
average distances, estimated over 300 images, in Table 2.
Note that the suggested JND method generates closer adver-
sarial images to the original ones relative to the rest of the
methods.

Since the CIFAR10 dataset contains 10 classes, the speed
of the generation is not an issue for DeepFool, and the speed
difference between both algorithms is negligible.

5.1.2 Classifier attacks on CIFAR10

We conduct a set of experiments to compare the convergence
rates of our JND method with FSGM and FGV methods
while the adversarial images attack a classifier. Recall that
FGSM employs the sign of the gradient while updating the
true image in a single step,whereas the FGVmethod employs
the gradient value itself for updating the true image in a sin-
gle step. Their cost function is different from the suggested
JND cost, which involves additional BR and TV regulariza-
tion terms. The single-step adversarial image computation of
FSGM is given in equation 7:

xadv
FGSM = x + ε sign(∇x L(h(x)), ytrue), (7)

where h is the target model, x is the image, and ytrue is the
true label. Originally, the FGSM attack is a single step attack.
However, applying thismethod iteratively to the target model
yields higher error rates as stated by Kurakin et al. [8].

The single-step adversarial image computation of FGV is
given in equation 8:

xadv
FGV = x + ε∇x L(h(x), ytrue), (8)

where h is the target model, x is the image, and ytrue is the
true label. Originally, the FGV attack is a single-step attack.
However, we applied this method iteratively as in the FGSM
method for a fair comparison.

We compare our JND method with the FGSM attack and
FGV attack on the CIFAR10 dataset. Since the DeepFool
method checks other classes to find the minimum perturba-
tion, it is incompatible with JND, FGSM, and FGVmethods.
Thus, we suffice to conduct this experiment with only FGSM
and FGV methods. We generate adversarial images, which
trick the classifier with the given confidence score value and
measure the quality of the images and speed of the algorithm.
We use two different confidence scores, 25% and 60%, and
measure the average number of iteration to reach the confi-
dence score, SSIM scores, and L2 distances between original
and generated images. The results, reported in Table 3, indi-
cate that the JND method generates the most natural images
(SSIM) and the closest images (L2) to the original ones when
the classifier is tricked, yet it is the fastest method, which
converges to the given confidence score value.

While conducting the experiments, we select the best
hyperparameters for all methods with the grid search. The
attacked model is VGG16 [17], and its accuracy without any
adversarial attacks is 88%.

In Fig. 2, we show sample adversarial images generated
by FSGM, FGV and JNDmethods. Due to the low resolution
of the CIFAR10 dataset, the adversarial images look visually
similar. However, analyzing Table 3 shows that although the
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Table 3 Similarity measurement, when the model is tricked with the
given confidence value for the CIFAR10 dataset. The values are calcu-
lated by averaging 500 images from the test set. Each model has the
best hyperparameters, which were searched on the training set before.
Higher is better for SSIM, and lower is better for L2 and the number of
iterations

Method Confidence Iterations SSIM L2

FGSM 0.25 126.1 0.9962 0.393

FGV 0.25 269.2 0.9902 0.236

JND 0.25 91.3 0.9981 0.163

FGSM 0.60 143.5 0.9935 0.403

FGV 0.60 294.8 0.9892 0.458

JND 0.60 125.2 0.9969 0.265

Fig. 2 Generated adversarial images, when conducting attacks on the
CIFAR10 dataset. Top: Images, when the model is tricked with at least
25% confidence scores. Bottom:Images, when the model is tricked with
at least 60% confidence scores. All of the SSIM scores of the generated
images are at the level of 0.99. However, it can be seen in Table 3 that
JND images are closer to the original images compared to FSGM and
FGV images

SSIM scores are very high for all the methods, the measured
image qualities are relatively higher for the JND method.

5.2 Experiments on ImageNet dataset

In this section, we repeat the image quality analysis and
classifier attack experiments of the previous section on the
ImageNet dataset.

We choose the best hyperparameters that maximize the
PSNR and SSIM scores and minimize the average number
of iterations in a selected sample set. For JND parameters,
the best values turn out to be 100, 10, 10, 1 for λ1, λ2, λ3, λ4,
respectively, and 0.0001 as learning rate α value. For FGSM
and FGV, the best epsilon value is 0.1. For DeepFool, we
used the default parameters in the paper.

