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Abstract
Hyperspectral images are used in many different fields due to their ability to capture wide areas and rich spectrality. However,
applications on hyperspectral image (HSI) are affected or limited by various types of noise. Therefore, denoising is an
important pre-processing technique for HSI analysis. Tensor decomposition-based denoising algorithms are frequently used
due to constraints of traditional two-dimensional methods. An alternative tensor decomposition, enhanced multivariance
product representation (EMPR) has been derived from high-dimensional model representation (HDMR) for multivariate
functions and discretized for tensor-type data sets. In this study, EMPR-based denoisingmethod is proposed for HSI denoising.
EMPR is a decomposition method which is easy to compute and does not include a rank problem that exists in the other tensor
decomposition methods. The performance of EMPR-based denoising is evaluated bymeans of simulated and real experiments
on different HSI data sets which include different types of noise. The obtained results are compared with the state-of-the-art
tensor-based methods.
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1 Introduction

Hyperspectral imaging has gained great importance with
the development of remote sensing technologies in recent
years. A hyperspectral image (HSI) is obtained bymeasuring
energy reflection through hundreds of continuously nar-
row wavelength bands. These images are used for different
applications, such as environmental monitoring, agriculture,
and defense systems [1,2]. HSI applications in the men-
tioned areas generally focus on problems like classification,
target-anomaly detection and spectral unmixing [3–5]. The
performance of HSI applications is limited due to degra-
dation on HSI by several types of noise caused by sensor
malfunction or atmospheric effects. Therefore, denoising is
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an important pre-processing technique for HSI analysis. Tra-
ditional HSI denoising methods apply denoising onto each
bandone byone owing to the fact that each band is a grayscale
image. The 2D methods ignore spatial–spectral correlation
and denoising capacity of these 2D methods may be limited
[6]. Transformation-based methods like Fourier transform
or wavelet transform are also used to exploit spatial–spectral
correlation in denoising [7]. On the other hand, recent studies
which are based on low-rank matrix decomposition achieve
better performance for the reconstruction of noisyHS images
[8–10]. Low-rank methods capture spectral information suc-
cessfully but they may cause spatial distortion in denoising.

Researchers investigated tensor decomposition-based
techniques to enhance denoising quality, owing to the fact
that an HSI can naturally be represented by a tensor [11].
Spatial–spectral correlation of the HSI can be captured more
efficiently by some certain tensor decomposition techniques
like CANDECOMP/ PARAFAC (CP) decomposition [12]
and Tucker decomposition [13]. One of the proposed denois-
ing studies that uses Tucker decomposition is a low-rank
tensor approximation (LRTA) method, which provides spa-
tial low-rank approximation, and spectral dimensionality
reduction simultaneously [14]. Tucker decomposition is also
used for learning overcomplete dictionaries of HSI data sets
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and these dictionaries were used in denoising problem as
tensor dictionary learning (TDL) [15]. Another denoising
method on tensor decomposition is hyper-Laplacian regu-
larized unidirectional low-rank tensor recovery (LLRT) [16]
which is not efficient on mixed noise as on Gaussian noise.
CP decomposition, also known as PARAFAC, is a commonly
used algorithm for HSI denoising, which may lead to spec-
tral distortion due to the estimation of the CP rank that is
dependent on variance of noise [17,18]. In addition, other
commonly used tensor decomposition techniques have not
only similar problems, but also high computational complex-
ity.

This paper proposes a statistical tensor decomposition
method for HSI denoising, enhanced multivariance prod-
uct representation (EMPR), unlike the other tensor-based
methods which are the subjects of multivariate linear alge-
bra. EMPR is a divide-and-conquer algorithmwhich is based
on Sobol’s high-dimensional model representation (HDMR)
[19]. Recently, EMPR has been used to solve different prob-
lems in image processing [20,21]. Compared with the other
tensor-based denoising methods, our main contributions are
as follows:

• EMPR is capable of capturing spatial–spectral correlation
with components that have less dimension than the HSI.
This feature of EMPR empowers denoising performance
on mixed-type noise.

