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Abstract
Detecting cognitive performance during mental arithmetic allows researchers to observe and identify the brain’s response
to stimuli. Existing non-invasive methods for automated cognitive performance detection need improvements in terms of
accuracy. In this work, a novel approach for cognitive performance has been proposed which uses short-duration electroen-
cephalography (EEG) signal (4.094 s). Stationary wavelet transform (SWT) has been used to decompose the signal followed
by extraction of entropy-based features and classification using selected attributes. To tackle the imbalanced data issue, adap-
tive synthetic sampling approach has been used. The proposed technique works in two modes: multi-lead approach (MLA),
where EEG signal from multiple leads was used, and a novel lead-specific approach (LSA), where EEG signal from a single
lead (F4) was used. A high accuracy of 94.00% in MLA and 93.70% in LSA reflects reliability of the proposed technique.
The use of short-duration single-lead EEG signal makes this technique suitable for continuous monitoring system of cognitive
performance during mental workload.

Keywords Cognitive performance · Mental workload · Electroencephalogram (EEG) · Stationary wavelet transform (SWT) ·
Machine learning · Lead-specific approach

1 Introduction

In today’s world, cognitive performance analysis is critical
for preventing various physiological and psychological dis-
orders. Continuous mental load exposure has been shown
in neuroscience to affect brain dynamics [1,2]. Thus, the
individual becomes exhausted and mental load-related pres-
sure built which influences their way of life. Different
health inconveniences are associated with these cognitive
workloads. For instance, it increases the probability of res-
piratory failure, stroke, heart attack and depression [3,4].
Clinically, stress has been assessed utilizing subjective meth-
ods like interviews and questionnaires [5]. On the other
hand, physiological and physical changes have been used
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as an objective marker for detection of mental workload.
For example, physically stress changes blink rate, facial
gesture and pupil dilation [6–8]. The physiological reac-
tion to stress would be at first reflected on the autonomic
nervous system. Balance between parasympathetic and sym-
pathetic branches may get break due to exposure of stress
events. Sympathetic branch would be hyper-initiated, while
parasympathetic branch would be suppressed. This can bring
physiological changes like heart rate variability (HRV), res-
piration, blood pressure and skin conductance [9–12]. As
indicated by themost recent neuroscience, the human brain is
responsible in deciding if a circumstance is undermining and
distressing, which makes it prime target of mental load [13].
So, technique based on non-invasive brain signals like elec-
troencephalography (EEG) can be the most suited method to
analyze functional changes in the brain.

This paper presents a novel cognitive performance detec-
tion technique using EEG signals. High reported accuracy
reflects reliability of this method. The paper also presents
a novel lead-specific approach for cognitive performance
detection. Using this technique, cognitive performance can
be estimated by a single lead of EEG recording from frontal
lobe of cerebral cortex. The paper is framed as follows:
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Fig. 1 10–20 EEG electrode positions

Database utilized in this work is described in Sect. 2. Under-
lying methodology for this technique is in Sect. 3, results in
Sect. 4, discussion in Sect. 5, and a summarized conclusion
in Sect. 6.

2 Materials

EEGDuringMentalArithmetic Tasks database has been used
in this research work [14,15]. These data are from 36 healthy
subjects aged between 18 and 26 years. EEG signals were
recorded as per international 10–20 system from the subjects
during and before performance of mental arithmetic tasks
(performing mental serial subtraction). Mental arithmetic
performance is considered as a standardized stress-inducing
experimental protocol [16,17]. Serial subtraction during 15
min is considered to be a psychosocial stress [18]. Moreover,
wehaveused recordings from frontal and anterior frontal lobe
of brain (Fp1, Fp2, F3, F4, F7, F8 and Fz) in our research
work. Frontal lobe contains most of the dopamine neurons in
the cerebral cortexwhich is associatedwith decisionmaking,
short-term memory tasks, attention and planning. A 10–20
EEG electrode placement is depicted in Fig. 1. To remove
artifacts, power line notch filter (50 Hz), low-pass filter and
high-pass filter of 0.5 Hz and 45 Hz cutoff frequency were
used (sampled at 500 Hz).

