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Abstract
Measuring blood pressure from photoplethysmograph (PPG) signals is gaining popularity as the PPG devices are inexpensive,
convenient to use and much portable. The advent of wearable PPG devices, machine learning and signal processing has
motivated in the development of cuffless bloodpressure calculation fromPPGsignals captured fromfingertip. The conventional
pulse transit time-basedmethod ofmeasuring blood pressure fromPPG is inconvenient as it requires electrocardiogram signals
and PPG signals or PPG signals captured simultaneously from two different sites of the body. The proposed system uses the
PPG signals alone to estimate blood pressure (BP). A signal analysis method called wavelet scattering transform is applied
on the preprocessed PPG signals to extract features. Predictor model that estimates BP are derived by training the support
vector regression model and long short term memory prediction model. The derived models are evaluated with testing dataset
and the results are compared with ground truth values. The results show that the accuracy of the proposed method achieves
grade B for the estimation of the diastolic blood pressure and grade C for the mean arterial pressure under the standard British
Hypertension Society protocol. On comparing the results of the proposed system with the benchmark machine learning
algorithms, it is observed that the proposed model outperforms others by a considerable margin. A comparative analysis with
prior studies shows that the results obtained from proposed work are comparable with existing works in the literature.
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1 Introduction

According toWorld Health Organization, presently, 1.13 bil-
lion people in the world have high BP and among them less
than 1 in 5 people have taken remedial measures to keep
BP under control. Hypertension is one of the biggest causes
of life threatening cardiovascular diseases such as stroke
and heart attack. Cardiovascular disease caused 17.9 mil-
lion (31%) deaths worldwide in the year 2016. Hence blood
pressure needs to be checked regularly, and if found high,
remedial measures such as medications, healthy diet and
physical activity need to be taken to keep the blood pres-
sure under control [1].
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Hypertension, also known as high blood pressure is a con-
dition in which the blood vessels have constricted due to
deposit of fats and free radicals and the individual has per-
sistently ‘raised’ blood pressure. Blood is carried from the
heart to all parts of the body through the blood vessels. Each
time the heart beats, it pumps blood into the vessels. Blood
pressure is created due to the force exerted by blood, which
pushes against the blood vessel walls and the arteries, when
it is pumped by the heart. The unit for measuring blood pres-
sure is millimetres of mercury (“mmHg”). Blood pressure is
recorded with the systolic reading followed by the diastolic
reading. Systolic blood pressure (SBP) is the pressure created
when the heart pumps out blood. Diastolic blood pressure
(DBP) is created while the heart muscle is resting between
beats and is being refilled with blood. Mean arterial pressure
(MAP) refers to the average of SBP and DBP values for one
cardiac cycle.

The sphygmomanometer is the gold standard for measur-
ing blood pressure. This is not convenient for the continuous
monitoring of blood pressure and also it requires trained
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medical practitioners to assess the measurement. Recently,
measuring blood pressure using the technique of photo-
plethysmography is gaining more popularity, due to the
convenience it offers in continuous monitoring of blood
pressure without the need for any special training. There
have been several methods proposed to estimate blood
pressure based on photoplethysmography [2–9]. The most
well-known method is estimation of systolic blood pressure
(SBP) and diastolic blood pressure (DBP) from pulse tran-
sit time (PTT), which requires the measurement from two
different spots of the human body, and special training to
assess the readings. Hence, it is inconvenient and is difficult
to measure regularly, even for a trained person. This pro-
cess is quiet complicated, as it involves synchronizing two
different signals being captured simultaneously.

In this paper, a novel approach is presented that exploits
the features extracted using wavelet scattering and deep
learning algorithm to estimate blood pressure accurately.
This BP estimation technique uses only photoplethysmo-
graph signals in which measurement is taken from a single
site, fingertip. This BP estimation technique consists of
four steps. The first step involves preprocessing of PPG
signals. The second step involves extraction of wavelet scat-
tering features from the preprocessed signals. The third step
involves training the regression model. In this work, support
vector regression model and long short-term memory net-
work regression model are used. The fourth step involves
evaluation of the learning model’s performance using hold
out dataset. Wavelet scattering transform is a good feature
extraction technique that exhibits some typical properties:
It computes a time shift invariant image representation. It
remains stable to time warping deformation. It also retains
vital information such as frequency content. Using wavelet
scattering transform, a new representation of the original
PPG signal is generated that contains time and local fre-
quency [10]. The rest of this paper is organized as follows,
Sect. 2 presents an overview of photoplethysmography and
explores the related research in this area. Section 3 provides
an overview of the database used, elaborates the wavelet
scattering-based feature extraction technique and derivation
of BP estimation model. Section 4 elucidates the experimen-
tal results. Section 5 gives the conclusion of the paper.