• EMPR’s components are easy to compute and certain
components which are called “support vectors” can be
calculated flexibly with prior knowledge, if there is any,
of the noise model.

• EMPR is a statistical representation of amultivariate func-
tion which can be used as a dimensionality reduction
method. EMPR’s components can be easily evaluatedwith
marginal expectations under support andweight functions.
Therefore, EMPR-based denoising is computationally
more efficient than the other tensor-based denoisingmeth-
ods.

This paper is organized as follows: The next section gives
an explanation on the mathematical background of EMPR.
Section 3 clarifies how to use the EMPR algorithm to remove
noise on HSI. We carried out simulated and real experiments
in Sect. 4 to show compared quantitative and illustrative
assessments. Section 5 concludes the study and informs read-
ers on future works.

2 Enhancedmultivariance product
representation

EMPR is a dimensionality reduction method for expressing
an N-direction tensor in terms of less-dimensional ten-

sors and certain support vectors. Using EMPR method, the
element with index i1 . . . iN of the N-dimensional tensor
structure X can be expressed as follows.

Xi1...iN = X (0)
N∏

j=1

s( j)i j
+

N∑

j1=1

X ( j1)
i j1

N∏

j=1
j �= j1

s( j)i j

+
N∑

j1, j2=1
j1< j2

X ( j1 j2)
i j1 ,i j2

N∏

j=1
j �= j1, j2

s( j)i j
+ · · · + X ( j1 j2... jN )

i j1 i j2 ...i jN
,

i j = 1, 2, . . . , n j , j = 1, 2, . . . , N . (1)

Here, X (0) is a constant, X ( j1)s are one-way tensors (or vec-
tors), and X ( j1 j2)s are two-way tensors, that is, matrices.
The right hand side components can be considered as ten-
sors of increasing number of dimensions. So the last element
X ( j1 j2... jN ) is the N-way tensor. This expansion contains a
finite number of sums. s( j)s in the expansion are called sup-
port vectors. Themain purpose of thismethod is to determine
the general structures of EMPR’s components using support
vectors and to represent themultivariate datawith less variate
components. To calculate the components in EMPR expan-
sion, a weight vector (W ( j)

i j
) is used in each direction. This

weight vector satisfies the normalization conditions given
below.
n j∑

i j=1

W ( j)
i j

= 1,

n j∑

i j=1

W ( j)
i j

(
s( j)i j

)2 = 1,

j = 1, 2, . . . , N . (2)

To uniquely obtain the EMPR components, vanishing con-
ditions are defined over the weight and support vectors as
follows

n jl∑

i jl =1

W ( jl )
i jl

s( jl )i jl
X ( j1... jk )
i j1 ...i jk

= 0,

l = 1, 2, . . . , k, k = 1, 2, . . . , N . (3)

Under the conditions described above, the constant com-
ponent of the EMPR expansion, X (0) can be calculated as
follows.

X (0) =
n1∑

i1=1

· · ·
nN∑

iN=1

[
N∏

k=1

W (k)
ik

s(k)ik

]
Xi1...iN . (4)

The univariate components denoted by X ( j) are calculated
with the exclusion of the relevant direction.
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Bivariate components are similarly calculated excluding the
two related directions as follows.

X ( j,k)
i j ,ik

=
n1∑

i1=1

· · ·
n j−1∑

i j−1=1

n j+1∑

i j+1=1

· · ·
nk−1∑

ik−1=1

nk+1∑

ik+1=1

· · ·
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The other EMPR components at the right hand side of Eq. 1
are calculated in a similar way.

It is important to determine the support vectors in the
EMPRmethod since it directly affects the performance of the
method. Although there is no restriction on the evaluation of
the support vectors, it is well known from the previous stud-
ies that the calculation of the support vectors by normalizing
the directional averages of the data set has produced good
results [23]. For this reason, the support vectors obtained in
this way are used in this study, and their mathematical defi-
nition is given below.
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=
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⎦

1
2

.

(7)

In the next section, it is explained how noise can be removed
in HSI by using EMPR components.

