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Abstract
In this paper, we propose a convolutional neural network for the removal of spatially varying motion blur from captured
images with the assistance of inertial sensor data. In the proposed system, both the image and motion data are captured
simultaneously and passed to a network for processing. The proposed network adopts three parallel nets to extract image
features and a per-pixel concatenation to tightly integrate motion homographies estimated from inertial sensor data with the
input degraded image. This unique network design facilitates the use of homographies which describes the motion blur kernel
more accurately. Compared to the recently proposed image deblurring networks, the proposed network is found to produce
restored images that have fewer artifacts and provide quantifiable and subjective improvement.

Keywords Image deblurring · Computer vision · Deep learning · Inertial sensor

1 Introduction

Motion blur is a common artifact in captured images and
it occurs when there is relative motion between a camera
and the scene being captured during the exposure time. The
captured blurry image is typically modeled as a latent sharp
image convolvedwith anunknownblur kernel plus noise.The
goal of image deblurring is to estimate the sharp image from
the blurry observation [3,10,19]. This is an ill-posed inverse
problem which requires additional information or assump-
tions for the development of a stable and reasonable solution
[3]. This paper addresses the situation where blur mainly
comes from camera shake and auxiliary motion data from
inertial sensors is available. This situation is found in most
modern cellular smartphones which contain both image sen-
sors and inertial sensors and are commonly used to capture
images when held in the hand. Smartphone Application Pro-
gramming Interfaces (APIs) are also available for developers
to control image capture configurations and inertial data col-
lection.

With significant progress in convolution neural networks,
end-to-end image deblurring networks have been developed
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to directly infer the latent sharp imagewithout explicitly esti-
mating the blur kernel [15,20,23,25]. Though these image
deblurring networks achieve much shorter processing time
and better generalization to most types of blur kernels, poor
deblurring performance still occurs in challenging situations.
This is because these networks only use a blurry image
as input. More additional information or assumptions are
required to better address the challenging situations.

Thus, researchers have explored the possibility of employ-
ing auxiliary information. Built-in inertial sensors can be
utilized to track camera motion during the exposure time
[5,17,21,29]. In the deep learning field, the inertial sensor
data-aided deblurring scheme has achieved less success. The
major challenge of this scheme is how to fuse the 2D image
data with the 1D inertial sensor data using the network struc-
ture. To our best knowledge, the work of Mustaniemi et al.
[14] is the only deep learning network that utilizes gyroscope
data for single image deblurring. In the work of [14], only
the gyroscope data is considered and the blur kernel shape
is simplified to a straight line. Therefore, the estimated blur
field is far from accurate. As a result, the potential of inertial
sensor data is not fully realized. How to fuse different types
of data is still an open problem.

In this paper, we propose an image deblurring network
aided by inertial sensor data to address spatially varying
motion blur. The proposed network is a two-input-single-
output convolutional neural network. Its two inputs consist
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of a blurry image and a stackof homographies computed from
inertial sensor data. And its output is a restored sharp image.
In the proposed network, an advanced deblurring Expand-
Net [13] is tailored to merge information from the inertial
sensor data with image data. Additional parallel multi-scale
structures, residual blocks, and a global skip connection are
also incorporated to improve overall image deblurring per-
formance.

To train and test the proposed network, a synthetic dataset
is developed in our previous conference paper [28]. The
dataset contains gyroscope and accelerometer data as well as
sharp/blurry image pairs. The dataset also considers the real-
istic error effects, including noise, rotation center shift and
the rolling shutter effect. To evaluate the deblurring perfor-
mance of the proposed approach, comparisons with several
recent image deblurring networks are conducted. Quantita-
tive, as well as visual results, are provided for both synthetic
data and real data collected by a smartphone application.

The main contribution of this paper is as follows:

– A novel image deblurring network is proposed to address
spatially varying motion blur by integrating the homo-
graphies generated from inertial sensor data with a
simultaneously captured input blurry image,

– An ablation study is conducted to discuss usages of each
component of the proposed network, and

– A comprehensive comparisonwith state-of-the-art image
deblurring networks is provided to demonstrate the
advantages of the proposed network.

