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Abstract
Deep neural network (DNN) has been recently used in the field of fault diagnosis, but still their applicability is restricted 
to high computational complexity. In addition, useless information transformation between adjacent layers of the network 
could have a negative influence on the diagnosis accuracy. In this paper, a new DNN structure with sparse gate is designed 
to highlight the role of neurons contributed more by making it directly transfer through layers rather than transfer via an 
activation function. So it can reduce the computational complexity of network training since only those contributed less are 
required to be transferred via a nonlinear transformation. The proposed sparse denoising DNN (SD-DNN)-based fault diag-
nosis method can achieve more accurate diagnosis result with less computational complexity. It shows significant superiority 
to other-related methods in the case when only small size of training samples polluted by strong noise is available, which 
is very common for the engineering field of fault diagnosis. The experimental testing of fault diagnosis for rolling bearings 
verifies the effectiveness of the proposed method.
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1 Introduction

As one of the key components, the healthy operation of 
rolling bearing is critical to the safety of intelligent manu-
facturing process to avoid some economic losses or even 
disastrous phenomenon. Accurate real-time fault diagnosis is 
an important means to secure healthy operation of the com-
ponents of the intelligent manufacturing process [1–3]. Roll-
ing bearing fault diagnosis methods can be mainly divided 
into the following three categories: model-based methods, 
knowledge-based methods and data-driven methods. Data-
based methods are increasingly favored by experts in the 
engineering field since it can get rid of too much dependence 
on physical model and experience [4–6].

Deep learning is an efficient tool to extract feature 
involved in data. Fault diagnosis method using deep learn-
ing has received extensive attention from scholars [2, 3, 7, 
8]. Existing methods can be divided into four categories: 
convolutional neural network (CNN)-based methods, long 
short-term memory neural network (LSTM)-based methods, 
deep belief network (DBN)-based methods and deep neural 
network (DNN)-based on methods constructed by stacking 
autoencoders [9–12]. CNN-based fault diagnosis method 
can extract features in the image by designing multiple con-
volution layers and pooling layers with an additional fully 
connected layer [13]. But it is difficult to achieve a real-time 
fault diagnosis result since 1-D signal is reshaped as 2-D 
matrix before it is fed into CNN. DBN-based fault diagnosis 
method can eliminate some uncertainty in the faulty data 
since RBM rather than AE is stacked to construct DBN, 
but the initialization process of DBN is complex and cal-
culation burden is large [14]. LSTM extracts features from 
the data by using gate structure. The forget gate is used to 
discard useless information, the transferring gate determines 
which information needs to be transferred, and the output 
gate determines the output of the LSTM [15]. Compared 
with the above three methods, DNN constructed by stacking 
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multiple AEs shows its advantage when 1-D sequence is 
processed [2, 3, 7, 12].

Due to the complexity of operation environment of 
mechanical equipment, the collected monitoring data are 
usually polluted by noise, which will affect the accuracy 
of DNN-based fault diagnosis. In addition, fully connected 
network structure of DNN may transfer unnecessary infor-
mation to the next layer. Therefore, unsatisfying fault diag-
nosis result may be resulted. Methods to solve this problem 
can be classified into two classes: methods use filtering as 
a preprocessing technique of DNN and methods use sparse 
learning mechanism by adding a penalty term.

To improve the accuracy of deep learning-based fault 
diagnosis model, Fourier transform, median filtering, wave-
let transform, etc., are used for pre-processing of denois-
ing [16–20]. In order to extract more accurate feature 
involved in non-stationary vibration signal sampled from 
rotating machinery, digital wavelet frame is used to extract 
the features of fault signal with DNN stacked by multiple 
autoencoders [19, 20]. Some experts use intelligent filtering 
methods to process noisy information [21, 22]. However, the 
efficiency of pre-processing step will have strong influence 
on the final diagnosis result of DNN.

