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Abstract
Many methods have been proposed for image denoising, among which the non-local means (NLM) denoising is widely used
for fully exploiting the self-similarity of natural images. For NLM denoising, it needs to calculate the similarity of clean image
blocks as weights. But affected by noise, it is challenging to accurately get the similarity of clean image patches. Most existing
NLM denoising approaches often cause the restored image to be over smoothed and lose lots of details, especially for image
with high noise levels. To tackle this, a novel singular value decomposition-based similarity measure method is proposed,
which can effectively reduce the disturbance of noise. For the method, we first calculate and vectorize the singular values of
two image patches extracted from the noisy image and compute Euclidean distances and cross-angles of the vectors. Second,
we propose to utilize the geometric average of Euclidean distance and cross-angle to calculate the similarity between two
image patches which is resistant to noise. Third, the proposed similarity measure is applied to non-local means denoising to
compute similarity of noisy image patches. Experimental results show that compared to state-of-the-art denoising algorithms,
the proposed method can effectively eliminate noise and restore more details with higher peak signal-to-noise ratio (PSNR)
and the structural similarity (SSIM) index values.

Keywords Singular value decomposition · Cross-angle · Non-local means · Geometric average · PSNR · SSIM

1 Introduction

An image is usually degraded during capture, storage, pro-
cessing, and reproduction, which may cause poor visual
perception. Evaluating and displaying the quality of the cor-
rupted images are thus a problem that urgently needs to
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be tackled. Up to now, many methods have been proposed
to solve this problem; generally, they are grouped in two
categories: subjective and objective assessment [1]. Subjec-
tive assessment is acknowledged as the most exact method
for evaluating quality. It requires many people to mark an
image in varying circumstances and takes the average value
as the final score. However, subjective assessment calls for
higher experimental conditions, and it is difficult to imple-
ment. Generally, the scores captured by subjective evaluation
are regarded as landmarks for testing and verifying objec-
tive assessments [2,3]. Objective assessment is widely used
in image processing, as it can be realized by computers and
ignores the influence of subjective human opinion. Objective
assessment is always divided into three categories: full-
reference assessment (FR) [4,5], reduced-reference assess-
ment (RR) [6], no-reference assessment (NR) [7].

FR assumes that the undegraded image can be captured;
the quality score is the similarity between the degraded and
undegraded images. Mean square error (MSE) and PSNR
are typical FR methods, accepted for their simple mathe-
matical expressions and straightforward physical meanings.
However, MSE and PSNR are error sensitivity-based quality
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measurements; their quality is not in line with human percep-
tion [8,9]. In [10], based on the assumption that human eyes
are sensitive to variation in image structure, SSIM method
is proposed, which uses a new method associated with per-
ceptual sensitivity. In SSIM, the measurement is separated
into three parts, luminance, contrast, and structure, and they
are combined to measure similarity. More recently, Tan et
al. [11] have simplified the mathematical expression in an
additive distortion model, which greatly decreases the com-
plexity of SSIM. Md [12] uses joint statistics of luminance
and disparity of images to assess natural stereo scene images.
Under the assumption that a semantically significant object
would be enhanced by the human visual system, Wang [13]
finds the object-detecting features, speeds up robust fea-
tures, and pools the difference to assess quality similarity.
RR claims that part of the information for a perfect reference
image is known, and that the similarity score is captured by
comparing features. For NR, all information about the ref-
erence image is unknown, so it is difficult to get accurate
quality estimation for corrupted images. Feature description
is a good approach to no-reference image quality evalua-
tion. In [14], Oszust applies statistics to capture perceptual
features and analyze them with support vector regression
to derive a prediction. In [15], a local feature descriptor is
designed to get distorted image features, and the features are
mapped to a subjective opinion score to estimate the quality.
Choosing good features for NR is difficult work, as insuf-
ficient features may cause inaccurate evaluation. With the
development of machine learning, learning methods have
been used to extract features for image quality assessment
[16,17]. Vega [18] adopts deep learning techniques to assess
live video stream quality, which could allow an accurate real-
time judgement. Bosse [19] trains an end-to-end deep neural
network to extract the features and uses a purely data-driven
technique that can tackle both FR and NR problems.