3 Proposedmethod

The mathematical expression of a noisy HSI is as follows

Y = X + N (8)

where Y , X and N are the observed noisy HSI, noise-
free HSI and noise tensor, respectively. All are three-way
tensors with the same dimension, (n1, n2, n3). Due to the
multi-band nature of HSI, 2D denoising methods may cause
image distortions or artifacts. The main reason for this is
that such traditional methods are effective only in spatial
dimensions and are inefficient at capturing correlated struc-
tures through the bands. In the EMPR method, the spatial
relationship between the pixels as well as the relationship
between the bands is included in the HSI data representation
through the EMPR components. In other words, if the spa-
tial coordinates of the first and second directions are indexed
by i, j and the spectral coordinate of the third direction
(band order) is indexed by k in the HSI containing noise, the
three-way component of the EMPRmethod,Y(1,2,3), and the

two-way components, Y(1,2), Y(1,3) and Y(2,3), define a sta-
tistical relationship between spatial and spectral dimensions
in different directions. These EMPR components can be con-
sidered as high-frequency components in multi-resolution
analysis-based methods and some of these high-frequency
components are loaded by heavy noise.

The element in the {i, j, k} − th position of this HSI data
set can be expressed exactly by the EMPR method with the
following equation.

Yi, j,k = Y(0)s(1)i s(2)j s(3)k + Y(1)
i s(2)j s(3)k

+ Y(2)
j s(1)i s(3)k + Y(3)

k s(1)i s(2)j + Y(1,2)
i, j s(3)k

+ Y(1,3)
i,k s(2)j + Y(2,3)

j,k s(1)i + Y(1,2,3)
i, j,k

i = 1, 2, . . . , n1, j = 1, 2, . . . , n2, k = 1, 2, . . . , n3.

(9)

To develop a novel denoising method using the EMPR
method, some high-frequency terms have been extracted
from the EMPR expansion of the HSI. For this purpose, the
components, Y(1,2,3)

i, j,k , Y(1,3)
i,k and Y(2,3)

j,k , are excluded from
the element in the {i, j, k} − th position of this HSI which
is Yi, j,k as follows

Xi, j,k ≈ Yi, j,k − Y(1,2,3)
i, j,k − Y(1,3)

i,k − Y(2,3)
j,k

i = 1, 2, . . . , n1, j = 1, 2, . . . , n2, k = 1, 2, . . . , n3

(10)

From another point of view, the high-frequency EMPR
terms Y(1,2,3)

i, j,k , Y(1,3)
i,k and Y(2,3)

j,k are taken as noise and the
results suggest that EMPR was relatively successful in the
tests. Theperformanceof the proposedmethod and the results
of the comparison between the other state-of-the-art tensor-
based denoising methods are given in the next section.

4 Experimental design and analysis

4.1 Experimental design

EMPR’s denoising performance is compared with
PARAFAC, LRTA, TDL, and LLRT which all are tensor-
based denoising methods. For quantitative assessment, peak
signal-to-noise ratio (PSNR), relative dimensionless global
error in synthesis (ERGAS), the structural similarity (SSIM),
and spectral angle mapper (SAM) are chosen as evaluation
metrics [24]. Larger values of PSNR and SSIM indicate bet-
ter denoising performance. Smaller values of ERGAS and
SAM point out high performance in denoising. Two types of
experiments are designed for the assessment of the proposed
method. The first type of experiment is simulated on two dif-
ferent HSI data sets. The second type of experiment is the
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(a) Original
band