On the other hands, most processing of noisy data is 
based on designing new learning mechanism or optimization 
principles [3, 9, 23, 24]. Stacked denoising autoencoders 
and stacked sparse autoencoders (SSAE) are two representa-
tive methods of this class [23–27]. Lu et al. studied deep 
learning method for fault diagnosis of rotating machinery 
by stacking denoising autoencoder (DAE) [24]. Comparing 
to AE, DAE aimed to make the network capable of restor-
ing the unpolluted data by using the noisy polluted data as 
the training samples such that SDAE is more robust. Wang 
et al. combine SDAE and CNN to improve the accuracy 
of fault classification [25]. But SDAE-based methods and 
their variants have complex computational burden. Sparse 
autoencoder (SSAE) is designed to suppress some hidden 
neurons by adding a penalty factor to the loss function 
when optimization of the training is considered. Sun et al. 
use SSAE to diagnose fault of induction motor with a high 
accuracy [28]. In order to solve the problem of shaft speed 
fluctuation, Sohaib et al. used SSAE to well extract the fault 
features involved in the training samples [29]. Some vari-
ations of normalization were designed to further improve 
the performance of normalization technique [30, 31]. Zhang 
et al. used batch normalization for each layer of the DNN to 
reduce the difficulty of training [26]. Qi et al. used the inte-
grated empirical model and autoregressive model to process 
non-stationary signals to design a stacked sparse denois-
ing autoencoder (SSDAE) to mine more advanced features 
[30]. Zhang et al. proposed a stacked marginalized SDAE to 
improve the noise reduction ability to achieve accurate fault 
diagnosis result [31].

As an application field of deep learning, the accuracy 
of deep learning-based fault diagnosis method depends on 
the size of the training samples, the quality of the training 
samples, the network structure and learning mechanism. 
The above-mentioned methods tried to perform some pre-
processing analysis to improve the quality of the training 
samples or tried to design an efficient learning mechanism. 
They all failed to design a new network structure to highlight 
the role of neurons with large contributions by directly trans-
ferring them to the next layer. How to design a new network 
structure rather than new learning mechanism to accurately 
extract feature from noisy data with low computational bur-
den is significant. In this paper, a new deep neural network 
structure with sparse gate is designed to highlight the neu-
rons that contribute more by directly transferring them to 
the next layer without additional nonlinear transform. The 
designed sparse denoising DNN (SD-DNN) structure can 
achieve the purpose of network sparsity as well as noise 
reduction at the same time. Thus, more accurate deep learn-
ing-based fault diagnosis method with low training compu-
tational complexity is developed.

Remark 1: Transferring directly without nonlinear trans-
formation via an activation function means that the compu-
tational burden required by the nonlinear transformation can 
be saved. In this sense, sparsity means that the information 
involved in the sparse neuron does not need to be transferred 
across the activation function.

The main contributions of SD-DNN-based fault diagnosis 
method proposed in this paper are as follow:

1. A new DNN structure with sparse gate is designed to 
process noisy data as well as make those neurons con-
tributed much transfer to the next layer directly.

2. The proposed SD-DNN-based fault diagnosis method 
can achieve more accurate diagnosis with less compu-
tational complexity.

3. SD-DNN is significantly superior to other-related meth-
ods in the case when only small size of training samples 
polluted by strong noise is available, which is very com-
mon for the field of fault diagnosis.

The remaining sections of this article are organized as 
follows: Sect. 2 introduces deep neural networks. Section 3 
addresses the fault diagnosis algorithm based on SD-DNN. 
Section 4 provides the experimental results and comparative 
analysis. The paper is concluded in Sect. 5.

2  Preliminary of DNN

AE is an unsupervised learning neural network with one hid-
den layer, which includes two stages: encoding and decod-
ing. The goal of AE training is to restore the input data of 
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AE, such that the trained AE has good data feature represen-
tation capability without any label information of the train-
ing samples. As shown in Fig. 1, DNN can be constructed 
by stacking multiple AEs to extract data’s potential abstract 
features layer by layer in the means of bottom-up unsuper-
vised learning with top-down supervised fine-tuning. The 
output of the previous AE’s encoding is fed into the next 
AE’s encoding [32, 33].