Image denoising is a fundamental and indispensable low-
level process ofmany image processing tasks [20–24]. Image
always is degraded by noise during the process of capture,
transmission, and storage. Up to now, many image denoising
algorithms have been proposed [25–27], among which NLM
denoising is a popular andwidely used technique [25,28–30].
NLM denoising is based on the assumption of self-similarity
of the natural image: Similar patches recur many times in
different spatial locations [31]. Evaluating the similarity of
two patches is significant forNLMalgorithms. For the task of
NLMdenoising, patches are corrupted by noise, and ordinary
techniques cannot predict the similarity accurately.

In this paper, we propose a novel singular value decom-
position (SVD)-based method to estimate the similarity of
image patches with noise, which could effectively alleviate
the influence of noise. For two image patches, first obtain and
vectorize their singular values; then, Euclidean distance and
cross-angles of the two vectors are calculated and combined

with their geometricmean to evaluate the similarity of the two
patches and analyze the anti-interference to noise character of
the proposed similarity metric; finally, the similarity metric
is applied in NLM denoising. Experimental results show that
compared with some denoising algorithms, the proposed sin-
gular value decomposition-based NLM (SVDNLM) denois-
ing method greatly improved the performance.

2 Related works

2.1 SVD

SVD always correlates with the structure of a matrix and is
widely used in many image processing tasks, such as image
denoising [32,33], sparse representation [34], and image
quality assessment [35,36]. SVD divides a matrix into the
product of three othermatrices. Let A be amatrixwith dimen-
sions m × n. Then, SVD can be described as A = USV T ,
where U and V are orthogonal matrices composed of left
and right singular vectors with dimensionsm×m and n×n,
respectively, while S is a matrix of the form

(
� 0
0 0

)
. �

is a diagonal matrix of the form diag(σ1, σ2, . . . , σr ), the
elements in the diagonal line are the singular values of A,
andσ1 ≥ σ2 ≥ · · · ≥ σr > 0. In principal components anal-
ysis (PCA), SVD is related to covariance matrix and can be
used to seek the solution of PCA. PCA is helpful to suppress
data noise by dropping its smaller eigenvalues. For an image
corrupted by AWGN, structure commonly correlates with
larger singular values and noise to smaller singular values.
A common approach is thus to remove the smaller singular
values and keep the larger ones to maintain the structure and
eliminate the noise [32,33].

2.2 NLM

NLM is a kind of spatial filter, and it is proposed on the
assumption that image scenes tend to repeat themselves in
different spatial positions and scales. It is first proposed for
image denoising, the pixel values of the destination, and is
calculated by the weighted average of the whole image pix-
els [25]. Later, some improved NLM denoising algorithms
emerged by modifying the way of weight calculating and
optimizing the hyper-parameters [29,30,37]. Glasner [31]
counts the number of similar sciences appearing in a nat-
ural image and testified the rationality of the self-similarity
assumption of NLM. Matan [38] connects the self-similarity
of a single image and similarity across image sequences to
generate a high-resolution image. Later, NLM is widely used
in single image super-resolution [39,40]. Deng [41] takes
NLM as a regularity term in the process of improving single
image resolution. Zhang [39] combines NLM with steering
kernel regression to recover a high-quality image.
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Fig. 1 a–d Are image patches
with pixel values 50, 100, 150,
and 200, respectively. a Is the
reference image patch, and the
cross-angles of b–d with respect
to a are all 0

