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Abstract
In this paper, we aim to improve the performance of single-image super-resolution (SISR) by designing amore effective feature
extraction module and a better fusion scheme for integrating hierarchical features. Firstly, we propose a selective multi-scale
module (SMsM) to adaptively aggregate multi-scale features via self-learned weights and thus extract more distinctive
representation. Then, we design an attentive global feature fusion (AGFF) scheme to reduce the redundant information
inside the extracted hierarchical features by employing a gate mechanism (in the form of group convolution) and adaptively
re-calibrate the features with channel-wise attention weights before fusion. Stacked SMsMs and AGFF compose a novel
network which is termed selective multi-scale network (SMsN). Extensive experimental results demonstrate that our SMsN
model outperforms some state-of-the-art SISR methods in terms of accuracy and efficiency.

Keywords Super-resolution · Convolutional neural network · Selective multi-scale network · Feature fusion

1 Introduction

Recently, single-image super-resolution (SISR), which aims
to recover the high-resolution (HR) images from the cor-
responding low-resolution (LR) images, has become an
extremely popular research topic among computer vision and
robotics research communities [5,10,28]. The basic hypoth-
esis to solve this challenging problem is that a mapping from
LR to HR images can be learned from many training pairs.

Since a simple three-layer network SRCNN is firstly pre-
sented to learn the nonlinear mapping function [4], many
sophisticated network architectures have been designed to
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improve the performance [2,17,18,29,30]. Most existing
CNN-based models in SISR domain focus on designing
deeper or more complex networks [12,32,36]. In this paper,
our motivation is to explore effective techniques to extract
and integrate hierarchical features to improve SISR perfor-
mance, achieving higher restoration accuracy using fewer
parameters.

Specifically, we propose a selective multi-scale network
(SMsN) to adaptively aggregate multi-scale features and
ease the training difficulty. Figure 1 shows the proposed
architecture of SMsN. First, we design a module based on
the selective kernel module (SKM) [24]. We optimize the
standard SKM by replacing the Sof tmax function with
Sigmoid to expand the solution search space. Such selective
multi-scale module (SMsM) allows our proposed network to
learn more distinctive features for the subsequent SISR task.
We also propose an attentive global feature fusion (AGFF)
scheme to take into account both low-level and high-level
features. Different from global feature fusion (GFF), we
embed a gate mechanism in the form of group convolution
to filter out the redundant information inside the hierarchical
features. Before fusion, the reduced features are adaptively
re-calibrated with channel-wise attention weights. Thus, it
can reduce the training difficulty of the network and enhance
super-resolution results. In summary, the contributions of this
paper are organized as follows:
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– Inspired by the selective kernel module (SKM) in the
image classification domain, we design a selective multi-
scale module (SMsM) to learn channel-wise weights
for adaptively fusing multi-scale features extracted from
multiple branches with different kernels. The Sof tmax
operation is replaced with Sigmoid to expand the search
space for more distinctive features.

– To better utilize the hierarchical features of stacked
SMsMs, we propose an enhanced global feature fusion
(GFF) scheme, called attentive global feature fusion
(AGFF). Different from GFF, we employ a gate mech-
anism based on group convolution to relieve the redun-
dancy problem of hierarchical features and embed the
channel attention mechanism to re-calibrate the features
before fusion.

– Based on the above proposed techniques, we present
a compact but powerful selective multi-scale network
(SMsN) for high-quality SISR. Comparing with state-
of-the-art methods, SMsN model achieves comparable
image restoration performance by using fewer parame-
ters and floating-point operations (FLOPs).

2 Related work

Recently, deep learning has achieved dominant advantages
against conventional SISR methods. We briefly review some
CNN-based SISR methods in this section.