3  Fault diagnosis algorithm based 
on SD‑DNN

3.1  Design of Sparse Gate

In the process of information transferring between neurons 
on adjacent layers, there will be some information cor-
related less with fault features. If the neurons transferring 
information correlated much with fault feature are high-
lighted before it is transferred to the next layer, those less 
contributed “noise” can be weakened. For this goal, a new 
DNN structure with sparse gate is designed in this paper 
to design a new transferring mechanism between layers by 
adjusting the weight of the sparse gate. The structure of 
the designed sparse gate between two layers can be shown 
in Fig. 2, where T is the switching gate, C is the carrying 
gate. Gate C means that information related to a specific 
neuron in the previous layer is directly transferred to the 
next layer without additional nonlinear transformation. 
While gate T means that information related to a specific 
neuron in the previous layer is transferred to the next 
layer via an activation function. In Fig. 2, the information 

related to red neurons can be directly transferred to the 
next layer, and the gray neurons are suppressed. SD-DNN 
is designed by adding a sparse gate on the basis of the 
DNN shown in Fig. 2.

The working mechanism of DNN with sparse gate shown 
in Fig. 2 is as follows.

The output of the sparse gate demonstrated in Eq. (1) is 
fed to the next hidden layer. If hi ∈ Rni×1 is the output of a 
neuron on the previous layer, linear transformation without 
activation is required in forward propagation to get H(hi) as 
the input of the sparse gate. It is only used as a part of the 
sparse  process.

where ◦ denotes the dot product operation. hsi ∈ Rni×1 is the 
output of the sparse gate. H(hi) ∈ Rni×1 is the input of sparse 
gate.T(hi) ∈ Rni×1 is the result of switching gate which is the 
forward propagation result via an activation function used 
in regular DNN. T(hi)◦H(hi) means that hi should be for-
ward transferred via an activation function. When the output 
of activation function T(hi) ∈ Rni×1 is near 0,  C(hi) is near 
1,C(hi)◦hi means that hi can be directly transferred without 
an activation function.

The function of the sparse gate is to establish a highway 
between two adjacent layers to make those information much 
correlated with fault features directly transferred through, 
while other correlated less needs to be transformed via an 
activation function in the forward propagation. In Fig. 3, 
gray neurons on the hidden layer are suppressed by sparse 
gate in the sense that they cannot be directly be transferred 
to the next layer. On the other hands, yellow neurons can be 
directly transferred to the next layer, just like transferring 
it through a highway, which will reduce the computational 

(1)hsi = T(hi)◦H(hi) + C(hi)◦hi

(2)T(hi) = �(Wshi + bs)

(3)C(hi) = 1 − T(hi)

(4)H(hi) = Whihi + bhi

Fig. 1  Structure of DNN stacked with multiple AEs

Fig. 2  The structure diagram of SD-DNN
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complexity. By this means the computational complexity 
of network training can be saved once sparse gate is used.

Remark 2: The sparsity ability of the sparse gate means 
that some information contributed much can be directly 
transferred, while nonlinear transformation is required to 
the other information to extract more abstract feature.

Remark 3: In the case, when the training sample size is 
small, it is prone to suffer from overfitting problem since 
small number of training samples tries to learn a large num-
ber of connection weights. So SD-DNN with sparse gate is 
more significant in the field of fault diagnosis since small 
sample size of faulty data is common.