(a) 50 (b) 100 (c) 150 (d) 200

3 Proposedmethod

In this section, we detail our novel SVD-based technique to
measure the similarity of noisy image patches. Yuan [35]
applies the cross-angle to assess similarity of image patches
. This can work well around edges, but not for work in a
smooth area. We take four image patches, where the pixels
in each patch have the same values, but there are different
values in different patches. Figure1 shows the cross-angles of
vectors of singular values of the four image patches. Figure
1a–d shows image patches with pixel values 50, 100, 150,
and 200, respectively. Figure1b–d all shows the same cross-
angle, with regard to image patch in Fig.1a, indicating that
Fig.1a–d shows the same image patches, but they obviously
are not. Furthermore, smooth image patches which are being
degraded by noise may cause a highly inaccurate similarity
evaluation. For a natural image, especially when the size of
image patch is small, a large number of smooth patcheswould
be found. To tackle this problem, we combine the cross-angle
with the Euclidean distance of vectors of singular values and
map the numerical similarity to the range [0,1] for intuitive
judgment and convenient expansion for NLM denoising. A
numerical value of 0 indicates minimum similarity, and a
numerical value of 1 implies maximum similarity.

3.1 SVD-based image patch similarity measurement

Considering the insufficiency of the cross-angle method for
image patch similarity measurement, this section details
our novel method for image patch similarity comparison.
Let p and p̂ be image patches of size n × n, and S =
(s1, s2, . . . , sn)T and Ŝ = (ŝ1, ŝ2, . . . , ŝn)T be column
vectors of singular values of p and p̂, respectively. The cross-
angle of vectors S and Ŝ can be described as follows:

C = arccos
S · Ŝ

√
S · S

√
Ŝ · Ŝ

(1)

whereC is the cross-angle. As the singular values of a matrix
are nonnegative, the range ofC is [0, π/2]. A numerical value
of 0 implies the greatest similarity, and π/2 indicates the
least similarity. Customarily, smaller values represent less
similarity, and larger values indicate greater similarity. Thus,

we eliminate the numerical value π and map the cross-angle
to the range of [0, 1]:

Q1 = (1 − 2C/π)2 (2)

The range of Q1 is [0, 1], a numerical value of 0 implies
minimum similarity, and a numerical value of 1 indicates
maximum similarity. In order to solve the insufficiency of
the cross-angle metric, the Euclidean distance of singular
values is used to measure the similarity of image patches.
The Euclidean distance of S and Ŝ is defined as follows:

D =
[

n∑

i=1

(
si − ŝi

)2
]1/2

(3)

In order to be consistent with cross-angle measurement, vari-
able D should be mapped to range [0, 1]. Thus, we can get a
measurement of the similarity in Euclidean distance between
relevant image patches:

Q2 = exp

{
− D

h2

}
(4)

where h is a relaxation factor. When D tends to∞, Q2 tends
to 0; when the value of D is 0, Q2 is 1. The value of Q2

decreases as the distance D increases. A straightforward way
to combine the cross-angle and Euclidean distance relevance
metrics is the arithmetic average of Q1 and Q2.

Q = 1

2
(Q1 + Q2) (5)

From (5), it can be seen that if Q1 is large, then even if Q2

is very small, the measurement Q may not reflect the true
similarity. For example, for two image patches of size 3 × 3
with pixel values 1 and 255, respectively, the value of Q1 is 1,
and the value of Q2 tends to be 0when h is small enough. The
value of Q is approximately 0.5, which is obviously not in
line with human perception. We hope that either Q1 or Q2 is
very small, Q should also have a small value. Thus, we adopt
the geometric mean of Q1 and Q2 to measure the similarity:

Q = (Q1 × Q2)
1/2 (6)
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Since the ranges of Q1 and Q2 are [0, 1], in (6), the range of
Q is [0,1]. A numerical value of 0 implies the lowest simi-
larity, and 1 indicates the highest similarity. If the values of
either Q1 or Q2 are 0, the value of Q would be 0, and only
if both Q1 and Q2 are large, Q can have a large value.

For the proposed image similarity assessment and NR
assessment, both the reference images are unknown. The
proposed method is to evaluate the similarity of clean images
through their corresponding noisy images by suppressing the
influence of noise. TheNR assessment is to evaluate the simi-
larity of the restored imagewith the unknown original image.

