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Abstract
Defect detection and quality control play an important role in the textile industry. In this paper, an automatic algorithm 
based on the optimal Gabor filter is proposed for real-time inspection of textile fabrics. The Cuckoo optimization algorithm 
is adopted to optimize the parameters of the Gabor filter. Also, an adaptive local binarization method is proposed, which 
enhances the performance of our algorithm. In order to locate the defects, the filtered image is divided into non-overlapping 
blocks. Then, the candidate defective blocks are binarized using adaptive thresholds, which are determined by blocks sta-
tistics. The performance of the proposed algorithm is evaluated through different types of fabrics in the TILDA database 
and an online Fabric Stain Dataset. The experimental results demonstrate the efficiency of the proposed method in detecting 
defects on the plain, regular and irregular patterned fabrics. Furthermore, the comparative results are provided to show the 
robustness of the proposed method.

Keywords Textile quality control · Fabric defect detection · Optimal Gabor filter · Cuckoo optimization algorithm · 
Segmentation

1 Introduction

Fabric is one of the materials that is used extensively in daily 
life. By textile technology development and high competi-
tion in the industry, quality products play an important role 
in satisfying the consumers. Reduction in the fabric defects 
is one of the significant factors to improve textiles qual-
ity. Defects [1] may reduce the fabric price by 45 to 65%. 
Also, approximately 85% of defects in garment industry, are 
caused by defects in the fabrics. So quality control is essen-
tial and very important in the textile industry. The traditional 
inspection procedure is based on the human visual inspec-
tion, which is slow and depends on the operator’s accuracy, 
attention and experience. It is also difficult for humans, to 
inspect 1.6–2 m of fabric width. Therefore, the human-
based inspection system has limited performance in terms 
of time, cost and quality. As a result, it is necessary to use 
an automated fabric inspection system in the textile industry. 

However, at least 70 types of fabric defects are introduced by 
the textile industry [2]. The variety of fabric defects, noise 
influence, vast variety of fabric patterns and similarity in 
defects shape and background texture are still serious chal-
lenges in automated fabric inspection. So far, researchers 
have proposed many techniques to address these challenges. 
These techniques can be divided into two general categories 
as motif-based and non-motif-based methods. The motif-
based method has been developed in [3], which can detect 
defects on the most of 2D patterns. The non-motif-based 
methods are classified into methods for un-patterned and 
patterned fabrics. Defect detection of un-patterned fabrics 
has been extensively investigated, and researchers have pre-
sented various methods, such as auto-correlation [4], co-
occurrence matrix [5], morphological operations [6], fractal 
method [7], Fourier [8] and wavelet [9] transforms. These 
methods can successfully detect defects on plain fabrics and 
are mainly designed for un-patterned fabrics defect detec-
tion. However, patterned fabric inspection is still a difficult 
problem because of complex textured structures. So far, 
a few methods, such as hash function [10], golden image 
subtraction [11], lattice segmentation and template statis-
tics [12], Bollinger [13] and Regular [14] Bands have been 
developed for patterned fabric inspection. These methods 
can naturally be applied to detect the defects on repetitive 
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patterns. Among patterned texture inspection, defect detec-
tion on irregular patterned fabrics is much more difficult. 
According to [2], model-based approaches have been pro-
posed for randomly textured fabrics. However, these meth-
ods are weak to detect small defects, and they are also sen-
sitive to lighting setup and noise. It should be noted that 
irregular fabric texture may vary randomly in shape, orien-
tation and position. These variations make analysis more 
difficult. However, Dennis in [15] concluded that the Gabor 
filter (GF) outputs which are derived from non-uniformly 
textured images, exhibit many local variations that can be 
useful for texture segmentation. So, the first objective of our 
proposed algorithm is to consider an approach that can be 
applied to all the fabric groups in our database.