Fig. 2 Process flow diagram

3 Methodology

Filtered EEG signal is decomposed using wavelet transform,
and entropy-based features were exacted. Selected features
were used for classification using supervised machine learn-
ing approach. A flow diagram of underlying methodology is
shown in Fig. 2. Details of each step are given in subsequent
sections.

3.1 Pre-processing

As the available EEG signals were passed through filters as
described in Sect. 2, these signals were readily used in our
study.

3.2 Stationary wavelet transform (SWT)

SWT is used to study the time-domain EEG signal at various
frequency bands. At each decomposition level, SWT carries
same temporal informationwhich provides it a time-invariant
property. To get rid of repeatability issue, SWT inserts zeroes
between taps of the filters, as an alternative to decimation
[19]. Due to the data length requirement of SWT and early
detection of stress, EEG signal was segmented using a win-
dow length of 2047 (2047/500 = 4.094 s, here 500 is sampling
frequency). As amother wavelet, five-order Daubechies have
been used and six-level decomposition was done.

3.3 Feature extraction

Productivity of machine learning technique banks the
extracted features or attributes. This paper uses entropy-
based feature for stress detection. Entropy is a measure of
complexity and has promising capabilities in representing
brain dynamics [20].

3.3.1 Sample entropy (SEN)

SEN is used for analyzing the complexity of physiological
time series signals. SEN is the negative logarithmof the prob-
ability that if two time series of length m have distance < r ,
then two sets of simultaneous data points of m + 1 also have
distance < r . But it is calculated excluding self-similar pat-
terns as in the case of approximate entropy.
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The SEN(m, r , M) of any time series < x[n] > of length
M can be defined as in Eq. (1).

SEN(m, r , M) = − log

[
Am

Bm

]
(1)

where Am and Bm are probability of two sequences coincid-
ing for m + 1 and m points. SEN requires tuning of two key
parameters, tolerance (r ) and embedding dimension (m). If r
is chosen too small, it will result inmany vectors that are sim-
ilar failing to match. On the other hand, when r is too large,
SEN(m, r , M) loses its discriminating power. It is often cho-
sen to be between 0.05 to 0.25 times the standard deviation
of the time series data. In this work, it is selected to be 0.2
times standard deviation of EEG segment. m is picked to be
1 or 2; we have used m = 2. The advantages of this entropy
are [21,22]: (i) it can be used for shorter series of noisy data
and is able to differentiate large variety of systems, (ii) it
performs much better than the approximate entropy as self-
matches are not counted, which reduces the bias, and (iii) the
entropy values are more in tuned across different lengths.

3.3.2 Renyi’s entropy (REN)

REN is useful for estimating the spectral complexity of a
time series signal. The REN with total spectral power pi and
order α , where α ≥ 0 and α �= 1, is defined as [23]:

REN(α) = 1

1 − α
log

( n∑
i=1

pα
i

)
(2)

RENwith orderα = 1 is analogous to Shannon’s entropy and
α ≥ 2 provides a lower bound of REN so α = 2, 3 has been
used in this work. The significant advantages of REN are
[22]: (i) this entropy changes by an additive constant during
re-scaling of the variables, and (ii) it is independent of the
density functions.

3.4 Handling imbalanced data

Handling imbalanced data is an issue in machine learning.
This circumstance arises when a few kinds of data distribu-
tion remarkably influence the instance space over other data
distributions. In our study, instances of resting stage were
more compared to that of EEG during mental task. We have
used adaptive synthetic sampling (ADASYN) approach to
handle this imbalanced data issue. ADASYN works on the
concept of adaptively generatingminority data samples based
to their distribution [24]. ADASYN has ability to adjust its
decision boundary to focus on the minority instances, and
it also reduces the learning bias introduced by the origi-
nal imbalance data. Thus, after applying ADASYN both the
classes have comparable number of instances.

3.5 Feature selection

Performance of a supervisedmachine learning algorithmpre-
dominantly depends on separability of the chosen attributes
or features. In this work, applicability of the feature was eval-
uated on the grounds of Fisher score (F-score). F-score of the
i th feature is calculated as in Eq. (3) [19].