The rest of the manuscript is organized as follows:
Sect. 2 introduces the geometric blur model and the proposed
dataset.Detailed network architecture and its training loss are
described in Sect. 3. Section 4 investigates the usage of each
component in the network in Sect. 4.2 Ablation Study and
conducts comparisons with state-of-the-art image deblurring
networks on the proposed synthetic dataset in Sect. 4.3 and
the captured real data in Sect. 4.4. Finally, a conclusion is
drawn in Sect. 5.

2 Blur model and DeblurIMU dataset

This section introduces the geometric blur model and its
usage for generating the proposed synthetic dataset that con-
tains sharp/blurry image pairs and simultaneously recorded
gyroscope data and accelerometer data.

2.1 Geometric blur model

The geometric blur model has been widely used for inertial
sensor-aided image deblurring algorithms [5,29] as it builds
the connection between the motion blur and the inertial sen-

sor data that records the camera motion when the shutter
is open. This blur model formulates the blurry image as an
integration of the sharp images undergoing a sequence of
projective motions during the exposure time [22]:

IB =
Np∑

i=1

wi IS(Hi x) + N, (1)

where IB and IS refer to the blurry image and its latent sharp
image, respectively. Noise N is often formulated as addi-
tional white Gaussian noise. The 3 × 1 vector x denotes the
homogeneous pixel coordinate. IS(Hi x) can be treated as an
intermediate transformed frame captured by the camera at
one pose i which is characterized by the 3 × 3 homography
matrix Hi and the corresponding weight wi . wi is propor-
tional to exposure time at that pose. Np refers to the total
number of camera poses during the camera exposure time.
The homography matrix Hi can be decomposed into a rota-
tion matrix Ri , a translation vector ti , a normal vector nt ,
scene depth d and an intrinsic matrix Π [2]:

Hi = Π

(
Ri + ti nTt

d

)
Π−1, (2)

To simplify the model, the depth is set to 1 and the nor-
mal vector assumes to be vertical to the image plane. And
the intrinsic matrix Π is represented by focal length f and
camera optical center (ox , oy) as the following:

Π =
⎡

⎣
f 0 ox
0 f oy
0 0 1

⎤

⎦ . (3)

where the focal length is set to 50 mm and the pixel size
is 2.44e−6 m/pixel in data synthesis. Therefore, f = 50e-
3/2.44e-6 = 20492 pixels.

Camera rotations Ri and translations ti can be inferred
from the measurement of gyroscopes and accelerometers,
respectively. The gyroscope measures rotation rates around
the xyz- axis. In the proposed work, Android camera API 2
is adopted to directly produce linear acceleration that elim-
inates the gravity using other sensor data. In the following,
linear acceleration instead of the original acceleration is
assumed. Themeasured 3-axis angular velocity and the linear
acceleration at the pose i are denoted as ωi = [ωi x , ωiy, ωi z]
and ai = [aix , aiy, aiz].

Given the sampling interval Δt and the rotation matrix
Ri at pose i , the rotation matrix at next pose i + 1 can be
approximated as [21]:
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Ri+1 = Ri + Δt ∗ dRt

dt
=

⎡

⎣
1 −dφi z dφiy

dφi z 1 −dφi x

−dφiy dφi x 1

⎤

⎦ Ri ,

(4)

wheredφi = [dφi x , dφiy, dφi z] = ωi∗Δt . Then, the camera
translation ti can be derived fromaccelerations ai using twice
integration [29]:

vi = vi−1 + (R−1
i−1ai−1 + R−1

i ai ) ∗ Δt/2

ti = ti−1 + (vi−1 + vi ) ∗ Δt/2 (5)

where the initial velocity v0 and initial translation t0 is
assumed to be 0.

2.2 DeblurIMU dataset

To train and test the proposed image deblurring network
aided by inertial sensor data, a novel dataset is developed
based on the geometric blur model and GOPRO Large all
dataset in our previous conference paper [28]. The GOPRO
Large all dataset consists of successive sharp frames taken
by a GOPRO4 Hero Black camera in more than 30 different
scenes [15].