(b) Noisy band (c) PARAFAC (d) LRTA (e) TDL (f) LLRT (g) EMPR

Fig. 1 Denoising results for band 50 of Abu-Urban data set

Table 1 Quantitative Assessment of Denoising Performance for Abu-
Urban

Method ERGAS MPSNR MSSIM SAM

Noisy HSI 87.4082 16.0103 0.0963 0.8863

PARAFAC 25.5157 29.3575 0.6033 0.4049

LRTA 31.5548 24.8371 0.3615 0.4751

TDL 37.0973 26.2579 0.4393 0.4565

LLRT 62.2970 19.7582 0.1781 0.7027

EMPR 16.3073 27.4384 0.6490 0.3963

Ideal Value 0 ∞ 1 0

Table 2 Running Time for Abu-Urban

Method PARAFAC LRTA TDL LLRT EMPR

Time(sec) 169.2491 2.8776 7.6621 288.7012 1.3319

visual comparison of denoising performance of EMPR on a
real HSI. For the simulated experiment, the ABU-Urban and
the ABU-Airport1 from AVIRIS (Airborne Visible/Infrared
Imaging Spectrometer) are chosen [25]. The Abu-Airport
data set consists of 100 × 100 pixels with 205 bands while
Abu-Urban has the same dimensions and 207 bands. For the
real data experiment, Urban2 data set has been chosen.

4.2 Simulated experiments

Abu-Urban data set is chosen for the first simulated exper-
iment. The noise model for this experiment includes zero-
mean Gaussian noise with different standard deviation ran-
domly sampled from [0.1,0.2] for each band, and randomly
selected 20 bands were added noise with 20% density salt
and pepper noise. Table 1 shows ERGAS, mean PSNR,
mean SSIM, and SAM, respectively, for different tensor-
based denoising methods. The results are given for the mean
of twenty runs. The best results in Tables 1–4 for each qual-
ity metric are marked in bold and the second best results are
underlined. According to the results given in this table, it is

1 http://xudongkang.weebly.com/data-sets.html
2 https://rslab.ut.ac.ir/data

Fig. 2 Spectral signature restoration of different methods for the pixel
in [15,45] of Abu-Urban. a Noisy pixel, b PARAFAC, c LRTA, d TDL,
e LLRT, f (EMPR)

clear that EMPR outperforms for three quality indexes and
it is the second best for MPSNR. Table 2 gives the running
time and EMPR is the fastest denoising method among them
all.

Figure 1 presents visual quality of denoising performance
for each tensor-based method on Abu-Urban data set. The
results are given for band 50 of the simulated HSI. The out-
puts ofLRTAandLLRTalgorithms are still noisy. PARAFAC
and TDL yield better visional results, however, EMPR is
demonstrably superior denoiser.

Spectra of a selected noisy pixel from Abu-Urban data
set along with reconstruction results are illustrated in Fig.
2. EMPR provides better suppression of noise while repre-
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Fig. 3 PSNR and SSIM values of different denoising methods in each
band of the first simulated experiment on Abu-Urban

Table 3 Quantitative Assessment of Denoising Performance for Abu-
Airport

Method ERGAS MPSNR MSSIM SAM

Noisy HS 67.4316 14.8619 0.1159 0.7983

PARAFAC 37.3634 27.2129 0.6776 0.4679

LRTA 43.2151 21.1609 0.3302 0.5387

TDL 41.6326 23.1975 0.52088 0.5208

LLRT 40.6130 18.2982 0.0229 0.6747

EMPR 19.1255 29.2417 0.8134 0.2578

Ideal Value 0 ∞ 1 0

Table 4 Running Time for Abu-Airport

Method PARAFAC LRTA TDL LLRT EMPR

Time(sec) 162.4416 3.5995 6.0819 300.0680 1.2553

senting pixel spectra. However, there are slight numerical
differences between band 40 and band 100 for EMPR’s
reconstruction as seen in Fig. 2f. Figure 3 presents PSNR and
SSIM values through the bands, respectively. PSNR values
are lower than PARAFAC,which is compatiblewithMPSNR
results in Table 1.

The simulated experiment on the Abu-Airport data set
is designed with four different types of noise to show the
performance of the proposed method [22]. This consists of
zero-mean Gaussian noise with different standard deviations

randomly sampled from [0.1, 0.2] for each band, impulse
noise with 20% density percentage for randomly 20 selected
bands, dead lines with a width from 1 to 3 were added to
20% of the bands, which were randomly selected and stripes
with a width from 6 to 15 were added to a randomly selected
40% of the bands. Table 3 indicates that EMPR effectively
removes the mixed noise compared to the other methods.
Figure 4 presents visual results which are compatible with
quantitative results in the table. Figure 4 points out that all
the methods except EMPR do not accomplish the removal of
stripes. Running time of the methods are presented in Table
4.