Fi =
∑c

k=1 nk(μ
i
k − μi )2

(σ i )2
(3)

where σ i and μi are standard deviation and mean of com-
plete data, respectively, and μi

k is mean of kth class, for i th

feature. c is the number of class and number of instances in
kth class is nk . Most discriminating feature will have highest
value of Fi . Similarly, top 40 features are ranked and listed
in Table 1 based on their F-score. It is noticeable that out
of 40, 15 features are from same lead (F4) of EEG signal.
This observation has motivated us in proposing lead-specific
approach for stress detection.

3.6 Classification

Classification is the process in machine learning to predict
the class of given data points. To fit a suitable classifier, the
data for classification is fed to supervised classifiers [25].

3.6.1 K-nearest neighbors (KNN)

KNN is a nonparametric, instance-based, lazy learning tech-
nique for pattern classification based on finding the closest
training set. KNN is simple to understand and easy to imple-
ment for both binary and multi-class classification. Being
a nonparametric and using instance-based learning method
KNN needs no assumptions for its implementation, and it
responds rapidly to change in the data. Due to its lazy learn-
ing approach, it stores the training data and wait for testing
data.During testing, it classifies thedata point basedon stored
training data. Euclidean (E) and Mahalanobis (M) distances
are two distance metrics utilized in this work.

3.6.2 Support vector machines (SVM)

Estimating a boundary for classification is simple for linearly
distinguishable data, but during actual implementations data
are nonlinear. To solve this, SVM uses a kernel trick to trans-
form the data to a higher-dimension space where they can be
comparatively separable. The kernel used in this work is a
Gaussian radial basis function. The goal of SVM is to find a
hyperplane, which can result in amore accurate classification
of data.
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Table 1 Top 40 features for cognitive performance detection

Feature R Feature R Feature R Feature R

SENFP1
D6 35 SENF3

D4 5 2RENF4
A1 16 SENF7

D4 18

SENFP2
A3 19 SENF3

D5 1 2RENF4
A4 29 SENF7

D5 34

SENFP2
A6 32 SENF3

D6 4 2RENF4
A5 24 2RENF7

A1 40

SENFP2
D1 36 SENF4

A1 11 2RENF4
D2 7 2RENF7

A4 25

SENFP2
D5 30 SENF4

A4 27 2RENF4
D3 17 SENF8

A6 14

3RENFP2
D6 8 SENF4

A5 3 2RENF4
D4 38 SENFz

A5 10

SENF3
A3 21 SENF4

A6 15 2RENF4
D5 28 SENFz

D6 26

SENF3
A4 39 SENF4

D2 12 2RENF4
D6 2 2RENFz

A1 6

SENF3
A5 23 SENF4

D3 31 SENF7
A5 37 2RENFz

A4 20

SENF3
D3 13 SENF4

D6 9 SENF7
A6 22 2RENFz

A6 33

R = Rank of feature

4 Results

In the proposed machine learning model, classification using
supervised learning approach has been used. During this
work, tenfold cross-validation has been used. This is a pre-
ferred method because it gives model the opportunity to train
on multiple train–test splits. It gives a better indication of
how well model will perform on unseen data. Performance
is analyzed in termsof classification accuracy (Ac%) and area
under the receiver operating characteristic curve (AUC). The
proposed work has been analyzed in: multi-lead approach
(MLA), where features extracted from 7 different EEG leads
(Fp1, Fp2, F3, F4, F7, F8 and Fz) from frontal and anterior
frontal lobe of brain were used based on their ranking, and
lead-specific approach (LSA), where features extracted only
from F4-lead EEG signal were used.

4.1 Multi-lead approach (MLA)

Distance metric (DM), number of features (N) and number
of neighbor (K) are three key parameters which affect the
performance of KNN. So, we have analyzed our work with
the variation of these parameters in Table 2 and in Fig. 3.

For SVM using Gaussian kernel, number of feature (N)
and kernel scale (γ ) are key parameters. To tune these param-
eters, we have analyzed the proposed technique with the
variation of N and (γ ); this is shown in Table 3 and in Fig. 4.