Dong et al. [4,5] firstly proposed the three-layer model
(i.e., SRCNN) to learn the end-to-end mapping function
between pre-upscaled LR and HR images. After this pio-
neer work, substantial methods have been presented to chase
more accurate recovery results by exploring deeper andmore
complex structures. Kim et al. designed two deep networks
(VDSR [17] and DRCN [18]), employing residual learning
and recursive convolution layers, respectively, to ease the
training difficulty and meanwhile promote the performance.
Tai et al. developed52-layerDRRN [29]with recursive resid-
ual blocks and 80-layer MemNet [30] with memory blocks.
He et al. [9] proposedMRFNwithmulti-receptive-fieldmod-
ules and optimized the model with a novel weighted Huber
loss. Though containing only 22 layers,MRFNoutperformed
DRRN andMemNet. Later, SRResNet [22] stacked multiple
original residual blocks [8] to boost the SISR reconstruction
accuracy. EDSR [26] employed enhanced residual blocks
andmade a significant performance improvement in terms of
PSNRandSSIM, andwon theNTIRE2017 competition [31].
SRDenseNet [32] utilized the dense block [13] as the basic
module and achieved good performance. Zhang et al. [36]
proposed RDN, which combined residual block and dense
block to extract more abundant features for SISR, achieving
higher values of metrics. Li et al. [25] developed SRFBN to
integrate a feedback mechanism to refine low-level represen-

tations using high-level information. Liu et al. [27] designed a
novel residual feature aggregation (RFA) framework to fully
utilize the hierarchical features on the residual branches.

More recently, attention mechanism has been involved
in SISR and can further improve the performance. Atten-
tion mechanism drives CNN to focus on salient or important
parts and thus can guide the details recovery in SISR. Jiang
et al. [16] introduced SENet [11] into capsule block for
SISR. Zhang et al. [35] integrated SENet [11] into residual
block and employed residual-in-residual structure to form
RCAN, which pushed the state-of-the-art SISR performance
forward. However, SENet only exploited first-order statis-
tics of features and ignored higher-order statistics. Dai et
al. [3] presented a second-order channel attention module to
improve the discriminative ability of SISR network. Hu et
al. [12] developed a CSAR block via combining spatial and
channel-wise attention mechanisms into the residual block
to adaptively modulate the feature representations.

Another direction is to develop SISR models for mobile
application. Dong et al. [6] initially proposed a fast variant of
SRCNN (i.e., FSRCNN), which took LR images as the net-
work input and employed a deconvolution layer in the model
tail for upscaling the spatial size. For similar purpose, Shi et
al. [33] proposed the sub-pixel convolution (i.e., pixel-shuffle
operation) to rearrange the tensor elements for fast and accu-
rate upscaling of LR images. Following them, the lightweight
SISR methods were developed. Representatively, Hui et al.
presented information distillation network (IDN) [15] and
IMDN[14] to balance performance and speed, thus improved
the applicability. He et al. [2] modified the residual block and
developed an energy-aware improved deep residual network
(EA-IDRN) to investigate a number of design options for fast
and accurate SISR. Afterward, Lai et al. developed LapSRN
[20] and ms-LapSRN [21] by progressively reconstructing
sub-band residual HR images at multiple pyramid levels.

3 Methodology

3.1 Network structure

Figure 1 shows the pipeline of our proposed SMsN model.
Our SMsN model consists of three sub-networks: an ini-
tial feature extraction sub-network (IFENet) to learn feature
maps from low-resolution input I LR , a feature mapping
sub-network (FMNet) to transform low-level features into
high-level ones, and an image reconstruction sub-network
(IRNet) to reconstruct the super-resolved high-resolution
image I SR .

Given a LR input image I LR ∈ R
3×H×W , a 3× 3 convo-

lutional layer is firstly deployed in IFENet to extract initial
features F0 ∈ R

C×H×W as
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Fig. 1 Network architecture of our proposed Selective Multi-scale
Network (SMsN), which consists of three sub-networks: an initial fea-
ture extraction sub-network (IFENet), a feature mapping sub-network
(FMNet), and an image reconstruction sub-network (IRNet). CA
denotes the channel attentionmechanism, Fn denotes the output features

of n-th Selective Multi-scale Module (SMsM), and FHL denotes the
high-level features before upsampling part.Given a low-resolution input
image I LR , the aim of our SMsN is to reconstruct the high-resolution
image output I SR

F0 = FI FENet (I
LR), (1)

where FI FENet (·) stands for the operation of IFENet. Then,
the extracted F0 is fed into FMNet for learning the high-level
features FHL ∈ R

C×H×W , which are used for reconstruct-
ing super-resolved I SR . FMNet is the core of our SMsN
model, and it contains a sequence of stacked SelectiveMulti-
scale Module (SMsM), an Attentive Global Feature Fusion
(AGFF), and a long skip connection.