3.2 Robustness analysis

In a natural image, noise is customarily included in the
high-frequency information. In some SVD-based denoising
algorithms, noise is assumed to be correlated with smaller
singular values, and the noise can be removed by dropping
some of these smaller singular values [32,33]. Considering
the cross-angle C defined in (1),

C = arccos
S · Ŝ

√
S · S

√
Ŝ · Ŝ

= arccos

∑n
i=1 si ŝi√∑n

j=1 s j s j
√∑n

k=1 ŝk ŝk
(7)

The numerator and denominator are both composed of sums
of products of singular values. The product of the smaller
singular values accounts for only a small fraction of the total
and does not seem to have any effect on the cross-angle. Thus,
the effects of noise can be suppressed in the measurement of
cross-angle C , as well as Q1. In the same way, the distance
D defined in (3) is composed of the sum of the squares of
the differences between the corresponding singular values of
p and p̂. The difference between the smaller singular values
makes only a small contribution to the sum.Thus, the distance
relevance measurement Q2, defined in (4), can effectively
alleviate the impact of noise. Thus, the measurement Q that
we proposed in (6) is robust to noise.

4 Application to NLM denoising

The NLM filter is a development of the bilateral filter. It
assumes that local structures tend to repeat themselves at
different spatial locations in a natural image.Mathematically,
the NLM filter is a solution to the optimization problem of
least squares [38]:

x̂i j = argmin
xi j

∑

(kl)∈P(xi j )

(ykl − xi j )
2wkli j (8)

where xi j and ykl are pixels in clean and noise images at
indices (i j) and (kl), respectively. P(xi j ) is the neighbor-

hood of xi j , andwkli j is the weight describing the correlation
between xi j and ykl . The NLM filter is described as follows:

xi j =
∑

(kl)∈P(xi j ) yklwkli j
∑

(kl)∈P(xi j ) wkli j
(9)

From (9), it can be seen that the numerical value of xi j is
the weighted average of ykl in the corresponding neighbor-
hood. In the traditional NLM denoising method, the weights
are computed based on MSE. Although widely used due
to its convenience for computation, this is not in line with
human perception, especially when an image is corrupted by
noise. In this paper, we calculate the weight using our image
patch similarity measurement Q, which is well correlated
with human vision and can effectively suppress the influence
of noise. To reduce the amount of computation and improve
performance, only patches whose MSE is less than T are
needed to evaluate the similarity; theweights of other patches
are set to 0. The mathematical expression is as follows:

wkli j =
{
Qkli j , i f MSEkli j < T

0, i f MSEkli j ≥ T
(10)

MSEkli j =
∥∥Ykl − Yi j

∥∥2
F

M × N
(11)

whereYkl andYi j are image patcheswith center at ykl and yi j .
Qkli j is the similarity of image patches Ykl and Yi j , MSEkli j

is the mean square error of image patches Ykl and Yi j , T is a
predefined threshold, and M×N is the number of pixels.The
proposed algorithm is detailed as follows:

Algorithm 1 SVD based non-local means denoising.
Input: noisy image y, noise standard error σ

Output: denoised image x̂
1: Using Gaussian low-pass filter to process the noisy image y to get

an image Y .
2: For each pixel Yi, j ∈ Y and Yk,l ∈ Wr (Yi, j ), RYi, j and RYk,l are

image patches centered on Yi, j and Yk,l , respectively. Computing
the MSE between two image patches, and calculating the weight
wkli j based on Eq.10.

3: Define two matrices with the same size as y and zero elements and
address them as V and W , respectively. For each yi, j ∈ y and
yk,l ∈ Wr (yi, j ), let Vi, j =Vi, j + wkli j ∗ yk,l , Wi, j = Wi, j + wkli j ,
and x̂i, j = Vi, j/Wi, j .