Recently, many techniques have been proposed for tex-
ture analysis that are based on the Gabor filter. Studies on 
human perception ability have led many researchers to use 
the multichannel GF for feature extraction. A detailed design 
of a fabric inspection model was presented in [16], based 
on the GF bank. An algorithm was also developed using the 
GF bank and the Principal Component Analysis (PCA) on 
uniform fabric defects [17]. However, applying a filter bank 
generates large feature vectors whose massive computing 
cost cannot be ignored. Therefore, an optimal set of one or 
two filters is used to extract features. These optimized filters 
are tuned in a particular direction and frequency range. The 
tuned GF requires minimum computation, but correct selec-
tion of its parameters is crucial. Recently, a number of opti-
mization methods are used to optimize the GF parameters. 
Jing et al. [18] adopted a genetic algorithm (GA) for GF 
optimization to detect various colourful fabric defects. They 
also presented an effective scheme based on the optimal GF 
via GA [19]. In [20], the optimal GF is designed by GA, and 
combined with the golden image subtraction (GIS) to detect 
defect on patterned fabrics. Other optimization algorithms 
such as simulated annealing [21], differential evolution [22] 
and random drift particle swarm [23] have been used to opti-
mize the GF parameters. Our second objective is to consider 
a robust optimization method to select the GF parameters, 
as the performance of GF-based models depends on correct 
selection of GF parameters.

Cuckoo optimization algorithm (COA), which is inspired 
by life style of a bird called Cuckoo, is introduced in [24]. 
Finding the best optimal point, increasing probability of 
achieving the global optimal solution and fast convergence 
are some of the advantages of the COA. In this paper, opti-
mization of GF parameters based on COA is proposed which 
can lead to an optimal feature extraction from the image. The 
proposed method consists of training and defect detection 
steps. In the training step, the GF is adjusted to the texture 
features of a defect-free fabric image via the COA. In the 
defect detection step, the test fabric image is filtered by the 
optimal GF. Then, in order to segment the defective pixels 

from the background, the image is divided into blocks. An 
adaptive local binarization method is proposed that plays 
a significant role to boost the algorithm performance. For 
local binarization, various statistical properties of all blocks 
of the image are calculated. Then, a change-point detection 
algorithm [25] is used to determine threshold and find defec-
tive blocks.

The remaining of this paper is organized as follows. The 
GF is explained in Sect. 2. The proposed defect detection 
algorithm is described in Sect. 3. Section 4 provides the 
experimental results and related analysis to evaluate the per-
formance of the proposed algorithm. Finally, the paper is 
concluded in Sect. 5.

2  Gabor filter

The 2D Gabor filter [26] is a complex exponential which is 
modulated by a 2D Gaussian function. In the spatial domain, 
it is defined as:

where x� = x cos � − y sin � , y� = x sin � + y cos � , f0 is the 
filter central frequency, 

(

x′, y′
)

 is the rotated coordinates 
(x, y) by the rotation angle of the filter θ, σx and σy are the 
Gaussian envelope along the x and y axes which are given 
by (2) and (3).

The value of �x is determined by the half-peak bandwidth 
B. In (3),� is the aspect ratio between �x , and �y , and it is 
used to adjust the output of the Gaussian. f0,�x , � and θ are 
the GF parameters which provide enough degree of freedom 
to design filters.

Based on (1), the Gabor filter f  can be decomposed into 
real and imaginary parts as follows

It is found that only the real part of the Gabor filter is suf-
ficient for inspecting fabric defects [19, 26]. The imaginary 
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its effect on detection results is less pronounced. Thereby, 
only the real GF is adopted in our proposed algorithm. So, 
for a sample image Ii (x, y), the magnitude response of the 
filtered image is obtained by (6). Asterisk (*) denotes 2D 
convolution operation.

3  Proposed work

3.1  Defect detection scheme

The defect detection can be considered as segmenting an 
image into defective and defect-free regions. Texture seg-
mentation is classified into two categories, i.e. supervised 
and unsupervised segmentation [27]. The design of unsuper-
vised inspection approach is difficult, and usually excessive 
computation is needed. In this paper, a supervised inspection 
problem is considered. In this case a priori knowledge about 
the textures is obtained from the defect-free fabric sample. 
Figure 1 shows our proposed defect detection scheme which 
consists of training and defect detection steps. In the train-
ing step, a defect-free fabric image is used as a template 
image for the optimization algorithm. The COA with the 
Fisher criterion [27] is adopted to find the optimal Gabor 
filter parameters. In the defect detection step, the optimal 
filter which is obtained in the offline stage, and thresholding 
are employed to detect defects. More details are presented 
in the following.