FHL = FFMNet (F0)

= F0 + FAGFF (FSMsM,N (FSMsM,N−1(· · ·
(FSMsM,1(F0)) · · · ))), (2)

where FFMNet (·) represents the operation of FMNet.
FSMsM,n(·) and FAGFF (·) denote the operation of n-th
SMsM module and the operation of AGFF, respectively. For
a ×R upscaling SISR task, two 3 × 3 convolutional layers
are utilized to convert the channel number of FHL from C to
3× R × R and the pixel shuffle operation [33] upscales and
reconstructs the super-resolved output I SR ∈ R

3×RH×RW as

I SR = FI RNet (FHL)

= F↑R(F3×3(F3×3(FHL))), (3)

where FI RNet (·) stands for the operation of IRNet. F3×3(·)
and F↑R denote the 3 × 3 convolution layer and the ×R
pixel shuffle operation, respectively. The SMsN model is
optimized by minimizing the pixel-wise difference between
the predicted super-resolved image I SR and corresponding
ground truth I GT . We adopt the L1 loss function to drive the
weights learning [26,32].

3.2 Selectivemulti-scale module

Extracting image features on different scales has been proved
to be effective in recent SISR literature [9,23]. The most
commonly used technique for feature fusion is employing a
simple concatenation layer and a convolutional layer to inte-
grate the extracted multi-scale features. The convolutional
layer linearly aggregates the concatenated multi-scale fea-
tures. To improve the adaption capability of feature fusion,
Li et al. [24] present a SelectiveKernelmodule (SKM),which
utilizes self-learned selection weights to aggregate informa-
tion from multiple branches, making the neurons adaptively
adjust sizes of their receptive fields.

Inspired by its successful application in the image clas-
sification domain, SKM is integrated into our Selective
Multi-scale Module (SMsM) to solve the challenging SISR
problem. First, we remove some irrelevant components such
as batch normalization and group convolution. Then, we
replace the Sof tmax function with Sigmoid for more flexi-
ble weights learning. Also, we add a convolutional layer and
a skip connection to ease the training procedure.

As illustrated inFig. 2, given a featuremapX ∈ R
C×H×W ,

two convolutional layerswith different kernel sizes (i.e., 3×3
and 5 × 5) conduct transformations, respectively: ˜F3×3 :
X → ˜U ∈ R

C×H×W and ̂F5×5 : X → ̂U ∈ R
C×H×W . For

the efficiency consideration, the 5×5 convolution is replaced
by using a 3 × 3 dilated convolution and setting dilation
value to 2. Then, ˜U and ̂U are combined via element-wise
summation operation:

U = ˜U + ̂U, (4)

where U ∈ R
C×H×W are the fused multi-scale features.

Then, we encode the global information by simply using
a global average pooling (GAP) to generate initial channel-
wise weights s ∈ R

C×1×1. The c-th element of s can be
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Fig. 2 Diagram of proposed Selective Multi-scale Module (SMsM).
The yellow box part is the original SKM from [24]. SMsM replaces
Sof tmax with Sigmoid, adds a 3 × 3 convolution after the V, and
fuses with the input X to obtain the final output F

z1

z2

1

1

So�max
Sigmoid

Fig. 3 Solution space illustration of Sof tmax and Sigmoid operations

expressed as:

sc = GAP(Uc) = 1

H × W

H
∑

i=1

W
∑

j=1

Uc(i, j), (5)

where GAP(·) denotes the global average pooling operation
and Uc(i, j) is the value at coordinate position (i, j) of the
c-th channel of U.

We employ two fully connected (FC) layers and a ReLU
activation to compute the selection weights z ∈ R

2C×1×1:

z = FC2(max(0, FC1(s))), (6)

wheremax(0, x) denotes the ReLU activation. In our imple-
mentation, theFC layers are performedby1×1 convolutional
layers. The first FC layer reduces the dimension from C to
C/r , and the second FC layer expands the dimension from
C/r to 2C . r means the reduction ratio and r = 4 in our
implementation.