The proposed technique has highest accuracy of 94.00%
at γ = 2.25. Comparing Tables 2 and 3, it is evident that
SVM has greater potential for stress detection compared to
KNN.

4.2 Lead-specific approach (LSA)

Table 1 enlists the top 40 features for stress detection. It was
observed that out of 40, 15 features were from lead F4. It rep-

Table 2 MLA: result using KNN as classifier

N/DM K Ac% AUC N/DM Ac% AUC

25/ E 1 85.70 0.86 30/ E 86.30 0.86

3 83.40 0.91 83.90 0.91

5 81.90 0.91 82.00 0.91

7 81.00 0.91 80.80 0.91

25/ M 1 86.60 0.86 30/ M 85.00 0.85

3 83.80 0.92 82.40 0.91

5 82.30 0.93 81.00 0.93

7 80.70 0.93 79.00 0.93

35/ E 1 85.50 0.85 40/ E 85.50 0.85

3 83.10 0.91 82.50 0.91

5 81.90 0.92 81.50 0.92

7 80.80 0.93 80.50 0.93

35/ M 1 84.90 0.85 40/ M 85.10 0.85

3 81.00 0.91 80.90 0.92

5 78.90 0.93 78.40 0.94

7 77.90 0.94 77.10 0.94

Fig. 3 MLA: Ac% at different values of K and N using KNN

resents frontal lobe of cerebral cortex; it is portion of brain
responsible for decision making, projecting future conse-
quences, concentration, planning and emotional expression
[26,27]. For investigating the ability of stress detection using
a single lead of EEG signal, features extracted from lead-F4
were used separately in this section. We have presented the
results with variation of key parameters of KNN in Table
4 and in Fig. 5. To tune the parameters of SVM, we have
analyzed the proposed technique with the variation of N and
(γ ); this is shown in Table 5 and in Fig. 6.

The proposed technique has achieved accuracy of 93.50%
at γ = 1.75 using features extracted from F4 lead of EEG
signal. This shows ability of the proposed technique to detect
stress using single lead of EEG signal.

5 Discussions

In Table 6, the proposed technique is compared with existing
state-of-the-art methods related to cognitive performance.
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Table 3 MLA: result using
SVM as classifier

N 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00

25 Ac% 81.50 87.80 89.40 90.40 90.40 90.20 89.60 88.80 87.70

AUC 0.96 0.96 0.97 0.97 0.97 0.97 0.96 0.95 0.94

30 Ac% 80.50 86.10 88.80 90.00 91.00 90.90 90.60 90.20 89.50

AUC 0.95 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.96

35 Ac% 84.50 85.00 89.00 91.00 91.90 92.00 92.00 91.00 91.40

AUC 0.96 0.96 0.97 0.98 0.98 0.98 0.98 0.98 0.97

40 Ac% 86.50 87.00 87.50 90.60 91.70 94.00 93.60 93.50 93.20

AUC 0.96 0.97 0.97 0.98 0.98 0.98 0.98 0.98 0.98

Fig. 4 MLA: Ac% at different values of kernel scale (γ ) and N using
SVM

Table 4 LSA: result using KNN as classifier

N/DM K Ac% AUC N/DM Ac% AUC

10/ E 1 86.00 0.86 20/ E 89.30 0.89

3 84.00 0.90 87.20 0.93

5 84.60 0.90 86.00 0.94

7 83.00 0.90 85.00 0.94

10/ M 1 86.40 0.86 20/ M 88.50 0.89

3 83.60 0.90 87.00 0.93

5 82.60 0.91 86.00 0.93

7 82.00 0.91 84.20 0.93

30/ E 1 88.20 0.88 36/ E 88.20 0.88

3 85.00 0.92 85.00 0.92

5 83.30 0.92 84.00 0.93

7 83.10 0.92 82.20 0.92

30/ M 1 86.00 0.85 36/ M 83.40 0.84

3 82.00 0.90 80.00 0.90

5 80.00 0.91 78.00 0.91

7 80.00 0.90 76.20 0.90

Stimuli that alter an organism’s environment are responded
bymultiple systems in the body. Thus, cognitive performance
can bemeasured through various bio-signals like EEG, ECG,
GSR and others. Apart from EEG, to present effectiveness
of our proposed technique it has been compared with other
bio-signals in Table 6.

