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Abstract
One of the most widespread disorders in childhood is called autism spectrum disorder (ASD), which affects the brain’s func-
tion. Previously, many efforts have been made to develop an intelligent system to detect disease using brain activity. However, 
accurate diagnosis of ASD remains a challenging issue among scientists. The purpose of this study was to diagnose ASD at 
an early age using a low computationally algorithm based on electroencephalography (EEG) signal. In this study, we clas-
sified two groups of normal and autistic children using brain signals at resting-state. Two brain channels (C3 and C4) of 61 
children including 27 normal children and 34 autistic children in the age range of 4 to 8 years were studied. For the first time, 
we characterized the EEGs using innovative polar-based lagged state-space indices. The classification was performed using 
the support vector machine (SVM). The results demonstrated the highest average accuracy of 81.96% using the indices of 
two EEG channels. Using single-channel EEG measures, the maximum average classification rate of 78.68% was achieved 
using C4. To sum up, the results revealed that despite the limited number of brain channels and computational simplicity, 
the proposed algorithm was able to distinguish the two groups of normal and autistic children with satisfactory accuracy.

Keywords  Autism · Electroencephalography (EEG) · Polar-based lagged state-space · Classification · Support vector 
machine (SVM)

1  Introduction

Autism spectrum disorder (ASD) is a type of neurodevelop-
mental disorder [1, 2] characterized by impairments in ver-
bal and nonverbal behaviors and symptoms like stereotyped 
behaviors, repetitive games, lack of eye contact, and the like. 

These symptoms appear almost before the age of three years 
old [2, 3]. As the prevalence rate of this disorder is increas-
ing in recent years [4], it is important to diagnose the disease 
as soon as possible to improve the behavioral performance 
of the child [5]. The diagnostic process is usually based on 
behavioral observations and clinical interviews. However, it 
is difficult to evaluate clinical methods such as how the child 
plays, communicating with the environment, and learning a 
language at an early age [3, 6].

There has been a great deal of research on paraclinical 
approaches as a complement or replacement for clinical 
methods to diagnose and evaluate the brain function of these 
children. Studies in the field of neuroimaging on autistic 
people [7, 8] have concluded that this group’s functional-
behavioral abnormalities may be due to disorders in some 
brain areas such as the amygdala [9, 10], fusiform gyrus 
[11], and the prefrontal [7].

In the Sadeghi study [12], a functional magnetic reso-
nance imaging (fMRI)-based technique was used. Two 
groups including 31 normally control (NC) and 29 ASD 
were classified using region-based features. The highest 
accuracy of 92% was obtained by using support vector 
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machine (SVM). Also, in the Kazeminejad and Sotero 
study [13], a total of 816 NC and ASD individuals based on 
FMRI images were investigated. The accuracy of 95% was 
achieved using an SVM classifier. Note that the methods and 
features were similar to the previous article.

Recently, electroencephalography (EEG) has been the 
focus of many researchers to diagnose the disease. Despite 
the low spatial resolution of EEG recordings over MRI and 
fMRI, EEG signals have several advantages, including sim-
plicity, lower cost, wider availability and high temporal reso-
lution [14], which is why they are commonly used to study 
the dynamics of information flows in the brain. MRI devices 
are also scary and frightening for children because of their 
structure and function.

In the research performed by Ibrahim et al. [14], various 
features, including Shannon entropy (SE), discrete wave-
let transform (DWT), band power (BP), largest Lyapunov 
exponent (LLE), and standard deviation were extracted. This 
investigation was performed over 10 NC and 9 ASD aged 
9–16 years. The most encouraging result with the accuracy 
of 94.2% was obtained by using the k-nearest neighbors 
(KNN) classifier and combining SE and DWT features. 
In the Kang et al. study [15], both NC and ASD groups 
consisted of 52 members with an average age of 4.5 years 
classified using SVM. By using power spectrum analysis 
and coherence features, the accuracy was 91.38%. In Heu-
nis et al. [16], two groups of NC and ASD with 7 members 
per each group and mean age of 2–6 years were classified. 
Using the recurrence quantification analysis (RQA) and 
SVM classifier, the accuracy of 92.9% was accomplished. In 
the Askari et al. paper [17], a 14-channel EEG module was 
evaluated employing the SVM classifier. The signals were 
analyzed based on the state and weight values of cellular 
neural networks (CNNS). The scheme was tested on two cat-
egories, including NC groups with 94 members and the ASD 
group with 84 members with a mean age of 9.5 years. The 
accuracy of 95.1% was achieved. Bajestani et al. [18] evalu-
ated two-brain channel data. Their framework incorporated 
a visibility graph and KNN classifier. A total of 60 members 
of NC and ASD children in the age range of 4–8 years old 
attended the analysis. They reported the accuracy of 81.67%.