In the original SKM, the authors reshape the weights z
to 2 × C × 1, adopt a Sof tmax operation to normalize the
selection weights across channels, and split the normalized
weights into two vectors: z1 ∈ R

C×1×1 and z2 ∈ R
C×1×1.

However, the Sof tmax operation imposes a strong constraint
for z1 and z2 as z1 + z2 = 1. This means the search space of
z1 and z2 must be on the red line segment of Fig. 3.

As the result, when z1 learns large values to emphasize
the features extracted using 3 × 3 convolutions, then the
computed weights z2 for larger scale features will become
insignificant, and vice versa. However, imposing such a com-
petitive mechanism in the fusion process of the extracted
multi-scale features restricts the search space of z1 and z2
and might not be optimal for the SISR task. Therefore, we
replace the original Sof tmax with the Sigmoid operation
in our proposed SMsM for more flexible learning of z1 and
z2 as 0 < z1, z2 < 1. In this situation, the search space of z1
and z2 is expanded to the light blue box of Fig. 3.

By applying the computed attentionweights tomulti-scale
features, the fused features V ∈ R

C×H×W are obtained as

V = z1 · ˜U + z2 · ̂U. (7)

For the SISR task, we add a 3× 3 convolutional layer and
fuse with the inputX to obtain the final output F ∈ R

C×H×W

as

F = X + F3×3(V). (8)

3.3 Attentive global feature fusion

With the growth of depth, network will become difficult to
train due to the gradient vanishing problem. More specifi-
cally, the low-level features gradually lost/disappear in the
forward pass process to deeper layers, as shown in the
plain structure (Fig. 4a). However, it is reported in many
previous research works that the low-level features play a
non-negligible role in reconstructing the super-resolved HR
image [12,30,34]. It is important to fully utilize the hierar-
chical features extracted in different modules.

A feasible solution to alleviate the gradient vanishing
problem is to directly send the low-level features to deeper
layers via skip connections. Given the multi-scale features
extracted by individual SMsMs, the global feature fusion
(GFF) [23,36] performs concatenation operation at the end
of the network and utilize a 1 × 1 convolutional layer to
adaptively select informative features as

FGFF : F1×1([F1||F2|| · · · ||FN ]), (9)

where [||] denotes the concatenation operation and Fn
denotes the output features of the n-th SMsM.

However, the concatenated hierarchical features (features
extracted using individual SMsMs) contain a large amount of
redundant information. Therefore, it is difficult to generate
distinctive features for the subsequent SISR task by utilizing
a 1×1 convolutional layer to linearly combine features from
such a huge concatenated feature bank. Moreover, the output

123



Signal, Image and Video Processing (2022) 16:937–945 941

(a)

(b)

(c)

Fig. 4 Different connection schemes between SMsMs: a plain struc-
ture; b global feature fusion; c attentive global feature fusion. CA
denotes the channel attentionmechanism, GAP denotes the global aver-
age pooling operation, and FC denotes the fully connected layer

of 1 × 1 convolution is produced by a weighted summation
through all channels; thus, the inter-dependencies between
channels are implicitly embedded in the convolution layer
and cannot adaptively change for different scenes.

We design an attentive global feature fusion (AGFF)
scheme (Fig. 4c) to solve the mentioned problems. To relieve
the redundancy problem, we firstly employ a group con-
volution by setting the group numbers to N to filter out
some similar features inside a single SMsM. The channel
dimension is reduced fromC ∗N to C

4 ∗N via this parameter-
compression operation. Then,weutilize the channel attention
(CA) mechanism [11,35] to re-calibrate reduced hierarchi-
cal features via explicitly learning channel-wise importance
scores. The scores are feature specific, which can be adap-
tively adjusted based on input images. According to [35],
we set the reduction ratio in the CA to 16. AGFF can be
formulated as

FAGFF : F1×1(FCA(FGC ([F1||F2|| · · · ||FN ]))), (10)

where FGC (·) and FCA(·) denote the group convolution and
channel attention operation.