The flowchart of SD-DNN-based fault diagnosis algo-
rithm is shown in Fig. 4. The detail algorithm includes the 
following steps:

3.1.1  Offline training

Build network model NETSD - DNN:

where Feedforward is the function to construct neural net-
work, and �H = {Wh1, bh1,Wh2, bh2,⋯ ,WhP, bhP} is the 
parameters that needs to be transformed in the hidden 
layer.�N =

{

W1, b1,⋯ ,WN , bN
}

 is the weight and bias of 
each layer, and �s =

{

Ws1, bs1,⋯ ,WsP, bsP
}

 is the weight 
and bias of the sparse gate in each hidden layer. N is the 
number of network layers, P=N − 1.

Forward propagation of SD-DNN is just similar to that of 
traditional DNN, as shown in Eq. (6)

where X is the training sample, W1 and b1 are the weight 
and bias of the first hidden layer, and �(.) is the activation 
function.

(5)NETSD - DNN = Feedforward(�N , �s, �H)

(6)h1 = �(W1X + b1)

1 Sparsity of the first hidden layer. The sparse algorithm 
can be illustrated in Eq. (7)-(10):

(7)hs1 = Ts1◦H1(h1) + Cs1◦h1

(8)Ts1 = �(Ws1h1 + bs1)

(9)Cs1 = 1 − Ts1 = 1 − �(Ws1h1 + bs1)

Fig. 3  The model of SD-DNN
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Fig. 4  Flowchart of the fault diagnosis algorithm based on SD-DNN
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where Ws1 and bs1 are weight and bias of the sparse 
gate. Equation (7) shows that the sparse gate Ts1,Cs1 are 
required to be learned to determine whether h1 can be 
transferred directly or be transferred after nonlinear 
transformation.

2 Sparsity of the second hidden layer. The sparse algo-
rithm is shown in Eq. (11)–(12):

3 Sparsity of the Nth hidden layer. The sparse algorithm 
is shown in Eq. (13):

where hN is the output of the Nth hidden layer.
4 Backpropagation of SD-DNN is similar to that of tra-

ditional DNN. Fed the output of SD-DNN hsN into a 
classifier model to get the error of forward propagation. 
Then, BP algorithm is used to optimize the loss func-
tion, such that well-trained parameters of SD-DNN �T 
can be obtained, as is shown in Eq. (14).

Where �c = [Wc, bc]  is the trained model parameters 
of the classifier, �SD - DNN =

{

�, �s, �H

}

  is the trained 
model parameters of SD-DNN.

Remark 4: For the stage of offline training, the main dif-
ferences between SD-DNN and DNN are pointed out as fol-
lows: (1) As shown in Eq. (7)–(10), in the forward process, 
additional operation corresponding to sparse gate between 
adjacent layers is required to highlight the role of neurons 

(10)H1(h1) = Wh1h1 + bh1

(11)h2 = f1(W2hs1 + b2)

(12)hs2 = Ts2◦H2(h2) + Cs2◦h2

(13)hsN = TsN◦HN(hN) + CsN◦hN

(14)�T =
{

�SD - DNN, �C

}

contributed much by forcing it a relatively large weight coef-
ficient. (2) As shown in Eq. (4), the parameters of DNN 
as well as sparse gate are fine-tuned by backpropagation 
algorithm.

3.1.2  Online diagnosis

1. Feed the online sample at time k into the well-trained 
network to extract features hsN,online(k)

where GSD - DNN is a function to describe the relation between 
the input and output of the well-trained SD-DNN.

2. Fed online features into the well-trained Softmax clas-
sifier to realize online diagnosis.

4  Experiment analysis

4.1  Experiment data and experiment design

The rolling bearing data set of Case Western Reserve Uni-
versity is used to verify the effectiveness of the proposed 
method [34]. The bearing data with sampling frequency of 
12 kHz and fault diameter of 0.007 inches are used. Six 
categories of fault are included: normal, inner race fault, 
ball fault, outer race fault 1, outer race fault 2 and outer race 
fault 3. The experiment result of SD-DNN is compared with 
SAE, SDAE, SSAE,stacked sparse denoising autoencoder 
(SSDAE),CNN and LSTM.