5 Experimental results and analysis

In this section, ten classical images “Lena,” “house,” “parrot,”
“couple,” “Barbara,” “boat,” “man,” “peppers,” “monarch,”
and “airplane” are used to verify the effectiveness of our
algorithm. Our experiment is performed in MATLAB 2018
with a Windows 10 operating system, Intel(R) Core i7-8700
CPU, and 16GB memory. Two image quality metrics, PSNR
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[9] and SSIM [10], are employed to evaluate the quality of
the restored images.
After doing the experiments using different values of h
defined in Eq.4, we set its value to be 0.2σ . Empirically,
patch size has important impact on the restoration result. We
take several different size patches to restore the image and
find patch of 3×3 obtains the best performance. In the paper,
we set the size of the patch to be 3×3. The choice of threshold
T is directly concerning to the success of noise removal. If
the numerical value T is much too smaller, only little pixels
are left to construct the original clean image that would pull-
in new noise; on the contrary, too larger value of T , would
cause the image to be over smoothed, increase computational
cost, and consume more time. Table1 shows the PSNR and
SSIM of three restored images “house,” “parrot,” and “pep-
pers” with σ = 30. When the threshold T is 500 or 1000, the
three restored images get higher PSNR and SSIM values. For
two noisy image patches, larger noise standard error is usu-
ally accompanied by largerMSE, and largerMSEmeans less
similarity. For NLMdenoising, we hope the estimation of the
restored pixel uses enough center pixels of patches with high
similarity. Thus, as the noise standard error becomes larger,
the threshold T should become larger. So we chose threshold
T to be 500 when the standard deviation is no greater than
30 and the threshold T to be 1000 when standard deviation
is greater than 30. To cut down the computational cost, we
do not search for similar patches in the entire image but in
a rectangular neighborhood of size 15 × 15 centered at the
pixel.

The restored images are compared with several algo-
rithms: mean filter (MF), bilateral filter (BF), and NLM [25].
Figure2 shows the simulation results for the image “parrot”
with standard deviation σ = 30. By sight, all the algorithms
are good at eliminating noise, and the simulation results of
SVDNLM includemore details. In quantity, NLMhas higher
PSNR and SSIM values than MF and BF, and SVDNLM
gets the highest PSNR and SSIM values. Figure3 shows the
restoration results of image “Barbara” of several denoising
algorithms with standard deviation σ = 50. For MF, much
noise is left in such a high noise level. BF and NLM both
cause the image to be over smoothed, and the details are lost

Table 1 The PSNR and SSIM values for restored images with different
thresholds T under noise standard deviation σ = 30

Image Measurement 100 500 1000 2500 5000

House PSNR 28.78 29.77 29.30 28.69 28.45

SSIM 0.73 0.81 0.80 0.79 0.79

Parrot PSNR 26.00 25.52 25.03 24.48 24.28

SSIM 0.76 0.78 0.77 0.75 0.75

Peppers PSNR 27.56 27.19 26.51 25.65 25.46

SSIM 0.79 0.82 0.81 0.79 0.79

(a) σ=30 (b) MF

(c) BF (d) NLM

(e) SVDNLM (f) Original image

Fig. 2 Experimental results of several mean algorithms for “par-
rot” with noise standard deviation 30. The PSNR and SSIM are a
Noised image, b MF(19.8704 dB, 0.6395), c bilateral filter(22.9024dB,
0.6879), d NLM(24.0660dB, 0.7223), e SVDNLM(25.5283dB,
0.7830)

seriously. The SVDNLMproposed can sufficiently eliminate
noise and hold the edges. Figure 4 shows the experimen-
tal results for the image “monarch” with standard deviation
σ = 60. MF and NLM cause the image to be over-smoothed,
and a large amount of details are lost. The bilateral filter
cannot effectively eliminate noise in such a high standard
deviation, and the noise therefore remains. SVDNLM has
the best visual effect, which could both effectively eliminate
noise and preserve the details.