As suggested in our previous paper [28], the first step of
generating a synthetic instance is to simulate data points col-
lected from gyroscopes and accelerometers. Gyroscopes and
accelerometers record angular velocity and acceleration of
smartphone motion along three-axis, respectively. The angu-
lar velocity and the acceleration of each axis are modeled as
a Gaussian distribution with zero means. After obtaining the
measurement samples of gyroscope and accelerometer, Eqs.
(2) to (5) are applied to generate a sequence of homographies.

To generate a blurry image, a sharp image is first picked
from the GOPRO Large all dataset [15]. Then, the sequence
of homographies generated from the previous step is applied
to the sharp image using Eq. (1). White Gaussian noise with
the randomly sampled standard deviation σr is also added
to the blurry image. And the sharp frame is treated as the
ground-truth image.

Though image noise is considered in Eq. (1), this geo-
metric blur model is a relatively ideal blurry image model.
It implicitly assumes that the smartphone rotation center
locates at the optical center of the camera and that the image
sensor employs a global shutter to capture the entire frame
all at once. To simulate more realistic situations, the practi-
cal error effects, including rotation center shift and rolling
shutter effect, are considered.

The overall data generation steps for the DeblurIMU
dataset are summarized in Algorithm 1 in the Supporting
Information. The value of parameters can be found in [28].

The proposed dataset consists of 2264 sets for training
and 1221 sets for testing. Each set contains a ground-truth

sharp frame, an intermediate blurry image without errors, a
blurry image with error effects, and inertial sensor data. The
resolution of the images is 720 × 1280.

Figure 1 illustrates a blurry example taken from the
proposed DeblurIMU dataset and its point spread function
(PSF). In this example, the motion blur is caused by rotation
and its rotation center locates in the upper left area of the
image. The resulting blur is spatially varying.

In the proposed network, a blurry imagewith error effects,
its corresponding sharp image, and inertial sensor data are
taken from the DeblurIMU dataset to train and test the net-
work. The camera rotation center is also assumed to be known
or already estimated from pre-processing steps described in
Park et al. [17] or Hu et al. [5].

3 Proposed network

The proposed image deblurring network, DeblurExpandNet,
aims to restore a sharp clear image from a blurry noisy image
and the corresponding camera built-in inertial sensor data.
Its overall architecture is presented in Fig. 2. Its input con-
sists of an image corrupted by motion blur and noise and a
stack of homographies calculated from inertial sensor data.
Before being fed into the network, the homographies are
zero-padded from size 3 × 3 to 16 × 16 and are stacked
together in time order.

3.1 Network architecture

As illustrated in Fig. 2, the network architecture is com-
posed of four branches: local, medium, dilation, and global.
Their output featuremaps are concatenated together and then
passed into the following fusion, residual, and end blocks.
Different branches are marked as different colors. All the
convolution blocks have 64 channels. These blocks (except
for the end block) represent image feature maps generated
after a convolution layer and an activation layer, ScaledExpo-
nential Linear Unit (SELU) [9]. SELU is a good replacement
of the batch normalization [6] that automatically converges
the input feature maps towards zero mean and unit variance.

The blurry image IB is accepted by local, medium, and
dilation branches separately. These branches are designed to
obtain image features at different scales. A global skip con-
nection from input to output is also employed. This helps
the network focus on training the residual and therefore sup-
presses the ringing artifacts.

3.1.1 Local branch

The local branch adopts two convolution blocks with kernel
size 3 × 3, stride size 1, padding size 1, and dilation size 1.
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Fig. 1 Spatially varyingmotion blur. a Image degraded by non-uniformmotion blur taken from the DeblurIMU dataset [28]. b Point spread function
(PSF) of (a)

Fig. 2 Network architecture
inside DeblurExpandNet. The
DeblurExpandNet accepts a
blurry image, IB , and a stack of
homographies calculated from
inertial sensor data to restore a
sharp clear image ID . The
network architecture is
composed of four branches:
local, medium, dilation, and
global. Their output feature
maps are concatenated together
and then passed into the
following fusion, residual, and
end blocks. Different branches
are marked as different colors.
All the convolution blocks have
64 channels

The receptive field of the local branch is 5×5 pixels and thus
this branch aims to extract high-frequency image features.