Fig. 3 Adversarial images generated from ImageNet dataset: First row:
Samples of original images. Middle row: Just Noticeably Different
Adversarial Imageswith using regularization functions at the timewhen
they first trick the network. Last row: Samples generated without any
regularization. All the samples trick classifiers successfully

5.2.1 Comparative quality analyses of the adversarial
images generated from ImageNet dataset

In order to observe the effect of the regularization on the
quality of the adversarial images, we generate two sets of
adversarial images, which can successfully trick image clas-
sifiers. The first set of images are generated by the baseline
method, without TV and BR regularization terms. The sec-
ond set consists of the JNDadversarial images generatedwith
all the regularization terms, suggested in Equation 2.

Figure 3 shows two sample images from ImageNet. Note
that JND method increases the naturalness of the gener-
ated adversarial images, indicating the importance of the
regularization with TV and BR, in high-resolution images
(224 × 224) of ImageNet.

123



Signal, Image and Video Processing (2022) 16:1595–1606 1603

Table 4 Image quality metrics on generated adversarial images by
the baseline method (without the regularization terms), suggested JND
method, FGSM method, FGV method, and DeepFool method on Ima-
geNet dataset. The metrics are Peak-Signal-to-Noise Ratio (PSNR),
Structural Similarity (SSIM), Universal Image Quality Index (UQI),
Spatial Correlation Coefficient (SCC) and Visual Information Fidelity
(VIFP). For all metrics, the higher is, the better. We report the average
values of the metrics calculated over 300 generated examples in the
ImageNet dataset

Metrics Baseline JND FGSM FGV DeepFool

PSNR [20] 350 392 382 384 388

SSIM [21] 0.963 0.9998 0.9984 0.9972 0.9993

UQI [22] 0.962 0.9998 0.9976 0.9981 0.9991

SCC [23] 0.9172 0.9940 0.9434 0.9510 0.9912

VIFP [24] 0.9842 0.9998 0.9981 0.9991 0.9995

Table 5 The distances between the original images and the generated
adversarial examples with DeepFool [5] and JND on ImageNet dataset.
Lower is better for all of the metrics

Metrics JND FGSM FGV DeepFool

L1 41.09 400.11 239.94 33.50

L2 0.1185 1.0012 0.8493 0.1178

Lin f 0.0002 0.0131 0.0338 0.0042

In Table 4, we report the image quality measures averaged
over 300 generated examples. The quality of the images is the
best for the JNDmethod compared to the adversarial images
generated by the baseline, FGSM [3], FGV [4] andDeepFool
methods [5].

We compare the distance between the original images and
the corresponding adversarial images using L1, L2 and L∞
norms in the ImageNet dataset. Our method generates closer
adversarial images to the original ones in terms of L∞ norm,
which is a widely used metric to make comparisons. How-
ever, DeepFool generates closer adversarial images in terms
of L1 and L2 norms.We report the distances between theorig-
inal images and the generated adversarial images in Table 5.

Ourmethod also outperformsDeepFool in terms of execu-
tion time. DeepFool checks all the adversarial perturbations
for each class other than the true class to find the minimum
perturbation, which is 999 on the ImageNet dataset. Thus,
finding the closest adversarial example to the original one
requires nearly 1000 times more gradient calculations com-
pared to our JND method.

5.2.2 Classifier attacks on ImageNet

While increasing the quality of images, the JND method
does not decrease the confidence of the classifier. The model
wrongly classifies all the generated images with nearly 99%
confidence at the end of the generation process. In Fig. 4, we

Fig. 4 The confidence scores of the updated dog (left) and parrot (right)
images. After K=63 and 70, respectively, the images successfully trick
the network. Therefore, Just Noticeably Different Adversarial image is
generated at K=63 and 70, respectively. Y-axis shows the confidence
scores for the target class, in 0-1 scale and the X-axis shows the number
of iterations

report the confidence scores of the generated images. Notice
that the JND images are generated at the elbow of the con-
fidence curve, which indicates that after the JND images are
generated, the confidence of themachine suddenly increases.
While the JND dog image is generated at iteration K = 63,
the JND parrot image is generated at K = 70. After the
generation of the JND image at iteration K, the rest of the
generated adversarial images trick the network successfully.