Table 2 shows the average PSNR results of ten classical
images at different noise levels. When noise standard devi-
ation σ is no more than 40, BF gets higher values than MF,
but when σ is larger than 40, PSNR values for BF are lower
than for MF. This is because calculating the weight using

123



408 Signal, Image and Video Processing (2022) 16:403–410

(a) σ=50 (b) MF

(c) BF (d) NLM

(e) SVDNLM (f) Original image

Fig. 3 Experimental results of several mean algorithms for “Bar-
bara” with noise standard deviation 50. The PSNR and SSIM are a
Noised image, b MF(21.9719dB, 0.6832), c bilateral filter(21.9886dB,
0.6714), d NLM(22.2606dB, 0.6746), e SVDNLM(23.1084dB,
0.7506)

distance and the absolute difference between two pixels is
meaningless in an image with such a high noise level. NLM
has similar results as BF. This is because, in an image with
high-level noise, the mean value of noise in the patch will
greatly deviate from zero, and the weights cannot reflect the
true similarity of patches. SVDNLMworks better for images
with either low or high noise levels. Table 3 shows the mean
values of SSIM for the ten classical images, which has the
similar changing rules as PSNR. When σ is smaller, NLM
achieves higher values than MF and BF; when σ is larger,
NLM, MF, and BF, all achieve similar values. SVDNLM
performs best across the whole range of noise levels.

Figure 5 shows the method noise of experimental results
of image “parrot” of several methods with noise standard

(a) σ=60 (b) MF

(c) BF (d) NLM

(e) SVDNLM (f) Original image

Fig. 4 Experimental results of several mean algorithm for “monarch”
with noise standard deviation 60. The PSNR and SSIM are a Noised
image, b MF(19.8602 dB, 0.5875), c BF(17.4994dB, 0.3029), d
NLM(18.8100dB, 0.5671), e SVDNLM(24.0420dB, 0.7631)

Table 2 Average PSNR results of several algorithms for the ten classi-
cal images at different noise levels

Algorithm σ=20 σ=30 σ=40 σ=50 σ=60

MF 22.8181 22.6486 22.4051 22.0906 21.7176

BF 25.6365 23.5393 22.4203 21.7303 20.4324

NLM 26.6135 24.5245 23.1456 22.1843 21.4600

SVDNLM 27.7257 26.9497 25.8853 25.2005 24.4393

deviation σ = 30. All methods can effectively eliminate
the noise at such a noise level. Owing to the effect of over
smoothing, MF, BF, and NLM all cause much details lost.
The figure shows that SVDNLM algorithm only loses little
details, which indicates the superiority of our methods. Fig-
ure 6 shows the method noise of restored image “peppers”
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Table 3 Average SSIM results of several algorithms for the ten classical
images at different noise levels

Algorithm σ=20 σ=30 σ=40 σ=50 σ=60

MF 0.7340 0.7093 0.6801 0.6486 0.6169

BF 0.7733 0.6974 0.6440 0.6043 0.4672

NLM 0.7901 0.7278 0.6781 0.6387 0.6072

SVDNLM 0.8515 0.8255 0.7892 0.7647 0.7339

(a) MF (b) BF

(c) NLM (d) SVD

Fig. 5 Method noise of several algorithms for “parrot” with noise stan-
dard deviation σ = 30

with noise standard deviation σ = 60. BF has some noise
left and loses many details at such a high noise level. MF
and NLM cause the restored images to be over smoothed. As
shown in Fig. 5, SVDNLM gets the best performance.

6 Conclusion

This paper proposes a novelmethod of evaluating the similar-
ity for noisy image patches, which combines the cross-angle
and Euclidean distance of vectors of singular values of image
patches and could effectively alleviate the interference of
noise. The method is then applied to NLM denoising. Exper-
imental results show that compared to several state-of-the
-art algorithms, SVDNLM can effectively eliminate noise
and retain more details, achieve larger values of PSNR and
SSIM, and greatly improve the performance of NLM.

(a) MF (b) BF

(c) NLM (d) SVD

Fig. 6 Method noise of several algorithms for “peppers” with noise
standard deviation σ = 60

References

1. Fang, Y., Yan, J., Liu, J., Wang, S., Li, Q., Guo, Z.: Objective qual-
ity assessment of screen content images by uncertainty weighting.
IEEE Trans. Image Process. 26, 2016–2027 (2017)

2. Zhang, Y., Ngan, K.N.: Objective quality assessment of image
retargeting by incorporating fidelity measures and inconsistency
detection. IEEE Trans. Image Process. 26(12), 5980–5993 (2017)