3.1.2 Medium branch

The medium branch is designed to fill the gap between the
local and dilation branch to generate medium level features
with a receptive field of 11 × 11 pixels. It consists of five
consecutive convolution blocks with kernel size 3× 3, stride
size 1, padding size 1, and dilation size 1.

3.1.3 Dilation branch

Thedilation branch achieves a larger receptive field of 17×17
pixels through four convolution blocks with kernel size 3×3,
stride size 1, padding size 2, and dilation size 2. Though with
one convolution block fewer than the medium branch, the
dilation branch has a wider receptive field. It is because the
adopted dilated convolution layers can provide exponential
expansion of the receptive field without loss of resolution or
coverage [24].

3.1.4 Global branch

In parallel with the three image branches mentioned above,
the global branch deals with inertial sensor data. Unlike the
original version in ExpandNet [13], the global branch in the
proposed DeblurExpandNet accepts a sequence of padded
homographies rather than images as its input. It has three con-
volution blocks with kernel size 3× 3, stride size 2, padding
size 1, and dilation size 1. The global branch downsamples
input padded homographies with size 16 × 16 to a 1 × 1
feature vector with 64 channels. In projective geometry, a
homography is an invertible structure-preserving mapping
of two projective spaces [1]. And in the proposed network,
the homography indicates how each pixel is moving during
capture time to yield the motion blur since it is generated
from inertia sensor data that records the camera movement.
The generated feature vector of the global branch is repli-
cated to match the height and width of the input image so
that each pixel of the featuremaps from the image branches is
appended with a homography feature vector. By applying the
feature vector of the homography to each pixel of high-level
feature maps of the image branches, the proposed network
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mimics the image warping process using homography. And
the global branch plays an important role in inverse the homo-
graphies and extract useful projective mapping information.

3.1.5 Fusion block

The fusion block contains one convolution block with kernel
size 3 × 3, stride size 1, padding size 0, and dilation size 1.
The size 1 stride ensures that the output feature maps have
the same height and width as the input image IB .

3.1.6 Residual block

Three residual blocks are appended to the fusion block to
improve the sharpness of the deblurred image (See Ablation
Study). The residual block is proposed to increase network
depth and improve overall performance [4]. It consists of two
convolution layers and a skip connection that adds the input
to the output. Image deblurring networks like [15] and [23]
add a batch normalization layer [6] after each convolution
layer inside the residual block. In each residual block of the
proposed network, the batch normalization layer is removed
and the activation function Rectified Linear Units (RELU)
[16] is replaced by SELU.

3.1.7 End block

End block is a convolution layer with kernel size 1×1, stride
size 1, padding size 0. An activation layer Tanh is added
to make sure the output pixel value is within the range of
[−1, 1].

3.2 Loss functions

The loss function for training the proposed network is defined
as:

L = λ2L2 + λgradLgrad , (6)

whereL2 andLgrad refer to L2 loss and gradient loss, respec-
tively. And λ2 and λgrad denote theweights assigned for each
loss term, where λ2 = 100 and λgrad = 20. These two coef-
ficients, λ2 and λgrad , are picked to make sure the value of
the two losses is on a similar scale (see Fig. S2 in the Support-
ing Information). In this way, the two losses make a similar
contribution in the training process.

The lossL2 in Eq. (6) is the distance between the network
output ID and the ground-truth sharp image IS in L2 norm:

L2 = E [||IS − ID||2] . (7)

The gradient loss proposed by the work of [7] has
been proven to effectively suppress the pattern artifacts in

deblurred images [27]. The gradient loss Lgrad in Equation
is defined as the distance between gradient maps of ID and
IS in L1 norm:

Lgrad = E[||∇h(IS) − ∇h(ID)| |1 (8)

+ ||∇v(IS) − ∇v(ID)| |1],

where ∇h and ∇v denote the horizontal and vertical gradi-
ent operators which are approximated by applying the Sobel
filter.