The parameters of the network model are shown in 
Table 1. Table 2 shows the specific experimental design.

Remark 5: The second row of Table 2 means that there are 
4 layers included in DNN constructed by stacking multiple 
AEs. The number of neurons on the input layer is 400, the 
number of neurons on the second layer is 200, the number 

(15)
hsN,online(k) = GSD - DNN(NETSD - DNN, �SD - DNN,Xonline(k))

Table 1  Parameters of network Model Model parameters

SAE Number of layers: 4, neurons in each layer:400/200/50/6, learning rate: 0.2
SDAE Number of layers: 4, neurons in each layer:400/200/50/6, learning rate: 0.2
SSAE Number of layers: 4, neurons in each layer: 400/200/50/6, learning rate: 0.2
SSDAE Number of layers: 4, neurons in each layer:400/200/50/6, learning rate: 0.2
CNN Convolutional layer:Ksize:5*5 KC:16 Kstep:1, Pooling layer: Psize:2*2 Pstep:2, 

fully connected layer: Number of neurons: 100, learning rate: 0.003
CNN with sparse gate Convolutional layer:Ksize:5*5 KC : 16 Kstep:1, Pooling layer: Psize:2*2 Pstep

:2,fully connected layer: Number of neurons: 100, learning rate: 0.003
LSTM Cell number: 4, number of hidden neurons in the cell: 100, learning rate: 0.2
LSTM with sparse gate Cell number: 4, number of hidden neurons in the cell: 100, learning rate: 0.2
SD-DNN Number of layers: 4, neurons in each layer:400/200/50/6, learning rate: 0.2
Numbers of sparse gate: 2
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of neurons on the third layer is 50, and the number ot the 
output layer is 6.

4.2  Analysis of experimental results

Tables 3, 4, 5, 6 show the fault diagnosis accuracy of the 
corresponding five models. In order to reduce the influence 
of randomness, 10 times of average are conducted.

Table 2  Experimental design

Experiment Number of fault 
type

Training sample 
size

Testing 
sample 
size

Experiment 1 6 300 300
Experiment 2 6 600 600

Table 3  Fault diagnosis result with training sample size 600

Normal (%) Inner race (%) Ball (%) Outer race1 (%) Outer race2 (%) Outer race3 (%) Average 
accuracy 
(%)

SAE 100 63.89 94.4 91.00 73.60 45.30 78.27
SDAE 100 63.50 94.50 94.50 75.60 44.50 78.79
SSAE 100 55.6 92.20 87.70 67.70 44.20 74.66
SSDAE 100 70.40 93.30 91.10 71.70 47.30 79.16
SD-DNN 100 70.60 97.40 98.5 81.90 60.40 84.78
CNN 97.11 73.88 79.33 74.11 70.78 65.33 76.76
SD-CNN 98.57 80.00 80.71 81.71 81.29 75.29 82.981
LSTM 100 85.29 84.71 99.29 97.00 82.14 91.41
SD-LSTM 100 88.00 88.29 99.86 96.86 82.43 92.35

Table 4  Fault diagnosis result with training sample size 300

Normal (%) Inner race (%) Ball (%) Outer race1 (%) Outer race2 (%) Outer race3 (%) Average 
accuracy 
(%)

SAE 100 20.60 44.60 72.60 25.2 29.80 48.77
SDAE 100 21.20 55.20 73.40 21.30 28.60 49.70
SSAE 100 16.29 35.43 67.71 25.43 24.26 44.86
SSDAE 100 22.20 47.20 73.40 21.30 28.60 49.73
SD-DNN 100 33.00 78.60 80.60 37.40 31.40 59.77
CNN 96.40 51.20 70.80 58.8 65.60 57.20 66.67
SD-CNN 97.00 65.00 87.00 72.00 72.00 64.87 76.28
LSTM 100 48.68 52.57 94.00 86.29 68.57 75.05
SD-LSTM 100 50.86 57.71 96.86 83.14 68.29 76.14