3.2  Fisher criterion

In our work, in order to tune the GF parameters to match a 
particular texture background, a cost function based on the 
Fisher criterion is adopted. This criterion [21, 27] has shown 
a significant performance in solving the supervised segmen-
tation problems. For a given M × N template textile image T, 
the Fisher cost associated with the Gabor filter parameters S 
is defined according to (7).

where �S,T and �S,T are mean and standard deviation of the 
filtered image that are computed by (8) and (9), respectively. 
Filtered image IS,T

i,j
 is obtained by (6).
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In optimization process, the goal is to find the optimal 
parameter S* which minimizes the Fisher cost function 
F(S, T) . Since min{F(S, T)} has a good discriminatory 
behaviour, the Gabor filter with parameter values S* pro-
vides good detection results. Since the Fisher cost function 
includes many local optimal solutions, it is difficult to find 
the optimal Gabor filter parameters manually. So, the opti-
mization algorithm is an appropriate solution. In this way, 
a robust optimization algorithm can determine the optimal 
parameters by solving a constrained minimization problem 
based on the Fisher criterion. There exists a diverse range 
of optimization algorithms. One of the most powerful evo-
lutionary algorithms that has ever been introduced is COA. 
In this paper, the COA is used which is described as follows.

3.3  Gabor filter optimization based on COA

The COA optimization technique was introduced in [23]. 
The special life style of cuckoos and their unique features 
in egg laying are the basis of this optimization algorithm. 
Researchers have demonstrated superior performance of 
the COA compared to other optimization algorithms in 
various optimization problems. Finding the best optimal 
point, increasing the probability of achieving the global 
optimal solution, fast convergence and handling any 
type of a cost function for large scale problems are some 
advantages of the COA. Obviously, we cannot claim that 
an optimization algorithm has better performance than 
other algorithms in different fields. However, the afore-
mentioned characteristics and better performance on the 
tested problems have been the basic motivation to adopt 
the COA for our optimization problem.

The COA starts by an initial population of cuckoos. The 
values of problem variables form an array. This array is 
called “habitat” which represents current living position 
of cuckoo. In our optimization problem by using the binary 
encoding scheme, arrays of 0 s and 1 s are generated ran-
domly. Each of them represents a candidate solution to the 
problem. The required GF parameters are encoded using 
8 bits as shown in Fig. 2. So the population of cuckoos is 
composed of the binary strings with 24 bits length. Each of 
the encoded parameters in the binary strings changes into a 
decimal number by a linear mapping and the cost function 
is calculated. The optimization process is repeated until 
the number of iterations reaches to a preset value. Finally, 
in the last subsection, thresholding step is presented which 
is very crucial to success of the inspection system.
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3.4  Local thresholding

To distinguish defective pixels from textured background, 
an adaptive local binarization method is proposed. In this 
procedure, threshold values are obtained by extracting local 
features from the filtered image as follows. First, the fil-
tered image of M × N  pixels is divided into non-overlap-
ping 64 × 64 blocks. Next, the local features such as mean, 
standard deviation and difference of the maximum and the 
minimum intensity are calculated for each block. The experi-
mental results illustrate that these statistical features are able 
to simply discriminate between normal and defective blocks. 
Then, the extracted mean values and the difference of inten-
sity values from all blocks are sorted in an increasing order. 
Then a change-point detection algorithm [25] is applied to 

estimate two thresholds to find defective blocks. Actually, 
this method identifies the change-point value where a devia-
tion in the feature values is caused by fabric defect occur-
rence. Now, if the features values do not change significantly, 
this method returns a null matrix. In this case, average of the 
blocks means and average of blocks intensity differences are 
considered as the thresholds. Figure 3 shows an example of 
the change-point detection on a defective fabric sample. The 
estimated change-point is 1.9107 × 103 . Finally, in order to 
binarize the defective texture blocks and localize defects, 
two threshold values are calculated according to Eq. (10):

where mean
[

mu(i, j)
]

 and mean
[

std(i, j)
]

 are average of the 
blocks means and standard deviations, respectively. (i, j) 
represents the block in the ith row and the jth column. 
(i = 1, 2, 3,… ,M∕64 and j = 1, 2, 3,… , N∕64) . w is a con-
stant parameter and is determined by trial and error on dif-
ferent fabric textures. Finally, thresholding is carried out on 
defective blocks to generate a binary image D(x, y) by:

where I�(x, y) denotes intensity values of defective blocks. 
After binarization, a median filter is applied as post-process-
ing to eliminate various noises.