3. Bampis, C.G., Li, Z., Moorthy, A.K., Katsavounidis, I., Aaron,
A., Bovik, A.C.: Study of temporal effects on subjective video
quality of experience. IEEE Trans. Image Process. 26(11), 5217–
5231 (2017)

4. Claudio, E.D.D., Jacovitti, G.: A detail-basedmethod for linear full
reference image quality prediction. IEEE Trans. Image Process.
27(1), 179–193 (2018)

5. Wang, H., Fu, J., Lin. W., Hu, S., Kuo, C.C.J. ,Zuo , L.: Image
quality assessment based on local linear information and distortion-
specific compensation. IEEETrans. ImageProcess. 26(2), 915–926
(2016)

6. Zhang, C., Cheng, W., Hirakawa, K.: Corrupted reference image
quality assessment of denoised images. IEEETrans. ImageProcess.
28(4), 1732–1747 (2019)

7. Rohil, M.K., Gupta, N., Yadav, P.: An improved model for no-
reference image quality assessment and a no-reference video
quality assessment model based on frame analysis. Signal Image
Video Process. 14, 205–213 (2020)

8. Wang, Z., Bovik, A.C.: Mean squared error: love it or leave it? A
new look at signal fidelity measures. IEEE Signal Process. Mag.
26(1), 98–117 (2009)

9. Horé, A.,Ziou,D.: Image qualitymetrics: PSNRvs. SSIM. In: 2010
International Conference on Pattern Recognition, IEEE Computer
Society, pp. 2366–2369 (2010)

123



410 Signal, Image and Video Processing (2022) 16:403–410

10. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image qual-
ity assessment: from error visibility to structural similarity. IEEE
Trans. Image Process. 13(4), 600–612 (2004)

11. Tan, H.L., Li, Z., Tan, Y.H., Rahardja, S., Yeo, C.: A perceptu-
ally relevant MSE-based image quality metric. IEEE Trans. Image
Process. 22(11), 4447–4459 (2013)

12. Md, S.K., Appina, B., Channappayya, S.S.: Full-reference stereo
image quality assessment using natural stereo scene statistics. IEEE
Signal Process. Lett. 22(11), 1985–1989 (2015)

13. Wang, F., Sun, X., Guo, Z., Huang, Y., Fu, K.: An object-distortion
based image quality similarity. IEEE Signal Process. Lett. 22(10),
1534–1537 (2015)

14. Oszust, M.: No-reference image quality assessment using image
statistics and robust feature descriptors. IEEE Signal. Process. Lett.
24(11), 1656–1660 (2017)

15. Oszust, M.: Local feature descriptor and derivative filters for blind
image quality assessment. IEEE Signal. Process. Lett. 26(2), 322–
326 (2019)

16. Ma, K., Liu, W., Liu, T., Wang, Z., Tao, D.: dipIQ: blind image
quality assessment by learning-to-rank discriminable image pairs.
IEEE Trans. Image Process. 26(8), 3951–3964 (2017)

17. Ma, K., Liu, W., Zhang, K., Duanmu, Z., Wang, Z., Zuo, W.: End-
to-end blind image quality assessment using deep neural networks.
IEEE Trans. Image Process. 27(3), 1202–1213 (2018)

18. Vega,M.T.,Mocanu,D.C., Famaey, J., Stavrou, S., Liotta, A.: Deep
learning for quality assessment in live video streaming. IEEE Sig-
nal. Process. Lett. 24(6), 736–740 (2017)

19. Bosse, S., Maniry, D., Müller, K.R.,Wiegand, T., Samek,W.: Deep
neural networks for no-reference and full-reference image quality
assessment. IEEE Trans. Image Process. 27(1), 206–219 (2018)

20. Shan, W., Liu, P., Mu, L., Cao, C., He, G.: Hyperspectral image
denoising with dual deep CNN. IEEE Access 7, 171297–171312
(2019)

21. Yang, Y., Ping, Z., Ma, F., Wang, Y.: Fusion of hyperspectral
and multispectral images with sparse and proximal regularization.
IEEE Access 7, 186352–186363 (2019)