2 Underlying technology and related
research

2.1 Principle of photoplethysmography

Photoplethysmography is a technique in which blood pres-
sure is calculated based on the blood volume changes that
are observed over the surface of the skin, especially in
areas where the skin is sensitive (nerve endings) and its

color changes based on the amount of blood flow. Measur-
ing blood pressure using PPG is a noninvasive technique
and user friendly model; hence it can be seamlessly inte-
grated into any portable devices such as smart phones, smart
watches and smart bracelets [2,9,11]. In photoplethysmog-
raphy, low intensity infrared light is used to measure blood
volume changes in peripheral blood circulation. When light
passes through the skin, it is absorbed by the tissues, blood,
bones and skin pigments. Blood naturally absorbs more light
than the surrounding tissues; hence it is quiet easy to detect
the changes in blood flow using this technique. Thus by
measuring the blood volume changes, blood pressure can
be assessed. Accuracy of results depends on various factors
influencing the environment of measurement, such as inten-
sity of the surrounding light and ability of the subject to hold
still. The most commonly used measuring areas are the fin-
gertips, earlobes and forehead as the blood flow can be easily
measured in these light sensitive areas, the light source illu-
minates the skin and the photodetector captures the intensity
of light variations from a specified area [3]. These light varia-
tions in conjunctionwith the timedifferences from the signals
are used to calculate the blood pressure.

2.2 Related research

For the past few years, there have been lot of research works
carried out in estimating blood pressure from PPG signals.
The commonmethod typically consists of three steps, namely
(1) PPG signal is analysed and features are extracted, (2)
machine learning algorithms are used to study how far the
extracted features correlate with the actual blood pressure
values obtained using standard medical devices, (3) a pre-
diction model to evaluate blood pressure is derived using
correlated features. The widely acceptable feature used to
estimate blood pressure is pulse transit time (PTT). PTT is
the time duration for the pulse wave to travel from heart to
the extremity of the body. Pulse wave velocity (PWV) is
found to have relationship with blood pressure which in turn
is inversely proportional to pulse transit time (PTT). This
method requires two sources to calculate the time interval.
In most of the studies ECG signals and PPG signals are used
to calculate PTT [8,12–15]. In some other studies two PPG
signals captured at two different peripheral sites are used
[16]. It was observed that BP and PTT are negatively cor-
related with each other. Hence, using linear regression, the
correlation between PTT and blood pressure is determined
and regression equations are obtained. The drawback here is,
it is difficult to synchronize the ECG signal data and PPG to
calculate PTT [11]. Positioning the PPG sensor wrongly in
wrist may lead to distortion in PPG signals and this affects
the accuracy.

Bloodpressure has also been estimated fromvascular tran-
sit time (VTT)which ismeasured fromheart sound andfinger
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Fig. 1 Block diagram depicting the phases of BP estimation using
wavelet scattering and regression model

pulse [17,18]. VTT is defined as the time it takes for the blood
to propagate from the heart to body peripherals for one car-
diac cycle. Twomobile phones are used to record heart sound
and finger pulse. The clocks in both mobile phones should
be synchronized which is a challengeable task. Another chal-
lenge is finding the best spot to record heart sound.

There are many research works done in estimating blood
pressure using only PPG signals [4,5,7,19–22]. The shape
of the PPG signal is analyzed and features are extracted.
Such features include peak width, peak height, peak area,
distance between consecutive peak and valley. But, achieving
accuracy equivalent to that of accuracy provided by standard
medical device is challengeable.

The proposed BP estimator uses the PPG signals for BP
estimation. PPG features are extracted using wavelet scatter-
ing transform, using which the learning model is trained to
derive a BP estimator.

3 Proposedmethod

In this paper, a system is proposed, that computes blood
pressure noninvasively from PPG signals captured from the
fingertip of a person. The proposed system is developed
in various phases viz., (1) dataset collection, (2) data pre-
processing, (3) feature extraction, (4) training the machine
learning model, (5) model evaluation. These phases are
depicted in Fig. 1.