In the above papers, it has been attempted to classify the 
two groups of NC and ASD with high accuracy using fMRI 
and EEG data analysis. The neural imaging methods such as 
fMRI are costly. Additionally, although nonlinear methods 
are more convenient for evaluating the brain’s performance 
as a nonlinear and chaotic system and they gain a high capa-
bility in signal processing [19], they often involve complex 
and time-consuming computation.

The articles mentioned above may have achieved consid-
erable accuracy by examining the high number of channels, 
but due to the difficulty of signal recording from the autistic 
children and being noisy the recorded data, it is better to try 

to obtain a satisfactory result by investigating a more limited 
number of channels and thus smaller feature dimensions.

In addition, since it is relatively easier to obtain high 
accuracy of classification at an older age due to the obvious 
manifestation of autism symptoms, it is important to detect 
this disorder at an early age. In this study, we tried finding 
a way to classify NC and ASD children with high accuracy 
and high speed by examining fewer channels. Therefore, it 
was attempted to classify the rest EEG of two groups using 
innovative polar-based lagged state space. The benefits of 
this research include:

(1)	  A low number of EEG channels (two channels).
(2)	   Low-aged children.
(3)	  Nonlinearity of features.
(4)	  Simple, high-speed computing algorithm (less than 3 s)

Other sections of this article are as follows. Section 2 
provides a brief overview of the data, the method used, and 
the features extracted for classification. Section 3 presents 
experimental results. Section 4 discusses the results. Finally, 
Sect. 5 concludes the paper.

2 � Materials and methods

Figure 1 shows an overview of the proposed algorithm. It 
comprises of four main parts, including data selection, pre-
processing, feature extraction, and classification. In this 
study, the EEG signals of 27 normal children and 34 autistic 
ones were analyzed. First, the EEG time series were seg-
mented and normalized in the pre-processing module. Then, 
feature extraction was performed managing the polar-based 
lagged state-space-based indices. Ultimately, the SVM clas-
sifier was used for data classification.

2.1 � Data selection

This work was implemented on the EEG dataset of 
Bajestani’s research [18] that was contained totally of 61 
right-handed children aged in the range of 4–8 years (6 ± 2). 
Explicitly, 34 belonged to the ASD group, and 27 were in 
the NC group. Recording the data was done from two chan-
nels: C3 & C4. Bajestani mentioned in his article [18] that 
"Research has shown that the C3 and C4 areas relate to vol-
untary movement, long-term attention, and memory and that 
the central area of the brain is related to the areas of mood 
control, performance, and actuator performance. Of course, 
the temporal area is one of the disorder’s critical areas. 
However, because of the child’s shaking and consequently 
the high probability of the electrode separating, recording 
took place in the central area." In addition, the signals were 
recorded using a 10-channel Flexcomp Infinity device with 
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a sampling rate of 256 Hz and 24-bit resolution. Signals 
were recorded in three steps in an acoustic room. First, two 
minutes of baseline recording (without any auditory or vis-
ual stimulation) were accomplished. In the second step, an 
animation was displayed for 5 min and at last, the animation 
was replayed silently for 5 min. In this study, we only used 
the 60 s of baseline recording.

2.2 � Pre‑processing

At this stage, initially, the data were segmented into the 60 s, 
30 s and 15 s lengths to examine the impact of the window-
ing on classification results. The data were then normalized 
into the interval [−1, 1]. Normalization is a common mean 
to reduce the computational complexity of the particular 
method. The normalization formula is described as follow.

2.3 � Feature extraction

In this study, two geometric properties were extracted from 
the state space. Each state of the system is represented as 

(1)Y = 2 ∗

(

X − Xmin

Xmax − Xmin

)

− 1

a point in the state space based on its variables [20]. For 
transmitting a time series to an m-dimensional state space 
and creating its trajectory, we need “m” coordinates for each 
point in the trajectory. These m coordinates are obtained by 
considering the number of n samples separated by time delay 
“L”. Figure 2a shows the time series points of the signal 
selected at intervals L. The amplitude of points determine 
the coordinates of a system state in the state space. Since 
m = 2 is considered in the present study, the system is defined 
by two variables (two-dimensional state space). Based on the 
two points in the time series, a trajectory is created in the 
state space (Fig. 2b). This trajectory is being investigated in 
the following. If L ˃ 1, the state space is delayed.