22. Zhang, J., Lu, Z., Li, M., Wu, H.: GAN-based image augmentation
for finger-vein biometric recognition. IEEE Access 7, 183118–
183132 (2019)

23. Xue, S.,Qiu,W.,Liu, F.: Faster image super-resolutionby improved
frequency-domain neural networks. Signal. Image Video Process.
14, 257–265 (2020)

24. Wang, Y., Wang, J., Song, X., Han, L.: An efficient adaptive fuzzy
switching weighted mean filter for salt-and-pepper noise removal.
IEEE Signal. Process. Lett. 23(11), 1582–1586 (2016)

25. Buades, A., Coll, B., Morel, J.M.: A review of image denoising
algorithms, with a new one. SIAM J. Multiscale Model. Simul.
4(2), 490–530 (2005)

26. Chen, J., Zhan,Y., Cao,H.: Adaptive sequentiallyweightedmedian
filter for image highly corrupted by impulse noise. IEEE Access 7,
158545–158556 (2019)

27. Liu, X., Chen, Y.: NLTV-Gabor-based models for image decom-
position and denoising. Signal Image Video Process. 14, 305–313
(2020)

28. Lu, L., Jin, W., Wang, X.: Non-local means image denoising with
a soft threshold. IEEE Signal Process. Lett. 22(7), 833–837 (2015)

29. Souidene, W., Megrhi, S., Beghdadi, A., Amar, C.B.: Perceptual
non local mean**. Control and Signal Processing, P-NLM) denois-
ing, International Symposium on Communications (2012)

30. Lai, R., Dou, X.: Improved non-local means filtering algorithm
for image denoising. Int. Cong. Image Signal Process. 2, 720–722
(2010)

31. Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single
image. Presented **(2009)

32. Rajwade, A., Rangarajan, A., Banerjee, A.: Image denoising using
the higher order singular value decomposition. IEEE Trans. Pattern
Anal. Mach. Intell. 35(4), 849–862 (2013)

33. Jha, S.K., Yadava, R.D.S.: Denoising by singular value decom-
position and its application to electronic nose data processing.
Denoising by Singular Value Decomposition and Its Application
to Electronic Nose Data Processing 11(1), 35–44 (2011)

34. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm
for designing overcomplete dictionaries for sparse representation.
IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)

35. Yuan, F., Huang, L.-F., Yao, Y.: Algorithm for image quality mea-
surement using singular value decomposition. Wireless Mobile
Sens. Netw, IET (2007)

36. Mansouri, A., Aznaveh, A.M., Azar, F.T., Jahanshahi, J.A.: Image
quality assessment using the singular value decomposition theo-
rem. Opt. Rev. 16(2), 49–53 (2009)

37. Van, D.V.D., Kocher,M.: SURE-based non-localmeans. IEEESig-
nal Process. Lett. 16(11), 973–976 (2009)

38. Matan, P., Michael, E., Hiroyuk, T., Peyman, M.: Generalizing
the nonlocal-means to super-resolution reconstruction. IEEETrans.
Image Process. 18(1), 36–51 (2009)

39. Zhang, K., Gao, X., Tao, D., Li, X.: Single image super-resolution
with non-local means and steering kernel regression. IEEE Trans.
Image Process. 21(11), 4544–4556 (2012)

40. Romano, Y., Protter, M., Elad, M.: Single image interpolation via
adaptive nonlocal sparsity-based modeling. IEEE Trans. Image
Process. 23(7), 3085–3098 (2014)

41. Deng, C., Tian, W., Wang, S., et al.: Structural similarity based
single image super-resolution with nonlocal regularization. Optik
125, 4005–4008 (2014)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	A novel singular value decomposition-based similarity measure method for non-local means denoising
	Abstract
	1 Introduction
	2 Related works
	2.1 SVD
	2.2 NLM

	3 Proposed method
	3.1 SVD-based image patch similarity measurement
	3.2 Robustness analysis

	4 Application to NLM denoising
	5 Experimental results and analysis
	6 Conclusion
	References