3.1 Dataset collection

The dataset required for the design of PPG-based BP estima-
tion system was collected from Multi-parameter Intelligent
Monitoring in Intensive care (MIMIC) II online database pro-
vided by PhysioNet organization [6]. The database contains

preprocessed and cleaned waveform signals. Ten thousand
records were extracted from this database. Each record con-
sists of three rows, in which first row corresponds to PPG
signal extracted from fingertip, second row corresponds to
invasive arterial blood pressure (ABP) (in mmHg) signal and
the third row corresponds to electrocardiogram (ECG) sig-
nal. The sampling frequency of each signal is 125 Hz. PPG
signals and ABP signals were collected from database and
used for this work. Target systolic and diastolic values were
derived from ABP signals and were used in the training of
machine learning model, and for comparing the estimated
BP values from proposed system and thereby evaluating the
accuracy of the proposed system.

3.2 Data selection

Analyzing the dataset collected from the database, few PPG
signals were found to have insufficient record duration which
were not suitable for BP estimation. Those signals were
detected from the collected records by analyzing the pulse
onsets in theABPwaveform and then eliminated. Pulse onset
indicates the arrival of ABP pulse at the site of recording.
Pulse onsets were detected by applying the following three
steps on ABP signal [23] viz., (1) suppression of high fre-
quency noise that might affect the ABP onset detection using
a low pass filter. (2) Conversion of filtered ABP signal into
slope sum function signal in which the upslope of the ABP
pulse is enhanced and the remaining pressure waveform is
suppressed. (3) Detection of pulse onset from the slope sum
function signal by applying adaptive thresholding and local
search strategy.

The number of ABP pulse onsets in the ABP signal in
each record was counted. The records with pulse onsets less
than or equal to 30 were detected and eliminated because
those records contain signals with insufficient length that
were not suitable for analysis and estimation of BP. After
elimination, the resultant dataset contains 8271 records. Later
irrelevant signals with BP values outside the scope i.e., very
high or very low BP values were eliminated. As a result of
eliminating such invalid signals, the final dataset contained
4314 records. The distribution of values for systolic blood
pressure (SBP) and diastolic blood pressure (DBP) in the
final dataset is depicted in Fig. 2

3.3 Data preprocessing

The signals from MIMIC database are found to have certain
blocks deteriorated due to different distortions and artifacts
[24], which when processed for BP estimation may lead to
incorrect results. To remove the noise and other artifacts,
wavelet denoising technique used in [24] was adapted in
this work. Preprocessing involves resampling signals at a
fixed frequency of 1000 Hz, wavelet decomposition, Zero-
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Fig. 2 The distribution of values for SBP and DBP in the final dataset.
a SBP values and b DBP values

Fig. 3 Original PPG signal and the preprocessed signal is shown

ing 00̃.25 Hz, Zeroing 2505̃00 Hz, wavelet reconstruction,
threshold selection and wavelet thresholding. The original
signal and the denoised signal are shown in Fig. 3. The resul-
tant preprocessed signalswere used for feature extraction and
training the learning model.

3.4 Feature extraction

In this proposed work, a signal analysis approach called
wavelet scattering transform [10] is applied to extract fea-
tures from the PPG signal. In order to extract features wave
like oscillations called wavelets are used which can be scaled
and shifted to best fit the signal. By creating a linear com-
bination of wavelets, a new signal representation is created.
Wavelet is operated on the signal in order to generate a set
of coefficients which displays the similarity within a wavelet
and the signal. These coefficients create a new representation
of the original signal containing time and local frequency.
This process is referred to as wavelet transform and it is the
foundation of the wavelet scattering transform.

A wavelet scattering builds translation invariant repre-
sentations which are stable to deformation by applying
convolution, nonlinearity and scaling functions. Scattering
transform delocalizes signal data, y into scattering decom-
position paths. Let the original signal be segmented into
equal sized timing windows. If p is a wavelet scattering path
(p = λ1, λ2, . . . , λm) of length m, w is the timing window
position andwindow size 2k , then the scattering coefficient of
order m at the scale 2k denoted by Sk [p] y (w) is computed
as in Eq. (1) [10].