Table 1 Comparative results of Ms_Baseline,Ms_SKM and SMsM

Modules Ms_Baseline Ms_SKM SMsM

Weights Function N/A Sof tmax Sigmoid

Urban100 - ×2 32.25 dB 32.38 dB 32.46 dB

Urban100 - ×4 26.10 dB 26.20 dB 26.29 dB

# Module Param. 147,456 113,664 113,664

Tested on Urban100 for scale factors ×2 and ×4

Table 2 Comparative results of different fusion schemes.

Schemes Plain GFF AGFF

Urban100 - ×2 32.46 dB 32.48 dB 32.51 dB

Urban100 - ×2 26.29 dB 26.32 dB 26.39 dB

Tested on Urban100 for scale factors ×2 and ×4

Fig. 5 Visualization of the feature maps before and after AGFF. Please
zoom-in the figure for better observation

4 Experimental results and comparisons

4.1 Implementation detail

We train our SMsN model on DIVerse 2K resolution image
dataset (i.e., DIV2K) [1] and evaluate on five commonly used
public benchmark datasets: Set5, Set14, B100, Urban100,
and Manga109. Then, we also evaluate the effectiveness
of our SMsN on real-captured low-resolution images. We
report two evaluation metrics (i.e., PSNR and SSIM) on the
Y channel (i.e., luminance) of transformed YCbCr space and
discarded pixels in the boundary areas of images according
to [5].

We implemented our SMsN model (stacking N = 64
SMsMs) in the Pytorch platform and trained this model by
optimizing L1 loss function on a singleNVIDIARTX2080Ti
GPU. The Adam [19] solver is utilized to optimize the
weights by setting β1 = 0.9, β2 = 0.999 and ε = 1e−8.
The initial learning rate is set to 1e−4 and halved every 200
epochs.When training the SMsNmodel for×3 and×4 SISR
tasks, we initialized the weights using the parameters of the
pre-trained ×2 model. The trained SMsN model and source
codes will be made public.

dummy
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Table 3 Benchmark results compared with the state-of-the-art SISR methods

Scale Method Set5 Set14 B100 Urban100 Manga109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