Fig. 5 LSA: Ac% at different values of K and N using KNN

Neurological studies have proved that mental load affects
the brain dynamics and these changes are reflected in EEG
signal recorded from cerebral cortex [27,38]. Many models
have been created by researchers for cognitive performance
detection utilizing EEG signals. Vanitha et al. [28] have
proposed a technique for stress detection using EEG sig-
nal which uses Hilbert Huang transform (HHT) for relevant
attribute identification in time–frequency domain. SVMwas
used as a classifier, and they have achieved an accuracy of
89.07 %. Hou et al. [29] have proposed a technique using
fractal dimension, statistical features and SVMas a classifier.
Using their technique four levels of stress can be recognized
with an average accuracy of 67.06%, three levels of stress
can be recognized with an accuracy of 75.22%, and two lev-
els of stress can be recognized with an accuracy of 85.71%.
Jebelli et al. [30] have proposed a method for identifica-
tion of stress among workers at building site utilizing EEG
signal. Frequency- and time-based attributes from EEG sig-
nals were determined utilizing fixed and sliding windowing
approaches. At last, authors applied few supervised learning
methods to perceive worker’s stress while they are work at
site. The outcomes demonstrated that the fixed windowing
approach and the Gaussian SVM yielded the most elevated
accuracy of 80.32%. Xin et al. [31] have proposed a pro-
cedure for stress state assessment by an improved SVM.
This technique increases the accuracy from 73.79 to 81.38%
and decreased the running time from 1973.1 to 540.2 sec.
Al-shargie et al. [32] have proposed a technique for men-
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Table 5 LSA: result using
Gaussian SVM as classifier

N 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00

10 Ac% 87.00 86.60 85.50 84.60 84.10 84.00 83.00 82.30 81.60

AUC 0.94 0.93 0.93 0.92 0.92 0.91 0.91 0.90 0.90

20 Ac% 91.00 91.50 91.50 91.00 90.10 89.00 89.00 88.10 87.20

AUC 0.97 0.97 0.97 0.96 0.96 0.95 0.95 0.94 0.94

30 Ac% 88.40 92.00 92.50 93.50 92.00 91.30 90.60 89.90 89.00

AUC 0.98 0.98 0.98 0.98 0.98 0.97 0.97 0.96 0.95

36 Ac% 86.60 90.60 93.00 93.70 93.50 93.40 93.20 92.50 91.70

AUC 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.97

Fig. 6 LSA: Ac% at different values of kernel scale (γ ) and N using
SVM

tal stress quantification using EEG signal. They have used
wavelet transform for time-frequency decomposition of the
signal. Mean of the absolute values of the wavelet coefficient
in every sub-band and the average energy and power were
calculated, and with the help of SVM they have achieved a
maximumaccuracy of 94%.But, in their work twelve healthy
adults with an age ranges from 20 to 24 years participated
which is less compared to the proposed work which includes
data from 36 healthy subjects aged between 18 and 26 years.
Also, the number of features used in this proposed work is
less (40) compared to a total of 840 features for each sub-
ject in each recording phase. Along with MLA, the proposed
technique presents a novel approach (LSA) for stress detec-
tion using single EEG lead. Martinez et al. [20,33] have used
entropy-based features, decision tree and SVM for classifi-
cation respectively in [20,33]. But its reported accuracy is
comparatively less.

Galvanic skin response (GSR) is a strategy to quantify the
electrical conductance of the skin as it fluctuates with change
ambiance around a person. At the point when an individual
is stimulated or energized, the moisture levels in the skin
fluctuate; hence, its electrical conductance changes. This is
because of the reason that sweat glands are commanded by
the sympathetic nervous system. So as to quantify the electri-
cal resistance, a consistent voltage should be applied and the
skin conductance can be determined with the use of Ohm’s
law. A GSR amplifier applies a little voltage through the