As it is demonstrated in the above experiments, the JND
method is more powerful in generating high-quality adver-
sarial images in ImageNet compared to that of CIFAR10.
This improvement can be attributed to the high-resolution
images of the ImageNet dataset.

5.3 Adversarial image generation for object
detection

For the object detection task, we use Retina-Net, which
is pre-trained on Microsoft COCO [19] dataset. We conduct
experiments for targeted and non-targeted attacks. In targeted
attacks, we generate an adversarial example with an object
that is not present in the original image. Our method success-
fully generates this type (targeted) of adversarial example
while FGSM and FGV [3] [4], fail to generate adversarial
examples since they are non-targeted methods. Both meth-
ods are trained for generating adversarial images, which are
far from their original label.

Firstly, we use a simple road image in the Fig. 5(left) and
update it iteratively to generate an adversarial example to
trick the classifier in a way that the classifier sees a car in
the middle of the image. We generate two different adversar-
ial examples from the road image on the left of Fig. 5. The
image in the middle of Fig. 5 is the Just Noticeably Different
adversarial example. The image in the right of Fig. 5 is the
baseline image, which is generated without using regulariza-
tion techniques. As it is stated before, both FGSM and FGV
fail to generate this type of adversarial example since they
perform only non-targeted attacks.
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Fig. 5 Targeted Attacks: Generated images trick RetinaNet object detector. From left to right: Original image, Just Noticeably Different image,
Baseline image (without regularization)

Fig. 6 Non-targeted Attacks: Differences from the original image for
generated images to trick RetinaNet object detector with non-targeted
attacks. From left to right: Original image, difference of the original
image with the “Just Noticeably Different image”, the FGSM image

and the FGV image. The model cannot identify the car in the middle of
the image. The differences are calculated as L2 norm in channel axis
and multiplied by 10 for easy visualization. Colormaps for all three
difference images are the same

Secondly, we generate an adversarial example, such that
the model cannot see the object, which is actually present in
the original image. We use a simple car image and update
it iteratively with the methods, JND, FGSM, and FGV. All
of the methods successfully generate adversarial examples
where the model cannot “see” the cars. We generate three
different adversarial examples from the car image, given in
Fig. 6. Since the chosen epsilon value is too small, all of the
images look very similar to each other. However, the closest
image to the original one is the Just Noticeably Different
image.

The JND method not only generates targeted attacks but
also, it can generate non-targeted attacks when given an
incorrect label. Moreover, the generated images with JND
look more natural and closer to the original images.

All the λ values in Equation 2 are chosen as 1 for object
detection experiments.

5.4 Statistical similarities between the true and
adversarial images

In this section, we analyze the statistical properties of JND
images and compare these properties to the adversarial
images generated by the baseline (JND without regulariza-
tion), FSGM, FGV, and DeepFool methods. Since the JND

methodperforms relatively better in the ImageNet dataset,we
suffice to make the statistical comparisons on the CIFAR10
dataset. We conduct the experiments in two parts:

1. We estimate theKullback-Leibler divergence between the
true and adversarial images for each method by,

KL[p(r)||q(r)] = −
∑

x∈X
p(r) log

p(r)

q(r)
, (9)

where p(r) and q(r) are the normalized color histograms
of the true and adversarial images, respectively. Then,
assuming that K [p(r)||q(r)] is a random variable, for
each method, we estimate the probability density func-
tion of KL divergences over all images using a kernel
density estimation method. Figure 7 shows the distribu-
tion of KL divergences, estimated for the JND, baseline
(JND without regularization), FGSM, FGV, and Deep-
Fool methods. Note that the JND method generates the
sharpest distribution around 0 value, which shows that the
KL divergence between the adversarial and true images
for the JND method is relatively smaller than that of the
other methods.
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Fig. 7 Probability density functions of Kullback-Leibler divergence
obtained from CIFAR10 dataset for JND, FSGM, FGV, DeepFool and
Baseline methods