Sk [p] y (w) = |||y ∗ ψλ1| ∗ ψλ2| . . . ∗ ψλm | ∗ φ2k (w) (1)

where ψ (w) is the morlet wavelet that forms the building
block of wavelet scattering and is given by Eq. (2)

ψ (w) = c1
(
eiw·ν − c2

)
e

−|w|2
(2σ2) (2)

where ν is the frequency, σ is the measure of spread, c1, c2
are constants that are adjusted so that Eqs. (3) and (4) are
satisfied

∫
ψ (w) dw = 0 (3)

∫
ψ2 (w) dw = 1 (4)

Scaling function φ2k (w) is given by Eq. (5)

φ2k (w) = 2−2kφ
(
2−kw

)
(5)

Original PPG signal, Y is segmented into equal sized time
windows say Y = y1, y2, y3, . . . , yn. Vector of scattering
coefficients are computed from each timewindow as follows.
First the segmented slice of signal, y1 is filtered with φ2k ,
the scaling function which yields an averaging of the signal.
The averaged signal is represented by y1 ∗ φ2k and provides
invariance to local time shifting. The averaging of the sig-
nal removes high frequencies and hence loses information.
The original signal is once again filtered with a high pass
filter ψλ1, the wavelet that yields new representation of the
signal and is given by y1 ∗ ψλ1. High pass filtering retains
detailed information about the signal. Also, it recovers the
information lost during low pass filtering. The modulus of
the high pass filtered output is taken that results in |y1 ∗ ψλ1|.
Themodulus computes the low frequency envelope. Now the
high pass filtered output from the previous layer is selected
and is filtered with low pass filter giving |y1 ∗ ψλ1| ∗ φ2k

and high pass filters giving |y1 ∗ ψλ1| ∗ ψλ2 and modulus
of high pass filtered output is taken. This process is contin-
ued for the desired number of layers. The output of low pass
filtering yields a scattering coefficients that represent the sig-
nal at every layer. The next time window is selected and the
process is repeated. This process is depicted in Fig. 4. This
operation helps in extracting the wavelet scattering features.
This operation of extraction of wavelet scattering features
was implemented in MATLAB by executing the following
steps: (i) Construction of wavelet time scattering decomposi-
tion framework with default filterbanks, adjusted invariance
scale and sampling frequency set to 125. (ii) Extraction of
scattering coefficients from PPG signal.

Wavelet scattering features were extracted from the pre-
processed PPG signals of all the 4314 records one by one.
This extraction operation yields a set of robust features in
two-dimensional matrix of size 157 × N . Hence, for each
PPG signal, scattering coefficients were obtained across M
scattering paths. N represents the number of time windows
whose value depends on the length of the PPG signal. The
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Fig. 4 Process of extracting wavelet scattering features from a time
window i.e. slice yi of original signal Y

coefficients at layers 0, 1 and 2 contain most of the energy
[25]. Figure 5 shows the wavelet scattering coefficients com-
puted for first 50 consecutive time windows for three PPG
signals. Hence, scattering coefficients derived at layers 0, 1
and 2 were selected for training the learning model in this
work. Wavelet scattering coefficients (SC) obtained at layers
0,1, and 2 are represented using Eq. (6).

SC = Y ∗ φ2k , |Y ∗ ψλ1| ∗ φ2k , ||Y ∗ ψλ1| ∗ ψλ2| ∗ φ2k (6)

3.5 Support vector regressionmodel

The dataset consisting of 4314 records were partitioned
into training set with 3883 records and testing set with 431
records. Training set and testing set were selected using hold
out technique. There is no overlapping between training set
and the testing set. The features obtained using wavelet scat-

tering transform is given as input to support vector regression
model. SVR model is a supervised machine learning tech-
nique that relies on kernel function and can predict data
accurately [26]. It has good generalization capability. It han-
dles both linear and nonlinear data efficiently. It is highly
noise tolerant. Predictor model was constructed by training
the support vector regression model with features set, sys-
tolic and diastolic values obtained from ABP signal. Derived
predictor model was evaluated using the testing dataset.

3.6 Long short-termmemory (LSTM) networkmodel

LSTM network [27] is the recurrent neural network used
in several time series forecasting tasks and has shown
remarkable results. Learned LSTM networks performs the
prediction task in a quick manner [28]. Predictive model
using LSTM network was developed using the Keras deep
learning package. Table 1 shows the architecture of the
LSTM. The dataset was partitioned into training set with
3883 records and testing set with 431 records. The extracted
wavelet scattering features was fed into the LSTM network
for learning. The learned model was evaluated using testing
set and have obtained the RMSE value of 10.95 for diastolic
BP estimation and 19.36 for systolic BP estimation.