×2 Bicubic 33.66/0.9299 30.24/0.8688 29.56/0.8431 26.88/0.8403 30.80/0.9339

LFFN [34] 37.95/0.9597 –/– 32.20/0.8994 32.39/0.9299 38.73/0.9765

IMDN [14] 38.00/0.9605 33.63/0.9177 32.19/0.8996 32.17/0.9283 38.88/0.9774

MSRN [23] 38.07/0.9608 33.68/0.9184 32.22/0.9002 32.32/0.9304 38.64/0.9771

D-DBPN [7] 38.09/0.9600 33.85/0.9190 32.27/0.9000 32.55/0.9324 38.89/0.9775

EDSR [26] 38.11/0.9602 33.92/0.9195 32.32/0.9013 32.93/0.9351 39.10/0.9773

RDN [36] 38.24/0.9614 34.01/0.9212 32.34/0.9017 32.89/0.9353 39.18/0.9780

SRFBN [25] 38.11/0.9609 33.82/0.9196 32.29/0.9010 32.62/0.9318 39.08/0.9779

SMsN 38.23/0.9614 34.04/0.9215 32.36/0.9019 33.07/0.9364 39.26/0.9777

SMsN-L 38.26/0.9615 34.05/0.9216 32.37/0.9020 33.13/0.9370 39.31/0.9781

×3 Bicubic 30.39/0.8682 27.55/0.7742 27.21/0.7385 24.46/0.7349 26.95/0.8556

LFFN [34] 34.43/0.9266 –/– 29.13/0.8059 28.34/0.8558 33.65/0.9445

IMDN [14] 34.36/0.9270 30.32/0.8417 29.09/0.8046 28.17/0.8519 33.61/0.9445

D-DBPN [7] –/– –/– –/– –/– –/–

MSRN [23] 34.48/0.9276 30.40/0.8436 29.13/0.8061 28.31/0.8560 33.56/0.9451

EDSR [26] 34.65/0.9280 30.52/0.8462 29.25/0.8093 28.80/0.8653 34.17/0.9476

RDN [36] 34.71/0.9296 30.57/0.8468 29.26/0.8093 28.80/0.8653 34.13/0.9484

SRFBN [25] 34.70/0.9292 30.51/0.8461 29.24/0.8084 28.73/0.8641 34.18/0.9481

SMsN 34.65/0.9295 30.58/0.8473 29.29/0.8102 28.91/0.8668 34.31/0.9488

SMsN-L 34.75/0.9299 30.62/0.8474 29.31/0.8105 28.97/0.8678 34.36/0.9493

×4 Bicubic 28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577 24.89/0.7866

LFFN [34] 32.15/0.8945 –/– 27.52/0.7377 26.24/0.7902 30.66/0.9099

IMDN [14] 32.21/0.8948 28.58/0.7811 27.56/0.7353 26.04/0.7838 30.45/0.9075

MSRN [23] 32.25/0.8958 28.63/0.7833 27.61/0.7377 26.20/0.7905 30.57/0.9103

D-DBPN [7] 32.47/0.8980 28.82/0.7860 27.72/0.7400 26.38/0.7946 30.91/0.9137

EDSR [26] 32.46/0.8968 28.80/0.7876 27.71/0.7420 26.64/0.8033 31.02/0.9148

RDN [36] 32.47/0.8990 28.81/0.7871 27.72/0.7419 26.61/0.8028 31.00/0.9151

SRFBN [25] 32.47/0.8983 28.81/0.7868 27.72/0.7409 26.60/0.8015 31.15/0.9160

SMsN 32.50/0.8991 28.82/0.7871 27.76/0.7424 26.68/0.8036 31.15/0.9153

SMsN-L 32.51/0.8991 28.86/0.7877 27.78/0.7430 26.78/0.8061 31.22/0.9164

Bold and underline indicate the best and the second best performance, respectively

Fig. 6 Qualitative comparison of ×4 SR results for “img092” in Urban100 dataset

Fig. 7 Qualitative comparison of ×4 SR results for “img098” in Urban100 dataset
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4.2 Ablation study

In this part, we set comprehensive experiments to evaluate
the effectiveness of (1) Selective Multi-scale Module and (2)
Attentive Global Feature Fusion.

SMsM: Firstly, we remove the Selective Kernel Module
part in SMsM (Fig. 2) and concatenate features from 3 × 3
and 5×5 convolution layers. Thismodified feature extraction
module is adopted as our baseline (Ms_Baseline). Also, we
replace the Sigmoid operation in SMsMwith Sof tmax and
denote this module asMs_SKM. Experimental evaluation of
Ms_Baseline,Ms_SKM, and SMsM is conducted on the Plain
structure (in Fig. 4a). For convenience, we report results by
training only 200 epochs.

Comparative results using different feature extraction
modules are summarized in Table 1. By utilizing SKM to
fuse multi-scale features from 3 × 3 and 5 × 5 convo-
lutions, Ms_SKM surpasses Ms_Baseline by 0.13 dB and
0.1 dB on Urban100 dataset for scale factors ×2 and ×4,
respectively. Further, we notice that the proposed SMsM per-
forms considerably better than Ms_SKM via changing the
Sof tmax operation to Sigmoid. Such improvement indi-
cates that more flexible attention weights can better depict
the inter-dependencies between channel-wise features.

AGFF:We also perform comparative experiments to eval-
uate the effectiveness of the proposed attentive global feature
fusion scheme. Firstly, we stack 64 SMsMs in the manner of
Plain structure (in Fig. 4a). Also, global feature fusion (GFF)
(in Fig. 4b) is employed as another alternative. The compar-
ative results are shown in Table 2. It is observed that our
proposed AGFF achieves more performance gain compared
with the Plain and GFF structures.

We also visualize the feature maps before and after AGFF
in Fig. 5. Specifically, by following [14], we average the fea-
ture maps in the channel dimension in our implementation.
It is observed that after redundancy removal and attention-
based re-calibration, the features represent more distinctive
details (highlighted with red arrows).