4  Experimental results

The performance of the proposed algorithm is evaluated 
using two datasets, namely the public TILDA dataset [28] 
and the online Fabric Stain Dataset (FSD) [29]. TILDA con-
tains fabric images of four classes. Each class has two kinds 
of fabrics. In our experiments, all kinds of fabrics with four 
different defect classes (e1–e4) and one defect-free class 
(e0) are considered. All images have the size of 512 × 768 
pixels and 8-bit grey level. The Fabric Stain Dataset con-
sists of polyester and cotton fabric images and the defects 
include ink, oil and dirt stains. The proposed algorithm is 
implemented in MATLAB R2018a-64 bit and windows 8.1 
operating system. The programs are run on a personal com-
puter with Intel(R) core(TM) 2 Duo CPU @ 2.53 GHz, 4 GB 
RAM. In our implementation, the mask size of the Gabor 
filter is set 15 × 15. The initial number of cuckoos is 5, and 
the minimum and the maximum number of eggs for each 
cuckoo are 2 and 4, respectively. The number of clusters is 
1, and the maximum number of iterations is set to 15. Also, 
in the optimization process of the filter, the half-peak band-
width B is set to 0.5 octaves and value ranges of other filter 
parameters are given in Table 1.

(10)T1,2 = mean
[

mu(i, j)
]

± w ×mean
[

std(i, j)
]

(11)D(x, y) =

{

1, I�(x, y) > T2 or I
�(x, y) < T1

0, T1 ≤ I�(x, y) ≤ T2

Fig. 1  Block diagram of the proposed method

Fig. 2  Habitat structure in the COA
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Performance evaluation of the proposed method is carried 
out based on the criteria which are defined according to (12), 
(13) and (14) [22]:

where True Abnormal (TA) shows correct detection includ-
ing good defect localization. It means that only the defective 
pixels are white in the binary output image. True Normal 
(TN) and False Abnormal (FA) mean that no white pixels 
and white pixels, respectively, appear in the binary output 
of a defect-free sample. False Normal (FN) means that there 
are no white pixels in the binary image, although the original 
image is defective.

4.1  Performance evaluation

Based on the regularity of the texture of fabric images, the 
TILDA database is divided into four classes, namely C1, 
C2, C3 and C4. C1 includes plain fabrics with very fine 
invisible structure. C2 contains plain fabrics with visible 
texture and grid-like structure. C3 and C4 include patterned 
fabrics with very visible periodic structure and without clear 

(12)Recall(Sensitivity) =
TA

(TA + FN)

(13)Specificity =
TN

(TN + FA)

(14)Accuracy =
(TA + TN)

(TA + TN + FA + FN)

periodic structure, respectively. Also all the fabric images in 
the Fabric Stain Dataset are plain.

4.1.1  Defect detection results

Figures 4 and 5 show some detection results of fabric sam-
ples in the two databases. The fabric images with small 
defects are successfully detected by using the proposed 
approach. Figure 4 clearly shows the example of these 
defects and the successful segmentation. The plain fabric 
images of C1 and FSD dataset are smooth and uniform, in 
which the defects are accurately localized with high detec-
tion success rate. The grid-like textiles of the C2 class, i.e. 
C2r2 and C2r3, have a low variance stochastic structure, 
which causes the reduction of performance. Actually, some 
of the defect-free samples of C2 have acceptable imperfec-
tions, which should not be considered as defects, as shown in 
Fig. 6. Especially in C2r3, there are some small black holes 
that make the fabric inspection difficult.

Comparing to plain fabrics, patterned textiles are more 
difficult to inspect automatically because they have more 
complicated texture background. C3 comprises two kinds 
of regular patterned fabrics, namely r1 plaids and r3 
stripes. Our algorithm can successfully detect the defects 
of various shapes, sizes and position in C3. The algorithm 
has also been tested with irregular patterned fabrics C4, 
namely C4r1 arabesquitic and C4r3 sunflower. In C4, the 
background and defects are difficult to distinguish and 
their automated inspection is more complicated. Thus, 
very little research has directly investigated this case. 
However, as can be seen in Figs. 4 and 5, our algorithm 

Fig. 3  Change-point detection 
from feature values of a defec-
tive sample
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detects defects in C4 accurately. In C4r1, there exist some 
defective fabric images whose defects are similar to the 
natural pattern variations and the human may fail to detect 
them, as shown in Fig. 6. So our study is not included 
these images. The quantitative results on plain and pat-
terned fabrics are listed in Tables 2 and 3 and graphically 
presented in Fig. 7.