4 Results and discussion

4.1 Analysis of error distribution

Error histogram for estimated SBP, DBP and MAP for SVM
regression model and LSTM regression model are shown in
Figs. 6 and 7 respectively. Results of DBP andMAP are com-

Fig. 5 Wavelet scattering coefficients for first 50 consecutive time windows of layer 1, layer 2 and layer 3 extracted from three PPG signals are
shown
Table 1 LSTM forecasting
architecture based on keras n_timesteps,n_features,n_outputs = trainX .shape[1],trainX .shape[2],trainY .shape[1]

model = Sequential()

model.add(LSTM(200,activation =′ relu′, input_shape = (n_timesteps, n_ f eatures)))

model.add(Dense(100,activation =′ relu′))
model.add(Dense(n_outputs))

model.compile(loss =′ mse′, optimizer =′ adam′)
model.fit(trainX,trainY,epochs = 70,batch_si ze = 10,verbose = verbose)
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Fig. 6 Error Histogram from SVR. a Histogram of relative error in calculated SBP. b Histogram of relative error in calculated DBP. c Histogram
of relative error in calculated MAP

Fig. 7 Error Histogram from LSTM. a Histogram of relative error in calculated SBP. b Histogram of relative error in calculated DBP. c Histogram
of relative error in calculated MAP

paratively good in both the models since the models have a
good relationship betweenwavelet scattering features and the
BP values. Training the models with large samples enabled
the machine learning algorithms to build a accurate model.
Error rate is found to be high in SBP targets.

4.2 Comparison with the grading criteria used by
the British society of hypertension

Table 2 shows an evaluation of our predicted models using
support vectormachine and long short termmemory network
by the British Hypertension Society (BHS) standard. BHS
standard is designed to evaluate the accuracy of proposed
BP monitor devices based on the cumulative percentage of
error readings (i.e., absolute difference between BP values
estimated by standard device and proposed one) under three
threshold values 5 mmHg, 10 mmHg and 15 mmHg [31].
It is observed from Table 2 that both the learned models,
SVM regression and LSTM regression model achieve grade
B for diastolic blood pressure and grade C for mean arterial
pressure according to BHS protocol.

Figure 8 presents Bland Altman plots for SBP, DBP and
MAP (Mean Arterial Pressure) targets. Bland Altman plot
finds out how far the values obtained using proposed model
agrees with one measured from standard device [32]. In the
Bland Altman plot, the mean of BP values obtained using
standard device and proposed model is plotted against the
x axis, difference between the two values is plotted against
the y axis. The number of observation pairs for which the
SBP, DBP and MAP targets are plotted is 431. The results

Table 2 Comparison with BHS standard

Cumulative percentage of errors

≤ 5 ≤ 10 ≤ 15

BHS 60 85 95

50 75 90

40 65 85

SVM SBP 24.36 39.68 54.06

DBP 50.58 80.97 90.95

MAP 40.37 66.36 85.61

LSTM SBP 25.75 47.56 62.18

DBP 50.35 80.97 92.11

MAP 40.14 70.53 87.24

are found to be satisfactory for DBP andMAP as most of the
plots are tightly scattered about the bias line and the limits of
agreement are appreciably low. It can be observed from the
plot that the samples of BP with very high or very low values
produced poor results. This is because, the training set con-
tains only a limited number of samples with very high or very
low values. It can be deduced from these results that both the
regression algorithms produced poor results for infrequent
samples. This is the limitation of both the regression algo-
rithms.

4.3 Comparison with existing work

The results of the proposed work are compared with the
results of prior studies and are reported in Table 3. The met-
rics used for evaluation are mean absolute error (MAE) and
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standard deviation (SD). Table presents input signals used,
number of subjects or samples used for BP measurement,
features extracted from input signals, techniques used for
analysis and learning, MAE ± SD for SBP, DBP and MAP
targets for each of the work. In the proposed work, only PPG

signals captured from single site, of 4314 samples collected
from MIMIC II database are used and the results achieved
are comparable to existing works in the literature.

