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Abstract
In this paper, we suggest to optimize harvesting and sensing duration for cognitive radio networks (CRN) using intelligent
reflecting surfaces (IRS). The secondary source SS harvests energy using the signal of node A. Then, SS performs spectrum
sensing to detect primary source PS activity. When PS activity is not detected, SS transmits a packet to secondary destination
SD . IRS reflects the signals from the secondary source so that all reflections are in phase at secondary destination. We show
that the use of N=8,16,32,64,128, 256,512 reflectors offers 19, 25, 31, 37, 43, 49, 56 dB gain when compared to the absence
of IRS [20]. We also propose to add a second IRS between node A and SS to increase the harvested energy since SS harvests
energy using the reflected signals on the first IRS. The use of two IRS with N1 = 8 reflectors in the first IRS and N2 = 8
reflectors in the second IRS offers 12 dB and 30 dB gain when compared to a single IRS N = 8 and the absence of IRS [20].
The use of two IRS with N1 = 16 and N2 = 8 offers 21 dB and 39 dB gain when compared to a single IRS N = 8 and the
absence of IRS [20].

Keywords Intelligent reflecting surfaces · Cognitive radio ·Optimal harvesting ·Optimal sensing · Throughput maximization

1 Introduction

In CRN, primary and secondary users (PU and SU) share
the same spectrum. In interweave CRN, secondary source
transmits when primary source is idle. In underlay CRN, sec-
ondary source transmits with an adaptive transmit power to
generate low interference at secondary destination. In overlay
CRN, secondary source dedicates a part of its power to help
the secondarydestination in decoding its packet. In this paper,
we optimize harvesting and sensing durations for interweave
CRN using intelligent reflecting surfaces (IRSs). IRSs allow
an increase in the throughput of wireless networks since the
reflected signals are in phase at the destination [1–5]. IRS is
placed between the source and the destinationwith optimized
phase shifts so that all reflections are in phase at the desti-
nation [6,7]. IRS has been suggested for wireless networks
as well as non- orthogonal multiple access (NOMA) [8,9].
IRSs have been used to increase the throughput of optical
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communications as well as millimeter wave communications
[10–12]. IRS with finite phase shifts has been suggested in
[13]. Asymptotic performance analysis of wireless commu-
nications using IRS was provided in [14]. Antenna design,
simulations and measurements of wireless communication
using IRS were discussed in [15–17]. Machine and deep
learning algorithms were used to optimize IRS implemen-
tation [18,19]. IRSs are nearly passive devices, made of
electromagnetic material that can be deployed in primary
or secondary networks of CRN on several structures, includ-
ing but not limited to building facades, indoor walls, aerial
platforms, roadside billboards, vehicle windows, etc.

In this article, we optimize harvesting and sensing dura-
tion for CRN using IRS. The secondary source SS harvests
energy using the signal of node A. Then, SS performs spec-
trum sensing to detect the activity of PS . When PS activity is
not detected, SS transmits a packet to secondary destination
SD . The transmitted signal by SS is reflected by N reflectors
of IRS so that all reflections are in phase at SD . We show
that the use of N = 8, 16, 32, 64, 128, 256, 512 reflectors
offers 19, 25, 31, 37, 43, 49, 56 dB gain when compared to
the absence of IRS [20]. We also propose to add a second
IRS between node A and SS to increase the harvested energy
since SS harvests energy using the reflected signals on the
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Fig. 1 CRN using a single IRS

first IRS. The use of two IRS with N1 = 8 reflectors in the
first IRS and N2 = 8 reflectors in the second IRS offers 12
dB and 30 dB gainwhen compared to a single IRS N = 8 and
the absence of IRS [20]. The use of two IRS with N1 = 16
and N2 = 8 offers 21 dB and 39 dB gain when compared to
a single IRS N = 8 and the absence of IRS [20]. IRS with
adaptive transmit power was studied in [21].

Next section derives the throughput when there is a single
IRS. Section 3 proposes to add a second IRS to increase the
harvested energy. Section 4 shows the throughput enhance-
ment using a single or two IRS. Conclusions and perspectives
are presented in Sect. 5.