In Fig. 3, delayed phase space (L = 4) and non-delayed 
phase space are plotted for both NC and ASD groups. The 
attractor of the non-delayed phase space is more stretched 
out, whereas the attractor of the delayed phase space is more 
extended. This is true for both NC and ASD groups. Here, it 
is important to select the appropriate L. There are different 
ways to determine the optimal delay. We used mutual infor-
mation [21] to determine the optimal delay in this study. The 
best delay was four (Fig. 4).

Many investigations have emphasized the proper perfor-
mance of delayed phase space in the study of various clinical 
and psychological applications [22–31]. Most of them used 

Fig. 1   Overall view of the methodology
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state-space Cartesian indices to quantify it. The oval is typi-
cally mounted on it and large and small oval diameters are 
extracted as features. Phase space is an indicator that can be 
studied both qualitatively and quantitatively and it’s a new 
kind of reconstruction of temporal data, which is the rea-
son for calling it a state-space. Various methods have been 

used to quantify it, such as feature extraction in the form of 
automatic regression (AR) and amplitude-frequency analysis 
(AFA) [35, 36]. In addition to amplitude information, it can 
be useful to examine the phase information by how each 
point in the phase space is distributed. In this experiment, 
we intended using phase information instead. Therefore, for 
the first time, we investigated the polar characteristics of 
the state space.

The features extracted from the state space are the angle 
of each point in the trajectory from the horizontal axis x and 
the distance of each point to the origin (Fig. 2). Figure 2 
symbolically explains the polar-based lagged state-space 
indices and Eq. (2) formulates them.

where i is the point counter in the trajectory. Also, xi and yi 
are the coordinates of each point in the state space.

Of these two types of features, θ reveals the quality of a 
point and r reveals its quantity. Since two points in a trajec-
tory with different lengths (r) may appear to be independent, 
if they had equal angles (θ), actually they are identical in 
nature because θ is a qualitative property and r is a quantita-
tive property.

2.4 � Statistical features

As mentioned in the previous section, θ and r values of all 
points were obtained for each trajectory in the state space. At 
present, the statistical properties including mean, mode and 
variance were calculated for θ and r values of each trajec-
tory. Ultimately, 12 features were created that were named 
according to Table 1. 

(2)�i = tan−1(
yi

xi
)

Fig. 2   Feature extraction of polar-based lagged state space. a Signal 
time series. b The trajectory in state space. To transmit the signal 
to the 2D state-space separates two points from the time series with 
an arbitrary delay and considers the amplitude of the first point (red 
point) as X coordinate and the second dot amplitude (white point) 
as Y coordinate. For each point in the trajectory, two polar feature θ 
(angle of each point from the horizontal axis x) and r (the distance 
of each point to the origin) have been defined. According to part b, 
the angles of the two points n_i and n_(i + 3) are equal, with different 
distances

Fig. 3   Representation of the non-delayed state space and delayed 
state space for both NC and ASD groups

Fig. 4   Selecting the best delay based on the first local minimum in 
the mutual information chart. The selected delay is 4
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These simple statistical properties can show us phase 
space differences between ASD and NC groups. Totally, 
r indices represent the longitudinal changes of points in 
the phase space and θ indices characterize the transverse 
changes of points in the phase space. For example, in rela-
tion to θ features, the mode can show the angle of the major 
points of the phase space relative to the horizon and whether 
this value changes under the disease or not. The variance of 
the theta demonstrates the scatter of data points with respect 
to the mean values.

2.5 � Classification

After determining the input features, SVM classifier was 
used to classify autism and normal data using 12 features 
extracted from two channels. SVM [32] is a supervised 
machine learning algorithm that models directly the deci-
sion boundary, and this boundary is specified by the sup-
port vectors. When a linear decision boundary cannot sep-
arate data from different classes, SVM loses its function. 
Therefore, it maps data to a more robust feature space, 
containing nonlinear features. So, the data again become 
separable with a hyper-plane using this mapping.

In these situations, kernel functions are used. We used 
the radial basis function (RBF) kernel function in this 
paper. And SVM has been run 50 times and the highest 
average results have been announced. For validating the 
model constructed with the abovementioned features, 
K-fold cross-validation was used. At each run, this method 
randomly divides all samples into k sections of equal size, 
with a subset of k parts used for testing and the rest for the 
train. This process is repeated k times. The size of training 
and test data are presented in Table 2. In this table, the 
left number represents the number of samples and right 
number represents the features."

In this study, we set k = 5. To evaluate the overall 
performance of the classifier, accuracy, specificity, and 
sensitivity were calculated according to the following 
equations.

where TP is identified as true positive; TN as true negative; 
FP as false positive and FN as false negative.