Table 5  Fault diagnosis result with different sizes of noise for sample size 600

Additional noisy 
variance

Normal (%) Inner race (%) Ball (%) Outer race1 (%) Outer race2 (%) Outer race3 (%) Average 
accuracy 
(%)

0 100 70.60 97.40 98.5 81.90 60.40 84.78
0.05 100 66.70 97.00 97.80 84.80 57.30 83.87
0.1 96.50 62.30 93.60 97.70 78.60 52.80 80.25
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Fault diagnosis result with training sample size 600 is 
shown in Table 3. Column 2–Column 7 of Table 3 show spe-
cific diagnosis accuracy of each type of fault. The  8th column 
is the average diagnosis accuracy of different categories. 
The 9th column of is the increment to the traditional fault 
diagnosis method using DNN stacked with autoencoders.

From the second row that corresponding to the traditional 
fault diagnosis method using DNN stacked with AEs, it can 
be seen that when the sample size is small, traditional DNN-
based method can well distinguish normal data but fail to 
diagnose the outer race 3 fault. Row 2 of Table 3 indicates 
that DNN model constructed by stacking DAEs can improve 
a little since the training data are collected from the experi-
mental platform rather than the actual engineering field. If is 
difficult for SSAE to achieve a satisfying diagnosis accuracy 
when the specific learning algorithm is inappropriate, just 
as the diagnosis result Row 4 confirms. The 5th row indi-
cates that by combining SDAE and SAE still cannot achieve 
a satisfying diagnosis result. The reason is that the above 
3-mentioned methods all try to solve the problem using a 
revised learning algorithm of DNN without modifying the 
network structure. The 6th row of Table 3 shows that SD-
DNN can achieve a higher fault diagnosis accuracy since 
it focuses on developing a spare gate to modify the struc-
ture of traditional DNN. This shows that SD-DNN inhibits 
neurons with small contributions and highlights those with 
large contributions during the propagation of fault features. 
For Ball and outer race2 fault, the diagnosis accuracy of 
SD-DNN is significantly higher than other models, which 
shows that SD-DNN can inhibit some neurons very well. 
The average fault diagnosis accuracy of SD-DNN is 6.51% 
higher than SAE. Comparing Row 6 with Row 7 and Row 
9, it can be seen that the diagnosis accuracy of SD-DNN 
is lower than CNN and LSTM. But Table 3 indicates that 
both CNN and LSTM require more heavy computational 
burden. On the other hands, the comparison of Row 7 with 
Row 8 and comparison of Row 9 with Row 10 show that 
the designed sparse gate can improve the fault diagnosis 
accuracy at lower computational cost is suitable for DNN 
as well as CNN and LSTM.

Remark 6: The innovation of this paper is to design an 
improved network structure with sparse gate to achieve high 
accuracy with low computation complexity. The proposed 
method is developed for DNN. When network structure is 
changed to CNN and LSTM, the same conclusion can be 
achieved.

Remark 7: In the experiment, all deep learning models 
use SDG as the optimizer for BP algorithm, when other opti-
mizer is used, the same conclusion can also be achieved.

For the case, when only smaller sample size is available, 
in addition to affection by noise, smaller sample size usu-
ally makes DNN model suffered from overfitting problem. 
Sparse gate makes it possible for learning much less number 
of weighting coefficients between neurons on adjacent layers 
since it makes some information directly transferred. So it 
can partially alleviate the problem of overfitting problem. 
Fault diagnosis result for training sample size 300 is shown 
in Table 4. Comparing the 6th row of Table 4 with that of 
Table 3, it can be concluded that the proposed SD-DNN-
based method is significantly superior to other methods since 
it can achieve an diagnosis accuracy increment of 11%.