Table 1  Value ranges of the 
Gabor filter parameters

Parameter Value range

f0 [0.06–0.5]
� [0 − �]

� [1, 2]
�x 1.09∕f

0

Fig. 4  Detection results on some sample images with small defects

Fig. 5  Some detection results on sample images with different types of texture and defects



1623Signal, Image and Video Processing (2021) 15:1617–1625 

1 3

4.2  Computational complexity and defect detection 
time consumption analysis

Assuming the image size as M × N  and the filter size as 
n × n , the computation complexity of filtering operation 
on image is O

(

n2MN
)

 . Suppose that in our algorithm we 
apply a Gabor filter of size n × n and a median filter of size 
l × l , the computational complexity of our algorithm will 
be O

((

n2 + l2
)

MN
)

 . Compared to methods that are based 
the neural networks or Gabor filter bank, the computation 
cost of our algorithm is much lower.

To verify success of our algorithm in real-time inspec-
tion, average of detection time is measured after param-
eters optimization. It is found that the proposed method 
took less than 1 s to process all types of the fabric samples 
in TILDA dataset. During this time, an image of 512 × 768 
size is scanned. Image resolution is 30 × 8 dpi which is 
equivalent to a fabric with width of 243.84 cm and height 
of 43.45 cm. Consequently, our method is able to inspect 
at least 26 m of fabric height per minute. In industry, the 
fabric production speed from weaving machine is about 
30–45 cm/min [30, 31]. Our database basically consists 
of low resolution images. Even if the images are captured 
with higher resolution, the proposed method is of great 
competence and reliability for real time operation.

4.3  Comparison of the proposed method

Comparison of the proposed method with other state of the 
art methods that have used the TILDA database, is presented 
in Table 4. The number of sample images tested by each 
method is reported in parentheses. It can be seen that fabric 
samples in C3 and C4 are not included in the most of the 
past studies. The dual-scale sparse coding [32] used all the 
defective images of C1, C2 and C3 and has a high defect 
detection rate. However, this method is inefficient on C4. 
Therefore, the versatility of the proposed algorithm on vari-
ous fabric textures is higher than other algorithms and the 
experiments verify its effectiveness for fabric defect detec-
tion. Furthermore, so far, to the best of our knowledge, such 
an automatic inspection of irregular pattern fabrics with 
more than 100 testing samples has not been investigated.

The ability of the COA in tuning the parameters of GF 
to extract features of the texture and the efficiency of the 
change-point algorithm in the binarization process causes 
our algorithm to perform well on plain and patterned fabrics, 
including fabrics with irregular patterns.

5  Conclusions

In this paper, an effective algorithm for automated texture 
defect detection in plain and patterned fabrics has been 
presented. The proposed algorithm is based on the optimal 
Gabor filter which is designed on basis of the Fisher cost 
function. The robust cuckoo optimization algorithm is an 
efficient way to search for the optimal Gabor filter parame-
ters that match texture features of a defect-free fabric image. 

Fig. 6  Some defect-free fabric images of C2 and defective fabric images of C4r1 from e2 and e3 error classes. The defective regions are empha-
sised in the last two images

Table 2  Performance evaluation of the proposed defect detection 
algorithm on plain fabrics

Fabric type Recall Specificity Accuracy

C1r1 168/170 = 98.8% 38/40 = 95% 206/210 = 98.1%
C1r3 183/190 = 96.32% 40/40 = 100% 223/230 = 96.96%
C2r2 145/150 = 96.66% 35/40 = 87.5% 180/190 = 94.73%

C2r3 71/80 = 88.75% 39/40 = 97.5% 110/120 = 91.67%
Cotton 57/60 = 95% 13/15 = 86.86% 70/75 = 93.33%
Polyester 60/60 = 100% 9/10 = 90% 69/70 = 98.57%

Table 3  Performance evaluation of the proposed defect detection 
algorithm on patterned fabrics

Fabric type Recall Specificity Accuracy

C3r1 123/130 = 94.62% 40/40 = 100% 163/170 = 95.88%
C3r3 125/130 = 96.15% 40/40 = 100% 165/170 = 97.06%

C4r1 61/70 = 87.14% 40/40 = 100% 101/110 = 91.82%
C4r3 93/100 = 93% 39/40 = 97.5% 132/140 = 94.29%
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The proposed algorithm does not need any prior informa-
tion about defects, and it is computationally efficient. So, 
its practical applicability is boosted for real-time inspection 
process. A thresholding is then proposed which plays an 
important role in the success of the algorithm. According 
to the obtained results, the proposed algorithm is accurate, 
effective and robust for variety of defective and defect-free 
fabric images. Furthermore, the results are compared with 
other competitors, which demonstrates higher versatility of 
our research.
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