Restoration of a noisy pixel for all of the methods is given
in Fig. 5. EMPR-based denoising fluctuates less than the
other methods and achieves better approximation to the orig-
inal pixel.

PSNR and SSIM values are given in Fig. 6. As it can be
seen in the figure, EMPR provides lower PSNR values than
PARAFAC in the vast majority of the first fifty bands.

4.3 Experiment on real data

Urban data set is used to verify denoising performance of
EMPR on HSI. This data set has some degradation due to
noisy bands. A subscene of this data set with 150× 150 size
is cropped where the noise is dense and includes stripes. This
data set has 210 bands. Bands 139 and 208 are corrupted by
heavy noise. Figures 7 and 8 show visual results of denoising
on bands 139 and 208, respectively. According to the visual
results of the restored bands, EMPR has superiority over the
other tensor-based methods.

4.4 Discussion

According to the experiments with both simulated and real
data, it can be concluded that EMPR is particularly effective
at HSI denoising. Bivariate and trivariate EMPR components
have spatial–spectral correlation for different directions of
HSI data cube. We excluded EMPR’s most noisy compo-

(a) Original
band 20

(b) Noisy band
20

(c) CP (d) LRTA (e) TDL (f) LLRT (g) EMPR

Fig. 4 Denoising results for band 20 of Abu-Airport data set
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Fig. 5 Spectral signature restoration of different methods for the pixel
in [45,89] of Abu-Airport-3. a Noisy pixel, b PARAFAC, c RTA, d
TDL, e LLRT, f (EMPR)

Fig. 6 PSNR and SSIM values of different denoising methods in each
band of the simulated experiment-1 on Abu-Airport

nents for the denoising process. As pointed out in Sect. 4.2,
there are some numerical differences for some of the bands
at EMPR-based denoising. These results potentially demon-
strate that EMPR’s componentsmaynot be able to capture the
spectrality totally on these bands of the HSI signals. Another
topic of discussion is EMPR’s PSNR results in Fig. 3. Look-
ing at these results, it can be inferred that EMPR is more
sensitive to the Gaussian noise than to the other types of
noise, since Gaussian noise added to all of the bands. Never-
theless, it should be noted that EMPR is still the best denoiser
considering the other quantitative metrics like SSIM. More-
over, it is clear from the experiments that EMPR provides a
better performance on the removal of the mixed-type noise.

5 Conclusion and future work

This article proposes a new HSI denoising method using
EMPR. EMPR naturally represents tensor-type data sets by
describing different statistical features of different dimen-
sions. The EMPR method makes it easy to process multidi-
mensional data sets through pre-calculated support vectors.
These support vectors can be considered as priors of the
denoising model. The features of the support vectors and
divide-and-conquermechanismofEMPRallowus to develop
an efficient tensor decomposition-based denoising method
for HSI. Both simulated and real experiments demonstrated
promising results on the EMPR’s denoising quality. Running
time results also revealed that EMPR has lower computa-
tional complexity than the other state-of-the-art tensor-based
denoising methods. On the other hand, as discussed in Sect.
4.4, EMPR’s sensitivity to the Gaussian noise should be
explored in future work. A non-local approach can be uti-
lized to improveEMPR’s performance onGaussian noise and
can empower spectrality of the EMPR components. Another
future study for consideration is the detailed analysis of
EMPR noisy components’ spectrality.

(a) (b) (c) (d) (e) (f)

Fig. 7 Urban data set: a original band 139, b PARAFAC, c LRTA, d TDL, e LLRT, f EMPR
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(a) (b) (c) (d) (e) (f)

Fig. 8 Urban data set: a original band 208, b PARAFAC, c LRTA, d TDL, e LLRT, f EMPR
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