4 Experimental results

4.1 Training details

All the training and testing of the proposed approach are
conducted on a NVIDIA GeForce GTX 1080 Ti GPU using
Pytorch framework [18]. Adam optimizer [8] with initial
learning rate lr = 0.0002, exponential decay rate β1 = 0.5,
β2 = 0.999 and ε = 1e−08 is adopted to train the proposed
network. All trainable weights are initialized using a Gaus-
sian distribution with zero mean and standard deviation 0.02
and bias are initialized as 0.0. The network is trained for 125
epochs with batch size 2.

In the proposed network, the input blurry/ground-truth
training pair is randomly cropped into size 720 × 720 in the
original scale. In this way, the input image and the homogra-
phies are matched with each other. In total 10 homographies
are computed using Eq. (2) to (5) and each homography is
zero-padded to size 16 × 16 before fed into the network.

4.2 Ablation study

The original ExpandNet was proposed for the image super-
resolution problem. It consists of three parallel branches:
local, dilation, and global, and these three branches are fol-
lowed by a fusion net to merge the high-level feature maps
into a single image [13]. Todealwith spatially varyingmotion
blur, in this paper, unique structures are designed and imple-
mented, including a new global branch with homographies
as input, an extra image branch (medium branch), residual
blocks, and global skip connection.

As described in Table 1, four baselinemodels are designed
to evaluate these network structures in the proposed Deblur-
ExpandNet, where the baseline model Model0 refers to the
original ExpandNet [13] where only the blurry image is con-
sidered and the input for the global branch is also the blurry
image that is resized into 256× 256. All the five models are
trained on the train dataset and tested on the test dataset of
the DeblurIMU dataset [28].

The results (shown in Table 1 and Fig. 3) demonstrate that
the original ExpandNet (Model0) presents the lowest quan-
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Table 1 Ablation study on DeblurIMU dataset

Description Homography Medium branch Global skip connection Residual block PSNR SSIM

Model0 Original ExpandNet 23.63 0.826

Model1 Model0 + Homography � 26.28 0.885

Model2 Model1 + Medium branch � � 26.93 0.896

Model3 Model2 + Global skip � � � 27.29 0.898

Model4 Proposed � � � � 27.19 0.894

Fig. 3 Ablation study. a Input Blurry. Deblurred results of (a) processed by: b Model0. c Model1. d Model2. e Model3. f Model4

titative metrics and the most blurry visual result, because
ExpandNet is designed for the image super-resolution prob-
lem, not for image deblurring. By incorporating the infor-
mation from homography, Model1 achieves a significant
bump on the PSNR and SSIM, and its visual result is also
sharper than Model0. Integrated with the medium branch,
Model2 attains a much sharper result compared to Model1.
It’s because the medium branch fills the gap of the recep-
tive field between the local and dilation branch. However,
ringing artifacts occur in the results of Model2. The input-
to-out design in Model3 suppresses the ringing artifacts by
letting the network focus on the residual between the input
and the out image and achieves the highest PSNR and SSIM
among all models. However, its visual result appears less
sharp. Eventually, three residual blocks are inserted between
the fusion block and the end block in the proposed network
(Model4) and the sharpest visual result is therefore obtained.

4.3 Comparisons on synthetic dataset

The proposed DeblurExpandNet is compared with previous
state-of-the-art image deblurring networks on the dataset
DeblurIMU, including the work of Sim et al. [20], Tao et
al. [23], Zamir et al. [25] and Mustaniemi et al. [14].