3 � Results

If we divide Fig. 3 into four parts by the coordinates (0, 
0), the accumulation of points in the delayed phase space 
(L = 4) for the NC sample is more likely to occur in the 
first quarter. While points accumulation in the ASD sam-
ple is in the third quarter. In general, the delayed phase 
space of the NC attractor is larger and wider. Before data 
classification, the Kruskal–Wallis and multiple com-
parison tests were used to find the significance level of 
the extracted features. The test compares each feature 
between two groups of NC and ASD to investigate the 
significance level. Figure (5a) shows the graph of changes 
in the statistical features of "r" and Fig. (5b) shows the 
graphs of changes in the statistical features of "θ" in both 
groups.

In this article, significance values of features " R3 ", 
" R6 ", " T4 ", " T6 " were less than 0.001. As shown in 
Fig. (5a), the mean value of the NC group was higher 
in features R3 and R6 than in the ASD group and was 
lower in the other features. And in Fig. (5b), the largest 
mean difference was between the NC and ASD groups in 
features T4 and T6 . The classification results are reported 
in Table 3. The results showed the classification perfor-
mances based on the 60 s windowing were better than 

(3)Accuracy =
TP + TN

TP + TN + FT + FN
× 100

(4)Sensivity =
TP

TP + FN
× 100

(5)Sensivity =
TN

TN + FP
× 100

Table 1   Naming extracted 
features

r θ

C3 C4 C3 C4

Mean Mode Var Mean Mode Var Mean Mode Var Mean Mode Var
R
1

R
2

R
3

R
4

R
5

R
6

T
1

T
2

T
3

T
4

T
5

T
6

Table 2   The size of training 
and test data (number of 
samples × features)

C3 or C4 C3&C4

Data length 15 s 60 s 30 s 60 s 30 s 15 s

Training 196 × 6 49 × 6 98 × 6 49 × 12 98 × 12 196 × 12
Test 48 × 6 12 × 6 24 × 6 12 × 12 24 × 6 48 × 12
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those of the 15 s and 30 s. In addition, the highest aver-
age accuracy of 81.96% was obtained utilizing the two-
channel information, and 78.68% for a single channel of 
C4.

4 � Discussion

We designed a system that classifies two groups of normal 
and autism using two brain channels. For this purpose, for 
the first time, we used polar-based lagged state-space indi-
ces. This simple method is fast and based on brain signal 
dynamics. In addition, it maintains low computational costs. 
To characterize these features, we used statistical indices 
of mean, mode, and variance. Finally, we formulated the 
diagnostic algorithm with a conventional and popular SVM 
classifier.

Table 4 compares the results of various studies in the field 
of NC and ASD classification, in terms of numbers of EEG 
channels, features, and classifiers.

As it can be observed, the data investigated in the studies 
[14, 33,  34] are relatively in older ages. It should be consid-
ered diagnosis is simpler at an older age and classification 
would be done easier. On the other hand, if the disorder is 

diagnosed after a certain age, it does not have a favorable 
outcome in the process of remission and treatment, and it is 
ideal to be diagnosed at a very early age to provide a suitable 
treatment for these children [18].

Using nonlinear and holistic methods are more preferred 
for examining a complex and chaotic system such as the 
brain. Most of the papers [14, 15, 17, 33] have employed a 
combination of linear and nonlinear features, that the calcu-
lation of these nonlinear methods is complex and time-con-
suming, like visibility graph method used in the Bajestani 
et al. article [18]. Since in this study, the features were 
extracted from the state space, the calculations are simpler 
and shorter. Also, the number of analyzed data in this study 
was more than that of the other studies [14, 16, 31, 33]. 
Consequently, it can be concluded that the results are more 
generalizable. In addition, in most similar articles, at least 
14 EEG channels have been investigated, whereas in this 
paper by using only two EEG channels (C3 and C4), supe-
rior accuracy, sensitivity, and specificity in classification’s 
performances have been obtained. It is notable the results of 
this research are superior to the results obtained by the same 
data in the previous experiment [18].