Fig. 8 Probability density functions of L2 distance obtained from
CIFAR10 dataset for JND, FSGM, FGV, DeepFool and Baseline meth-
ods

2. We compute L2 distance between the true images and
adversarial images for each method by

L2 =
∑

∀xi
|x̂i − xi |2, (10)

where xi and x̂i are the pixel color values at i th pixel
of the original and adversarial images, respectively. The
adversarial images are generated by JND, FGSM, FGV,
DeepFool, and the baseline methods. Then, assuming that
L2 is a random variable, for each method, we estimate the
probability density function of L2 using a kernel density
estimation method, as shown in Fig. 8. Note that the JND
method has the sharpest distribution of L2 around 0 value
compared to the other methods. This result is consistent
with Table 2, where the JND method gives the smallest
L−norms between the difference of original and adver-
sarial images.

As it can be observed from Fig. 8, the distribution of all
methods has almost zero mean, except the baseline method.

However, the standard deviations of the methods are rela-
tively large compared to that of the JND method. This result
indicates that almost all of the adversarial images generated
by the JND method are very similar to the original images,
yet they trick the classifiers with very high confidence rates.

6 Conclusion

In this study, we adopt the concept of Just Noticeable Differ-
ence (JND) tomachine perception.Wedefine the JND images
for a machine learning model by adding a just discriminating
noise to the image, such that the machine is fooled.

The additive noise is defined in terms of the gradient of
a cost function, which is to be minimized in the learning
phase. Since the cost function is enriched by total variation
and bounded range regularization terms, the generated adver-
sarial images “look” natural.

The images generated by the JND method are forced to
be consistent with the human visual system, yet they can
successfully trick the classifiers on ImageNet and CIFAR10
datasets and the object detectors on MS COCO dataset.

We compare the JND method with three state-of-the-art
methods, namely, FGSM, FGV, and DeepFool, in terms of
closeness to the original images and model fooling speed
while maintaining the quality of the generated images for
image classification and object detection tasks. For the object
detection task, unlike FGSM and FGV, the JND method can
generate both targeted and non-targeted adversarial exam-
ples, which gives the researchers the flexibility of studying
both attack methods.

We conduct experiments on Imagenet and CIFAR10
datasets to analyze the quality of the adversarial images
using popular image quality metrics. The results show that
the images generated by the JND method are better than the
above-mentioned methods.

We conduct experiments on the CIFAR10 dataset to ana-
lyze the statistical properties of the adversarial images. The
results show that the images generated by the JND method
have smaller KL-divergence and L2 distances between the
adversarial and original images.

We also conduct experiments on MS COCO dataset to
compare both targeted and non-targeted attack performances
on object detectors. We find that all methods are capable
of generating non-targeted attacks. However, only the JND
method can generate targeted attacks, which shows its supe-
riority over other methods.

Finally, we compare themodel fooling speedswhilemain-
taining the quality of the generated images. We observe that
the suggested JND method converges faster than the other
methods.

In summary, the generated images with JND look more
natural and authentic while tricking the classifiers and object
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detectors at a faster speed. It outperforms the FGSM, FGV,
and DeepFool methods on whole dataset attacks.

References

1. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: Closing
the gap to human-level performance in face verification. In: 2014
IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1701–1708 (2014)

2. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification.
In: Proceedings of the IEEE international conference on computer
vision, pp. 1026–1034 (2015)

3. Goodfellow, I.J., Shlens, J., Szegedy,C.: Explaining and harnessing
adversarial examples. arXiv:1412.6572 (2014)

4. Rozsa, A., Rudd, E.M., Boult, T.E.: Adversarial diversity and hard
positive generation. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, pp. 25–32
(2016)

5. Moosavi-Dezfooli, S.-M., Fawzi, A., Frossard, P.: Deepfool: a
simple and accurate method to fool deep neural networks. In: Pro-
ceedings of the IEEE conference on computer vision and pattern
recognition, pp. 2574–2582 (2016)

6. Akan, A.K., Genc, M.A., Vural, F.T.Y.: Just noticeable difference
for machines to generate adversarial images. In: 2020 IEEE Inter-
national Conference on Image Processing (ICIP), pp. 1901–1905
(2020)