Figure 5, 6, 7, 8, 9, 10, 11, 12, 13 are the confusion matrix 
of the corresponding nine methods when the training sam-
ple size is 600. The horizontal axis of the confusion matrix 
is the predicted number of correct classifications of each 
model. Other locations are misclassified. The darker the 
color, the high diagnosis accuracy.

Table 6  Comparison of training 
time with different sample sizes 
(unit: second)

Training 
sample size

SAE SDAE SSAE SSDAE SD-DNN CNN SD-CNN LSTM SD-LSTM

300 43.91 50.47 46.62 54.83 20.51 218.85 163.88 123.78 67.88
600 76.38 78.01 79.44 85.15 31.56 1069.20 637.51 224.78 167.33

Fig. 5  Confusion matrix of SAE-based fault diagnosis

Fig. 6  Confusion matrix of SDAE-based fault diagnosis
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Rolling bearing data are collected from a simulated 
industrial platform, which is an ideal experimental platform 
in some sense. While data collected in actual industrial 
platform are usually polluted by strong noise. To test the 
diagnosis ability of our method in the scenario of actual 

engineering field, a kind of normally distributed noise with 
variance 0.05 and 0.1 is added to the experiment scenarios, 
respectively. The experiment result is listed in Table 5. From 
Table 5, it can be seen that fault diagnosis of all correspond-
ing methods decreases. Table 5 also indicates that once data 
polluted with strong noise are processed, it can achieve much 
high increment, which shows that the sparse gate can sup-
press noise better and SD-DNN based fault diagnosis model 
has good denoising performance.

4.3  Analysis of computational complexity

The computation complexity can be tested by the train-
ing time of each method. Table 6 shows the training time 
of SAE, SDAE, SSAE, SSDAE and SD-DNN in different 
experiment scenarios with different sample sizes since many 
neurons in SD-DNN are inhibited. In Table 6, the fault diag-
nosis capabilities of different structures of neural networks 
for different samples are compared for the fault diagnosis 
capability. LSTM showed better results of fault diagnosis. 

Fig. 7  Confusion matrix of SSAE-based fault diagnosis

Fig. 8  Confusion matrix of SSDAE-based fault diagnosis

Fig. 9  Confusion matrix of SD-DNN-based fault diagnosis

Fig. 10  Confusion matrix of CNN-based fault diagnosis

Fig. 11  Confusion matrix of SD-CNN-based fault diagnosis

Fig. 12  Confusion matrix of LSTM-based fault diagnosis

Fig. 13  Confusion matrix of SD-LSTM-based fault diagnosis
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SD_DNN has higher fault diagnosis accuracy than CNN 
when the samples are 1800 and 600.

It can be seen from Table 6 that SD-DNN can save more 
computational complexity. While SSDAE spends more com-
putational complexity than SD-DNN since denoising and 
sparsity are implemented separately.

Remark 8: All training time listed in Table is just for the 
scenery when the training epochs come to 5000, which is the 
maximum number of epochs.

Combining the experiment result of Tables 3, 4 and 6, it 
is obvious to see that SD-DNN-based fault diagnosis method 
proposed in this paper can achieve much more accurate fault 
diagnosis result with much lower computational burden, 
especially in the case, when small size of training sample 
polluted by strong noise, which is common in the engineer-
ing field of fault diagnosis.

5  Conclusions and future work

Deep learning is a promising tool for fault diagnosis of roll-
ing bearing. But existed structure of DNN may make that 
information correlated less with the fault feature transfer 
through layers. This will be destined to get inaccurate fault 
diagnosis with large computation burden. This paper focuses 
on developing a deep learning fault diagnosis algorithm by 
designing a sparse gate to make it possible for achieve the 
goal of sparsity and denoising simultaneously. SD-DNN is 
capable of achieving an accurate fault diagnosis result with 
less computational complexity.

Future research of our work will focus on designing a 
mechanism to combine limited size of training data with the 
available rough physical model to achieve more satisfying 
diagnosis accuracy.
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