Fig. 8 Bland Altman plot for the difference between the actual val-
ues and the values obtained from proposed method for 431 observation
pairs. a SBP predicted using SVR model, b DBP predicted using SVR

model, c MAP predicted using SVR model, d SBP predicted using
LSTM model, e DBP predicted using LSTM model and f MAP pre-
dicted using LSTM model

Table 3 Comparison with existing works

References Inputs No. of
sub-
jects/samples

Features
extracted

Methods used MAE ± SD

SBP DBP MAP

[29] ECG 51/3129 Complexity
features

Complexity
analysis and
stacking ML

7.72 ± 10.22 9.45 ± 10.03 8.13 ± 8.84

[4] PPG 910 pulse cycle
from MIMIC II
database

Time scale PPG
features,
second
derivative PPG
features

SVM 8.54 ± 10.9 4.34 ± 5.8 N/A

[6] PPG,ECG 4254 records
from MIMIC II
database

PTT and other
physiological
features

SVM 12.38 ± 16.17 6.34 ± 8.45 7.52 ± 9.54

[24] PPG,ECG 3663 records
from MIMIC II
database

Physiological
parame-
ters

SVM 12.26 ± 10.32 5.91 ± 5.78 N/A

[30] PPG 65 sub-
jects

Wavelet
coefficients,
time domain
features

Wavelet,
SVM

4.9 ± 4.9 4.3 ± 3.7 N/A

Proposed
work

PPG 4314 records
from MIMIC II
database

Wavelet
scattering
coefficients

Wavelet scat-
tering, SVM

16.10 ± 12.24 7.74 ± 8.22 8.95 ± 7.99

Wavelet scat-
tering, LSTM

14.9 ± 12.3 7.7 ± 7.9 8.3 ± 6.8
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Table 4 Comparison of
prediction accuracy produced by
proposed model and various
benchmark regression models

Regression models Systolic blood pressure (mmHg) Diastolic blood pressure (mmHg)

MAE SD MSE RAE RRSE MAE SD MSE RAE RRSE

ANN 15.19 12.26 381.03 1.04 1.01 8.36 9.23 154.92 0.99 1.09

K-NN 15.77 13.34 426.46 1.08 1.07 8.18 8.16 133.22 1.05 1.05

RFR 15.09 12.56 385.10 1.03 1.01 7.70 7.93 113.27 0.98 0.97

SVM 16.10 12.24 408.60 0.95 0.97 7.74 8.22 124.35 0.92 0.99

LSTM 14.9 12.3 374.66 1.02 1.00 7.70 7.91 113.19 0.98 0.97

Bold values indicate the minimum values in the respective columns

4.4 Comparison of BP prediction accuracy of
proposedmodel with that of various benchmark
regression algorithms

The results of proposed method are compared with three
benchmark prediction algorithms. The regression algorithms
used for comparison are artificial neural network (ANN),
random forest regression (RFR) and K-nearest neighbour
(K-NN) regression. The algorithms have been implemented
using Scikit-learn python library. Their performance are
compared with that of proposed system and the results are
produced in Table 4. MAE, SD, mean squared error (MSE),
relative absolute error (RAE) and root relative squared error
(RRSE) are the metrics used for comparison. From the table,
it is evident that, in the calculation of systolic blood pres-
sure SVR outperforms other methods marginally and in the
calculation of diastolic blood pressure LSTM and Random
Forest outperforms other methods by a margin. But on the
whole, these algorithms produced an acceptable accuracy for
systolic blood pressure estimation, but produced appreciable
accuracy in the estimation of diastolic blood pressure.

The error observed in the prediction of Diastolic blood
pressure by SVM and LSTM are 9.8% and 10% respectively
and that of mean arterial blood pressure is 9.5% and 9.0%
respectively. The formula used for the calculation of error is
given in Eq. (7).

Error = |Actual − Predicted|
Actual

× 100 (7)

5 Conclusion

This paper describes blood pressure estimation from pho-
toplethysmograph signals, captured from fingertip. A new
signal analysis method for extracting novel features from
PPG signals has been introduced. Derivation of predictor
model using machine learning and the model evaluation
using testing set was described. The testing results were
compared using BHS standard and it is shown that proposed
model achieved B grade for DBP and C grade for MAP. A
comparative analysis of results produced by proposedmodels

and various benchmark regression models were performed.
The results showed a marginal improvement in the accuracy
of proposedmodel. Also results were comparedwith existing
works in the literature and it is found that the results of pro-
posed method are comparable with existing works. MIMIC
II database used for this study contains signal parts that are
weakened due to noise. Hence improving the preprocessing
step for noise removal would improve the results. This work
differentiates itself from the existing works as it involves
wavelet scattering techniques.
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