7. Mahendran, A., Vedaldi, A.: Visualizing deep convolutional neural
networks using natural pre-images. Int. J. Comput. Vision 120(3),
233–255 (2016). (Publisher: Springer)

8. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial examples in
the physical world. arXiv preprint arXiv:1607.02533 (2016)

9. Szegedy,C., Zaremba,W., Sutskever, I., Bruna, J., Erhan,D.,Good-
fellow, I., Fergus, R.: Intriguing properties of neural networks.
arXiv preprint arXiv:1312.6199 (2013)

10. Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B.,
Swami, A.: Practical black-box attacks against machine learning.
In: Proceedings of the 2017 ACM on Asia conference on computer
and communications security, pp. 506–519 (2017)

11. Moosavi-Dezfooli, S.-M., Fawzi, A., Fawzi, O., Frossard, P.:
Universal adversarial perturbations. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1765–
1773 (2017)

12. Jiawei, S., Vargas, D.V., Sakurai, K.: One pixel attack for fooling
deep neural networks. IEEE Trans. Evol. Comput. 23(5), 828–841
(2019)

13. Vargas, D.V., Su, J.: Understanding the one-pixel attack: propaga-
tion maps and locality analysis. arXiv:1902.02947 (2019)

14. Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B.,
Swami, A.: The limitations of deep learning in adversarial set-
tings. In: 2016 IEEE European symposium on security and privacy
(EuroS&P), pp. 372–387. IEEE (2016)

15. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using
convolutional neural networks. In: Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pp. 2414–2423
(2016)

16. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.:
Rethinking the inception architecture for computer vision. In: Pro-
ceedings of the IEEE conference on computer vision and pattern
recognition, pp. 2818–2826 (2016)

17. Simonyan, K., Zisserman, A.: Very deep convolutional networks
for large-scale image recognition. arXiv:1409.1556 (2014)

18. Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for
dense object detection. In: Proceedings of the IEEE international
conference on computer vision, pp. 2980–2988 (2017)

19. Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan,
D., Dollár, P., Zitnick, C.L.: Microsoft coco: common objects in
context. In: European conference on computer vision, pp. 740–755.
Springer (2014)

20. Huynh-Thu, Q., Ghanbari, M.: Scope of validity of PSNR in
image/video quality assessment. Electron. Lett. 44(13), 800–801
(2008). (Publisher: IET Digital Library)

21. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image qual-
ity assessment: from error visibility to structural similarity. IEEE
Trans. Image Process. 13(4), 600–612 (2004)

22. Wang, Z., Bovik, A.C.: A universal image quality index. IEEE
Signal Process. Lett. 9(3), 81–84 (2002). (Publisher: IEEE)

23. Wald, L.: Quality of high resolution synthesised images: Is there a
simple criterion? In: International Conference of Fusion of Earth
Data (2000)

24. Sheikh, H.R., Bovik, A.C.: Image information and visual quality.
IEEE Trans. Image Process. 15(2), 430–444 (2006)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1607.02533
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1902.02947
http://arxiv.org/abs/1409.1556

	Just noticeable difference for machine perception and generation of regularized adversarial images with minimal perturbation
	Abstract
	1 Introduction
	2 Major approaches for adversarial image generation
	2.1 Approaches that modify the whole image
	2.2 Approaches that modify only a few pixels

	3 Just noticeable difference for machine perception
	4 Generating the adversarial image by just noticeable difference
	4.1 Cost function
	4.2 Regularizing the cost function for just noticeable difference
	4.2.1 Bounded range
	4.2.2 Total variation


	5 Experimental results
	5.1 Experiments on CIFAR10 dataset
	5.1.1 Comparative quality analyses of the adversarial images generated from CIFAR10
	5.1.2 Classifier attacks on CIFAR10

	5.2 Experiments on ImageNet dataset
	5.2.1 Comparative quality analyses of the adversarial images generated from ImageNet dataset
	5.2.2 Classifier attacks on ImageNet

	5.3 Adversarial image generation for object detection
	5.4 Statistical similarities between the true and adversarial images

	6 Conclusion
	References