Former studies have shown symptoms of the disorder 
appear in many areas of the brain. Consequently, a more 

Table 3   SVM classifier performance

Channel →  C3 C4 C3, C4

Segmentation ↓ Acc Spe Sen Time(s) Acc Spe Sen Time(s) Acc Spe Sen Time(s)

60 s 75.40 59.25 88.23  < 2.5 78.68 62.96 91.17  < 2.3 81.96 66.66 94.11  < 2.2
30 s 70.49 59.25 79.41  < 2.3 76.22 62.96 86.76  < 2.4 77.04 70.37 85.29  < 2.3
15 s 66.80 49.07 84.55  < 2.9 69.67 52.77 83.82  < 2.9 66.80 52.77 78.67  < 2.9
Feature size 6 6 12

Fig. 5   Graph of changes in 
statistical features. Mean and 
standard deviation of the statis-
tical features, including mean, 
mode and variance in the two 
brain channels, i.e., C3 and C4. 
a r, and b θ. Note: The red line 
is belonged to the ASD group 
and the blue line is belonged 
to the normal group. Using 
multiple comparison test, sig-
nificantly different features have 
been identified with asterisk. 
“*” means that significances 
between the two groups are less 
than 0.001 (p < 0.001)
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considerable number of channels may provide more com-
prehensive brain changes. However, one of the problems is 
the difficulty of recording all the brain channels from autistic 
children. Therefore, it is desirable to provide a more accurate 
algorithm to diagnose the disease with fewer brain channels, 
and thus lower financial and time costs. Reducing the num-
ber of brain channels to two channels and simultaneously 
increasing the performance of the classification, confirm the 
superiority of our proposed approach to pave the way for 
designing an online diagnosis system.

5 � Conclusion

Diagnosis of ASD at an early age before clinical-behavioral 
observations is important to initiate treatment as soon as 
possible. In this study, in spite of a limited number of EEG 
channels (C3, C4), it was attempted to present a method 
that in addition to simplicity and incredible speed of com-
putation, could distinguish between two groups of NC 
and ASD with high accuracy. r and θ polar features were 
extracted from the lagged state space. Additionally, signifi-
cant differences between the features were revealed using the 
Kruskal–Wallis test. The results showed that using the win-
dow length of the 60 s, the accuracy of the SVM classifier 
was 82% for two-channel (C3, C4), and 80.3% for a single-
channel EEG (C4). Due to the simplicity and high speed, the 
proposed scheme can be used in online applications.

In this study, we investigated the EEG of the groups in the 
rest condition. Future works should carefully appraise the 

effect of visual stimulation on the EEG signals of the autis-
tic children. Since in this study, two-channel EEG data pre-
viously recorded in [18] were used, we could not assess the 
role of electrode selection. Therefore, to improve the accuracy 
of classification, it is recommended to carefully evaluate the 
performance of the proposed algorithm on the most appropri-
ate location of brain electrodes. Given that in almost all arti-
cles, NC groups have been compared to ASD, it can be useful 
if we investigate classification between ASD and non-ASD 
cases. Therefore, it is suggested that the performance of the 
framework in discrimination between ASD and non-ASD is 
examined in the future.
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Table 4   Comparison of proposed algorithms for classification of autism and normal groups

Author Feature extraction Classifier Dataset Age No. Channel Result (%)

Djemal et al. 2017 [33] DWT, Shannon entropy ANN 10 NC
9 ASD

NC (9–16 year)
ASD (10–16 year)

16 ACC = 99.7

Ibrahim et al. 2017 [14] DWT, standard dev, band power, 
Shannon entropy, LLE, cross-
correlation

KNN 10 NC
9 ASD

NC (9–16 year)
ASD (10–16 year)

16 ACC = 94.2

Kang et al. 2018 [15] Power spectrum analysis, bicoherence,
 entropy, coherence

SVM 52 NC
52 ASD

NC (4.52 ± 0.67)
ASD (4.54 ± 0.5)

19 ACC = 91.38

Heunis et al. 2018 [16] Multivariate time series embedding, 
PCA, RQA, Kolmogorov-Smirnoff 
& Wilcoxon rank sum tests, iterative 
approach

SVM 7 ASD
7 NC

NC, ASD
(2 – 6 year)

19 ACC = 92.9
Sen = 100
Spe = 85.7

Askari et al
2018 [17]

State and weight values of CNNS 
(inputs: variance, wavelet transform, 
entropy)

SVM 94 NC
84 ASD

NC (9.3 ± 1.9)
ASD (9.7 ± 2.3)

14 ACC = 95.1

Simões et al
2018 [34]

Env, teag, pow
SFI, Lyap, CorrDim, ApEn, SpEn

SVM 17 NC
17 ASD

NC (15.5 ± 0.6)
ASD (16.4 ± 0.6)

64* ACC = 81

Bajestani et al. 2019 [18] Visibility graph: average degree, clus-
tering coefficient, mean path length

KNN 30 NC
30 ASD

NC (4.5 ± 1.33)
ASD (9.9 ± 2.45)

2 ACC = 81.67

Present study Polar features of delayed phase space 
(mean,variance,mode)

SVM 27 NC, 34 ASD NC,ASD (6 ± 2) 2 ACC = 81.96
Sen = 94.11
Spe = 66.66
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