2 CRNwith one IRS

Figure 1 depicts the system model with a secondary source
(SS) equippedwithnr receive antennas used to harvest energy
over aT seconds using the signal of node A. 0 < a < 1 is the
harvesting percentage and T is the frame duration. SS per-
forms spectrum sensing to detect primary source PS activity
during (1 − a)bT seconds where 0 < b < 1 provides the
sensing duration. When Ps activity is not detected, SS trans-
mits data to secondary destination SD over (1− b)(1− a)T
seconds. The transmitter signal is reflected on IRS equipped
with N reflectors so that all reflections are in phase at SD . A
Rayleigh fading channel is used during the simulations.

The harvested energy at SS is expressed as

E = μaT PA

nr∑

l=1

| fl |2 = μaL0EA

nr∑

l=1

| fl |2, (1)

where μ is the efficiency of energy conversion, PA = EA
Ts

is the power of A, Ts is the symbol period, L0 = T
Ts
. The

average power of channel gain fl between A and l-th antenna
of SS is E(| fl |2) = 1

Dple
1

where E(X) is the expectation of

X , D1 is the distance between A and SS , and ple is the path
loss exponent.

The symbol energy of SS is computed as

ESS = E

L0(1 − a)(1 − b)
= μaEA

(1 − a)(1 − b)

nr∑

l=1

| fl |2. (2)

Let hq be the channel gain between SS and q-th reflector
of IRS. Let gq be the channel gain between q-th reflector of
IRS and SD . hq follows a zero mean Gaussian distribution
with E(|hq |2) = 1

Dple
2

where D2 is the distance between SS

and IRS. gq follows a zero-mean Gaussian distribution with
E(|gq |2) = 1

Dple
3

where D3 is the distance between IRS and

SD .
We have hq = aqe− jbq where aq = |hq | and bq is

the phase of hq such that E(aq) =
√

π

2
√
Dple
2

and E(a2q) =
E(|hq |2) = 1

Dple
2

[25]. We have gq = cqe− jdq such that

E(cq) =
√

π

2
√
Dple
3

and E(c2q) = E(|gq |2) = 1
Dple
3

.

The phase of q-th reflector is [1]

φq = bq + dq . (3)

The received signal SD is written as

rp = sp
√
EBS

N∑

q=1

hqgqe
jφq + n p. (4)

where sp is the p-th transmitted symbol and n p is a Gaussian
noise of variance N0.

Using (3), we obtain

rp = sp
√
ESS

N∑

q=1

aqcq + n p. (5)

The signal-to-noise ratio (SNR) at SD is written as [1]

γ SD = ESS

N0
[

N∑

q=1

aqcq ]2, (6)

Using (2), we obtain

γ SD = μaEA

(1 − a)(1 − b)N0

nr∑

l=1

| fl |2[
N∑

q=1

aqcq ]2, (7)

For a large number of reflectors, i.e., N ≥ 8,
∑N

q=1 aqcq
follows a Gaussian distribution with mean m = Nπ

4
√
Dple
2 Dple

3

and variance σ 2 = N
Dple
2 Dple

3

[1 − π2

16 ]. As [∑N
q=1 aqcq ]2 is
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non-central Chi-square r.v. and
∑nr

l=1 | fl |2 is a central chi-
square r.v, the probability density function (PDF) of γ SD is
written as [22]

pγ SD (x) = N0(1 − a)(1 − b)e−0.5(m
σ

)2Dple
1

μaEAΓ (nr )

×
+∞∑

q=0

(m
σ

)2q2
−3q−nr+1.5

2

q!Γ (q + 0.5)

×Kq−nr+0.5(

√
2xDple

1 N0(1 − a)(1 − b)

aμEA
)

×(
xDple

1 N0(1 − a)(1 − b)

μaEA
)
q+nr−1.5

2 (8)

We use [23]

∫ y

0

2(CD)0.5C+0.5D

Γ (C)Γ (D)
x0.5C+0.5D−1KC−D(2

√
CDx)dx

= 1

Γ (C)Γ (D)
G2,1

1,3

(
CDy| 1

C, D, 0

)
(9)

to obtain

∫ √
x

0
wC−1KD(w)dw = 2C−2G2,1

1,3

(
x

4
| 1
C+D
2 , C−D

2 , 0

)

(10)

where Gp,l
n,m(x) is the Meijer G-function.