4.3 Quantitative and qualitative comparisons

We compare our SMsN model with a number of state-of-
the-art SISR methods: LFFN [34], IMDN [14], MSRN [23],
D-DBPN [7], EDSR [26], RDN [36] and SRFBN [25]. We
also train an enhanced SMsN-L model by stacking N =
100 SMsM modules. It is noted that D-DBPN and SRFBN
are trained using more training images than other methods
(including ours).

Quantitative analysis Table 3 shows quantitative evalua-
tion results (PSNR and SSIM values) on Set5, Set14, B100,
Urban100, and Manga109 datasets for scale factors ×2, ×3,
and×4 SISR tasks. It is noted that our proposed SMsNmodel
ranks the best performer in 24 out of the total 30 SISR tasks.

Fig. 8 Qualitative comparison of ×4 SR results on real example
(“img009”) from Historical dataset

Moreover, the enhanced SMsN-L model outperforms other
state-of-the-art SISR methods on all datasets for all scale
factors.

Qualitative analysis Figures 6 and 7 show some qual-
itative comparisons of our SMsN model and other SISR
methods. It is obviously observed that our SMsN model
outperforms the others by recovering clearer structures and
sharper contours in the super-resolved HR images. We fur-
ther evaluate our SMsN model using real images (Fig. 8).
Our SMsN can recover more details (highlighted with red
arrow), when comparing with EDSR [26].

Model size Table 4 shows the PSNR values and model
sizes of recent SISRmethods. Among thesemethods,MSRN
contains fewer parameters at the cost of an obvious per-
formance drop. Our SMsN uses only 17.7% and 34.3%
parameters of EDSR and RDN model but achieves 0.13 dB
and 0.15 dB performance gain, respectively. Even better-
performed SMsN-L has fewer parameters, when compared
with EDSRandRDN.We also take two state-of-the-artmeth-
ods, i.e., RCAN [35] and SAN [3] into consideration, and it
is noted that our SMsN-L can achieve comparable perfor-
mance with more efficient model. We provide the number
of floating-point operations (FLOPs) and inference time of
several SISR models in Table 4 as the major indicators of
their computational efficiencies. # FLOPs indicates the num-
ber of operations by multi-adds, which is the number of
composite multiply accumulated operations for processing
a 1280×720×3 RGB image. Our SMsN and SMsN-L have
fewer # FLOPs than the others besides MSRN. Note that
the inference time is not strictly proportional to # FLOPs,
since different operations in PyTorch have different degrees
of parallelism.

5 Conclusion

We introduce a compact but powerful SISR model (i.e.,
SMsN) by designing more effective feature extraction mod-
ule (i.e., SMsM) and hierarchical feature fusion scheme
(AGFF). The proposed method first optimizes selective ker-
nel module (SKM) [24] (replacing Sof tmax operation with
Sigmoid) to expand the search space for more distinctive
features. Then, an attentive global feature fusion (AGFF)
scheme is employed to reduce the redundant information
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Table 4 Performance, # parameter, # FLOPs and inference time comparisons with some best performing SISR methods

Methods MSRN EDSR RDN RCAN SAN SMsN SMsN-L

PSNR 30.57 dB 31.02 dB 31.00 dB 31.21 dB 31.18 dB 31.15 dB 31.22 dB

# Param. 6.08 M 43.09 M 22.27 M 15.59 M 15.86 M 7.63 M 11.99 M

# FLOPs 410.64 G 3216.47 G 1488.78 G 1020.28 G 1040.84 G 473.09 G 736.82 G

Inference Time 0.15 s 0.54 s 0.34 s 0.46 s 0.66 s 0.26 s 0.37 s

The PSNR, inference time are tested on Manga109 dataset with scale factor ×4, and the # FLOPs index is computed on 720P RGB images
(1280 × 720 × 3)

inside the extracted hierarchical features and embed the chan-
nel attention mechanism to re-calibrate the features before
fusion. Our experimental results demonstrate that our pro-
posed SMsM and AGFF are effective for SISR, and our
SMsN/SMsN-L performs favorably against state-of-the-art
methods while using fewer parameters and FLOPs.
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