skin which can’t be felt by people, but can be recognized
after amplification. Many researchers have used GSR signal
for developing technique for stress detection. Villarejo et al
[34] have planned and assembled a pressure sensor depen-
dent on GSR and commanded by ZigBee. It was tried on
16 grown-ups and was discovered that GSR can distinguish
the various conditions of every client with an accuracy of
76.56%. Dehzangi et al. [35] have proposed GSR-based dis-
tracted driving recognition utilizing continuous and discrete
decomposition and wavelet packet transform. They utilize
two deconvolution strategies to break down raw signal into
the phasic and tonic parts.Result shows that it has an accuracy
of 92.2% using ensemble bagged classifier on 74-dimension
attribute space. Kurniawan et al. [36] have proposed a tech-
nique for stress detection using GSR and speech signal. They
investigated different methods for estimating stress using
four classifiers: K-means, SVM, GMM and decision tree.
Using speech attributes only, SVM outperformed other clas-
sifiers reaching 92% accuracy. Accuracy of classifier trained
on GSR-based attributes was less.

The sinoatrial node (SAN), situated in the wall of the right
atrium, fires the electrical impulses, controlled by central
and autonomous nervous system (ANS). The physiolog-
ical reaction to stress would be at first reflected on the
ANS. Balance between parasympathetic and sympathetic
branches may get break due to exposure of mental load
[39]. Sympathetic branch would be hyper-initiated, while
parasympathetic branch would be suppressed [39]. These
data would be transmitted to the cardiovascular movement,
which could be estimated by ECG signals. Using this idea,
many researchers have utilized ECG and HRV for automated
stress detection [40].He et al. [11] have proposed a system for
real-time detection of stress utilizing a convolutional neural
network (CNN). Due to the benefit of CNN in programmed
feature learning, this system exacts and identifies stress from
HRV signal. They have utilized short time window (10 s) for
identification of stress and have achieved a detection error
rate of 17.3%. Munla et al. [37] have used ECG signal of the
driver to extract HRV-based features. After HRV analysis,
several parameters are extracted to build a vector of fea-
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Table 6 Comparison of the
proposed technique with
existing state-of-the-art methods

Authors Ac% Signal

Vanitha V. et al. [28] 89.07 EEG

Hou et al. [29] 85.71 EEG

Houtan Jebelli et al. [30] 80.32 EEG

Xin et al. [31] 81.38 EEG

Al-shargie et al. [32] 94.00 EEG

Martinez et al. [33] 75.29 EEG

Martinez et al. [20] 81.31 EEG

Villarejo et al [34] 76.56 GSR

Dehzangi et al [35] 92.20 GSR

Kurniawan et al. [36] 92.00 GSR + Speech Signal

He et al. [11] 82.7∗ ECG

Munla et al. [37] 83.00 ECG

This work 94.00 (MLA) 93.70 (LSA) EEG

*Calculated from paper

tures for the classification phase. Results indicate that using
their technique stress could be predicted with an accuracy of
83.00% using SVM-RBF classifier.

The proposed technique shows better and comparable
performance compared to existing state-of-the-art methods
involving cognitive performance analysis. This work also
proposed a lead-specific approach for mental cognitive per-
formance estimation using a single EEG lead recorded from
frontal portion of brain. As per the literature reviewed, it is
a novel approach for cognitive performance estimation. This
approach can further be utilized for designing continuous
mental load monitoring system as wearing a complete 10–20
EEG lead system for long duration can be uncomfortable and
disturbing.

Future Scope: Following are future scope for research in
this field.

– Effect of noise and various filters can be studied [41].
– Optimization of key parameters of classifiers can be done.
– With availability of a larger standard database, more
generic model can be built.

– Emotional state of the subjects can be analyzed.

6 Conclusion

In this work, a novel methodology for cognitive performance
detection has been proposed which uses short-duration EEG
signal (4.094 s). The proposed strategy work in two modes:
MLA, where 7 EEG signals from frontal and anterior frontal
lobe of brain were utilized, and a novel LSA, where EEG
signal from a single lead (F4) was utilized for cognitive
performance estimation. The proposed technique shows bet-
ter accuracy in both the modes of operation. Using short

and single-lead EEG signal makes this method suitable for
designing long-duration mental load monitoring systems.
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