We deduce the cumulative distribution function (CDF) of
γ SD :

Pγ SD (x)

= e
−( m√

2σ
)2

Γ (nr )

+∞∑

p=0

(m
σ

)2p2−p

p!Γ (p + 0.5)

×G2,1
1,3

(
N0(1 − a)(1 − b)xDple

1

2μaEA
| 1
p + 0.5, nr , 0

)

(11)

The packet error probability (PEP) at SD can be computed
as [24]

PEP(a, b) < Pγ SD (W0) (12)

where W0 is defined as [24]

W0 =
∫ +∞

0
pep(v)dv (13)

pep(v) is the PEP for for Q-QAM modulation [25]

pep(v)

= 1 −
[
1 − 2

(
1 − 1√

Q

)
er f c

(√

v
3 log2(Q)

2(Q − 1)

)]PL

(14)

and PL is packet length in symbols.
The throughput at SD is computed as

Thr(a, b) = (1 − b)(1 − a)L0log2(Q)

L0Ts B
×(1 − PEP(a, b))Pidle(1 − Pf (a, b))

= (1 − b)(1 − a)log2(Q)

×(1 − PEP(a, b))Pidle(1 − Pf (a, b)) (15)

where B is the used bandwidth, Pf (a, b) is the false alarm
probability written as

Pf (a, b) = Γ (�(1 − a)bL0�, ζ
2 )

Γ (�(1 − a)bL0�) (16)

ζ is the energy detector threshold, �(1−a)bL0� is the number
of samples employed by the energy detector, and �x� is the
integer part of x ,

Γ (N , u) =
∫ +∞

u
x N−1e−xdx . (17)

Harvesting duration a and sensing duration b are opti-
mized to maximize the throughput:

(aopt , bopt ) = argmaxa,bT hr(a, b) (18)

3 CRN using two IRS

Figure 2 depicts a system model containing two IRS: I RS1
is used for increase the harvested energy with N1 reflectors .
I RS1 is between A and SS to increase the harvested energy.
I RS2 is located between SS and SD; it contains N2 reflectors
to increase the SNR at SD .

When I RS1 is used, the harvested energy is equal to

E = μaL0EA[
N1∑

l=1

δlηl ]2, (19)

δl = |ul |, where ul is channel gain between A and l-th reflec-
tor of I RS1, and ηl = |vl | where vl is the channel gain
between l-th reflector of I RS1 and SS .
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Fig. 2 IRS using in energy harvesting

For large values of N1 ≥ 8, [∑N1
l=1 δlηl ] follows a Gaus-

sian distribution with mean m2 = N1π

4
√
Dple
4 Dple

5

and variance

σ 2
2 = N1

Dple
4 Dple

5

. D4 is the distance between A and I RS1, and

D5 is the distance between I RS1 and SS .
We can write

ESD = E

L0(1 − a)(1 − b)
= μaEA[∑N1

l=1 δlηl ]2
(1 − a)(1 − b)

(20)

The SNR at SD is equal to

γ SD = ESS [
∑N2

q=1 aqcq ]2
N0

= μaEA

N0(1 − a)(1 − b)
[
N1∑

l=1

δlηl ]2[
N2∑

q=1

aqcq ]2. (21)

where aq , cq were defined in Sect. 2 and N2 is the number
of reflectors of I RS2.