Sim et al. [20] trained a per-pixel blur kernel map and
applied it to a residual image to restore a latent sharp
frame from a blurry one. Tao et al. [23] proposed an image
deblurring network that achieves very sharp visual results
and comparatively high Peak-to-Noise Ratio (PSNR) and
Structure Similarity (SSIM). Zamir et al. [25] developed a
multi-stage architecture that progressively learns restoration

Table 2 Average PSNR, SSIM and processing time tested on
DeblurIMU dataset

Method PSNR SSIM Processing time

Zhang [26] 18.37 0.707 1.2 s

DeblurGAN [11] 20.84 0.756 1.8 s

Zamir [25] 21.63 0.762 2.5 s

Tao [23] 21.80 0.761 1.6 s

Sim [20] 21.88 0.767 0.8 s

DeblurGAN_v2 [12] 22.45 0.836 3.1 s

Mustaniemi [14] 22.72 0.812 1.4 s

DeblurExpandNet 27.19 0.894 0.6 s

functions for the blurry input. Similar to the DeblurExpand-
Net, the work of Mustaniemi et al. [14] adopts gyroscope
data as auxiliary information.

Table 2presents averagePSNRandSSIMon theDeblurIMU
dataset, respectively. In this comparison, the official imple-
mentation and pretrained model released by authors are
adopted. The results (shown in Table 2) demonstrate that
the proposed DeblurExpandNet achieves the highest aver-
age PSNR & SSIM, and the shortest processing time among
all image deblurring networks.

Figure 4 illustrates the visual results of these networks.
The deblurred results of Sim [20], Tao [23] and Zamir [25]
suffer from artifacts, for example, the local images of the
wheel and shadows in Fig. 4b–d. These areas either appear
to have undesired texture or are degraded by spatially vary-
ing blur. Without the information provided by the inertial
sensor data, it is hard for these networks to tell the difference
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Fig. 4 Comparison tested on the proposed DeblurIMU dataset. a Input
blurry. Deblurred results of a processed by: b Sim [20]. c Tao [23]. d
Zamir [25]. e Mustaniemi [14]. f Proposed DeblurExpandNet

between motion blur and image texture or deal with spatially
varying blur. This results in the visible artifacts that are seen.
DeepGyro proposed by Mustaniemi et al. [14] has no prob-
lem handling the texture and non-uniform blur, because it
accepts a blur field generated from gyroscope data. How-
ever, its image deblurring performance is limited and the
zoomed-in patches remain blurry and less sharp compared to
the proposed DeblurExpandNet.

4.4 Comparisons on real images and inertial sensor
data

Comparisons are also conducted on real noisy blurry images
and correspondent inertial sensor data that are captured and
collected by ahand-held smartphoneLGNexus 5.Anandroid
application [30] is developed and adopted to acquire a blurry
image, gyroscope and accelerometer data during the expo-
sure time.

The deblurred results on the real data are shown in Fig.
5. The inertia sensor data is assumed to be accurate and no

Fig. 5 Comparison on real data. a Input Blurry. Deblurred results of a
processed by: b Tao [23]. c Zamir [25]. dMustaniemi [14]. e Proposed.

pre-processing steps are added. Similar to the observation on
the synthetic data, the deblurred images of Tao [23] present
some artifacts, such as on the plastic wrap and the candle in
Fig. 5b. And the results of Mustaniemi [14] and Zamir [25]
in Fig. 5c, d remain blurry. The proposed DeblurExpandNet
has the sharpest output with the least artifacts among all the
compared networks.

5 Conclusion

In this paper, an advanced ExpandNet is proposed to address
the problem of spatial varying blur through the capture of
one blurry image and inertial sensor data. The spatial vary-
ing blur across the blurry image is learned from a sequence
of homographies that are calculated from the inertial sensor
data. To integrate the homographies with the input blurry
image, the high-level feature vector of the homographies is
concatenated with each pixel in multi-level feature maps of
the input. Additional structures, such as medium branch and
residual blocks, are also considered to improve sharpness and
suppress artifacts. Compared to the state-of-the-art deblur-
ring networks, the proposed DeblurExpandNet achieved the
highest PSNR and SSIM as well as the shortest processing
time.And the visual results of the proposedmethod presented
the least artifacts and the sharpest performance.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11760-021-02067-
1.
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