As [∑N1
l=1 δlηl ]2 and [∑N2

q=1 aqcq ]2 are two non-Chi-

square r.v., the PDF of γ SD is written as [22]

fγ SD (z) = e
− m2

2
2σ22

− m2
4

2σ23

+∞∑

n=0

+∞∑

p=0

2−2n−2p(m2
σ2

)2p(m4
σ3

)2n

n!p!Γ (n + 0.5)Γ (p + 0.5)

×N0(1 − a)(1 − b)

μaEA
Kp−n(

√
N0(1 − a)z

μaEA
)

×(z
N0(1 − a)(1 − b)

μaEA
)
p+n−1

2 (22)

Using (10), the CDF of γ SD is equal to

Pγ SD (z) = e
− m2

2
2σ22

− m2
3

2σ23

+∞∑

n=0

+∞∑

p=0

2−n−p( m2
2σ2

)2p( m3
2σ3

)2n

n!p!Γ (n + 0.5)Γ (p + 0.5)

×G2,1
1,3

(
N0(1 − a)(1 − b)z

μaEA4
| 1
p + 0.5, n + 0.5, 0

)

(23)
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Fig. 3 Throughput for QPSK and one IRS
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Fig. 4 Throughput for 16QAM and one IRS

where m3 = N2
2π

4
√
Dple
2 Dple

3

, σ 2
3 = N2

2

Dple
2 Dple

3

[1 − π2

16 ].
The throughput is computed and optimized using (12-18).

4 Numerical results

Figures 3, 4 and 5 depicts the throughput for QPSK, 16 and
64 QAMmodulation in the presence of one IRS with M = 8
reflectors for ζ = 1, D1 = 1, D2 = 1.3, D3 = 1.4, EA = 1.
We notice that the optimization of harvesting and sensing
duration offers the largest throughput when compared to a =
1/3, b = 1/2, optimal a, b = 1/2 and optimal b with a =
1/3.

For the same parameters as Figs. 3, 4 and 5, Figures 6 and 7
show the throughput for 16 and64QAMmodulations anddif-
ferent number of reflectors N = 8, 16, 32, 64, 128, 256, 512.
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Fig. 5 Throughput for 64QAM and one IRS
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Fig. 6 Throughput for 16QAMwith different number of IRS reflectors

The use of N = 8, 16, 32, 64, 128, 256, 512 reflectors offers
19, 25, 31, 37, 43, 49, 56 dB gain when compared to the
absence of IRS [20]. In Fig. 6-7, we used an optimal value
of a and b.

Figure 8 shows the effect of number of harvesting antennas
nr = 1, 2, 3 on secondary throughput for QPSKmodulation,
N = 8 reflectors and the sameparameters as Fig. 3.Wenotice
that nr = 3 harvesting antennas offers 2 dB and 7 dB gain
when compared to nr = 2, 1.

Figure 9depict the throughput forQPSKmodulationwhen
there are two IRS with D4 = 1.1 and D5 = 1.2. The other
parameters are the same as Fig. 3. The use of two IRS with
N1 = 8 reflectors in the first IRS and N2 = 8 reflectors in the
second IRS offers 12 dB and 30 dB gain when compared to
a single IRS N = 8 and the absence of IRS [20]. The use of
two IRS with N1 = 16 and N2 = 8 offers 21 dB and 39 dB
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Fig. 7 Throughput for 64QAM and different number of reflectors
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Fig. 8 Throughput for QPSK and different number of harvesting anten-
nas

gain when compared to a single IRS N = 8 and the absence
of IRS [20].

5 Conclusion and perspectives

In this article, we optimized harvesting and sensing dura-
tion for CRN using intelligent reflecting surfaces (IRS). IRS
reflects signals from secondary source so that all reflec-
tions are in phase at secondary destination. The use of
N = 8, 16, 32, 64, 128, 256, 512 reflectors offers 19, 25,
31, 37, 43, 49, 56 dB gain when compared to the absence of
IRS [20]. We also proposed to add a second IRS to increase
the harvested energy where the secondary source harvests
energy using the reflected signals on the first IRS. The use of
two IRS with N1 = 8 reflectors in the first IRS and N2 = 8
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Fig. 9 Throughput for QPSK with two IRS

reflectors in the second IRS offers 12 dB and 30 dB gain
when compared to a single IRS N = 8 and the absence of
IRS [20]. The use of two IRS with N1 = 16 and N2 = 8
offers 21 dB and 39 dB gain when compared to a single IRS
N = 8 and the absence of IRS [20]. As a perspective, we
may extend the system model to NOMA systems.
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