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Abstract
Early detection of breast cancer is clinically important to reduce themortality rate. In this study, a newcomputer-aided detection
(CAD) and classification system is introduced to classify two types of mammogram tumors (i.e., mass and calcification) as
either benign or malignant. In this CAD system, the tumor-like regions (TLRs) are identified using the automated optimal Otsu
thresholding method. Afterward, deep convolutional neural networks (CNNs) process the extracted TLRs to extract relevant
mammogram features, investigating AlexNet and ResNet-50 architectures. The normalized extracted CNN features are further
input to a support vector machine classifier to decode the classes of mammogram structures (i.e., Benign Calcification, Benign
Mass,MalignantCalcification, andMalignantMass nodules). The experimental results are tested on2800mammogram images
from the Curated Breast Imaging Subset of Digital Database of Screening Mammography, a publicly available dataset. The
accuracy of the proposed CAD system, to classify the ROI into one of the four classes, achieves 0.91 using AlexNet and 0.84
using ResNet-50 models, using fivefold cross-validation. Comparison results with the related methods confirm the advantages
of the proposed CAD system.

Keywords Deep learning · Breast cancer · Convolutional neural networks (CNN) · Computer-aided detection system ·
Support vector machine

1 Introduction

According to the World Health Organization (WHO), breast
cancer is the most globally common cancer in women [1].
Each year, around 2.1 million women are diagnosed with
breast cancer, resulting in the highest number of women
cancer-related deaths. A recent report in 2018 estimates
around 627,000women cancer-related deaths, accounting for
around 15% of all women cancer deaths [1,2]. Low-energy
X-rays mammography is considered the standard screening
tool to identify the breast cancer abnormalities. Mammo-
gram screening has shown to reduce breast cancer mortality
by approximately 20% in high-resource settings [3]. Early
detection is clinically important to reduce the cancer mortal-
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ity rate [4,5]. However, the early detection of breast cancer
on screening mammography is challenging due to the small
sizes of potential nodules with respect to the entire breast
[4]). Therefore, computer-aided detection (CAD) systems
for breast cancer are clinically important to reduce the work-
load and improve the detection accuracy of radiologists and
experts [5].

Recently, convolutional neural networks (CNNs) show
impressive performance in the field of pattern recognition,
classification, object detection [6,7], and more specifically
in the field of breast cancer detection [8–16]. For example,
Lévy and Jain [8] used three different network architec-
tures (a CNN model, AlexNet, and GoogLeNet) to classify
benign and malignant breast masses, using areas around the
breast masses, cropped from the DDSM dataset, achiev-
ing accuracies of 60%, 89%, and 92.9%, on the three
tested models, respectively. Castro et al. [10] trained a CNN
architecture for mass classification into benign or malig-
nant and validated it on three available full mammogram
datasets (INbreast, CBIS-DDSM, and a Breast Cancer Dig-
ital Repository (BCRP)). The reported sensitivities on the
tested datasets are 80%, 80%, and 60%, respectively. To clas-
sify breast masses as benign or malignant, Tsochatzidis et
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Fig. 1 Typical samples for the four classes of the ROI CBIS-DDSM
database [17]. From left to right: Benign Calcification (BC), Benign
Mass (BM), Malignant Calcification (MC), and Malignant Mass (MM)
images. Nodules are outlined using white circles

al. [12] investigated different deepCNNs (AlexNet,VGG-16,
VGG-19,ResNet-50, ResNet-101,ResNet-152,GoogLeNet,
Inception-BN-v2), showing that the fine-tuning of the pre-
trained ResNet-101 has achieved the best accuracies on
DDSMandRegion of Interest (ROI) CBIS-DDSMdatabases
of 78.5% and 75.3%, respectively. Chun-minga et al. [13]
classified mammography images of a dataset, collected from
DDSM and CBIS-DDSM databases, into five classes, i.e.,
benign calcification (BC), benign mass (BM), malignant cal-
cification (MC), andmalignantmass (MM) and normal. They
fused two deep CNN networks, achieving an accuracy of
91%. Ragab et al. [14] used AlexNet and SVM classifica-
tion to classify breast masses in as benign or malignant with
an accuracy of 87.2% on preprocessed ROI CBIS-DDSM.
Falconí et al. [15] applied a preprocessing step followed by
feature extraction using ResNet50 and MobileNet models
to classify benign and malignant ROI CBIS-DDSM breast
masses, achieving an accuracy of 78.4% and 74.3%, for
the two models, respectively. Ansar et al. [16] used the
MobileNet model to classify breast masses into benign or
malignant, achieving an accuracy of 74.5% on preprocessed
ROI CBIS-DDSM data. Although different methods have
achieved considerable success to detect and classify breast
cancer, there is still a need to investigate how to further
improve the classification accuracy. This paper focuses to
develop an approach for the early detection of the breast
cancer, using the ROI CBIS-DDSM [17] (see Fig. 1), to over-
come the following limitations of the existing work:

– Building new CNN models require huge amount of data
for training, to avoid overfitting. In addition, these meth-
ods are computationally expensive, especially in the
training phase.

– Training with the whole details of the ROI image repre-
sents an overhead and may lead to reduce the detection
accuracy.

– There is a need to design advanced methods and develop
new ideas to improve the diagnosis accuracy, especially
for early cases,where the nodule size is smallwith respect
to the image size.

The main features/contributions of this work are as fol-
lows:

– Unlike the traditional CNN, which work on the original
mammogram or cropped regions, the proposed CAD sys-
tem applies an automated optimal dynamic thresholding
method to extract the tumor-like regions (TLRs), elimi-
nating the need for processing the whole ROI image for
detecting breast nodules and enabling the CNNmodel to
focus on the fine TLRs details, improving the chance of
the early detection of the small size nodules.

– Performance is evaluated on the challenging standard
CBIS-DDSM dataset [17], achieving superior perfor-
mance over the competing methods.

2 Materials andmethods

The proposed deep learning system, see Fig. 2, is designed
based on three processing stages. In the first sage, the TLRs
are identified based on an automated thresholding method.
In the second stage, a transfer deep learning is performed by
investigating two architectures, i.e., ResNet-50 and AlexNet.
Finally, a classification stage is used to classify TLR images
based on the normalized deep extracted features.

2.1 Collected database (CBIS-DDSM)

To test the proposedCADsystem, theROICBIS-DDSM[17]
images are utilized, composed of 3549 ROI mammogram
images (1852 calcification (1132 BC and 720 MC) and 1697
mass (913 BM and 784 MM) images), see Fig. 1. CBIS-
DDSM is an updated and standardized version of the Digital
Database for ScreeningMammography (DDSM) [18]. Image
type has been converted fromDICOMformat to PNG format.
Figure 1 shows typical samples of CBIS-DDSM database of
the four classes (i.e., BC, BM, MC, and MM).

2.2 Extracting tumor-like regions (TLRs)

Thefirst stage in the proposedCADsystem aims at extracting
TLRs to enable the CNN model to focus on the fine TLRs
details, improving the chance of the early detection of the
small size nodules and eliminating the need for processing
the unnecessary details of the original CBIS-DDSM image.
TLRs is a grey-level image, where the regions with similar
grey levels as the tumors are extracted. To achieve this goal,
a Gaussian smoothing is firstly applied to the original ROI
image, IMORG, in order to enable the proposed Otsu method
to focus on the global image features. Let theGaussian kernel
be G. The image is convolved with G [19,20]:

IMSmooth = IMORG∗G (1)
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Fig. 2 Diagram of the proposed
CAD system for breast cancer
detection. First, tumor-like
regions (TLRs) are identified
from the input raw image by
Otsu thresholding. Second,
TLRs are processed using a
CNN model to form a feature
descriptor. Finally, classification
is performed to produce the
breast classes (BC, BM, MC,
and MM)

Fig. 3 Extracting tumor-like
regions (TLRs) by processing
the smoothed image using Otsu
thresholding

Table 1 Summary of the
pre-trained ResNet50 and
Alexnet CNN models

CNN Model description Pre-trained Network Parameters

CNN model I/P #CL #FC Database #Classes Size

AlexNet 227 × 227 5 3 ILSVRC 2012 1000+ 62.4 MB

ResNet-50 224 × 224 49 1 ILSVRC 2014 1000 102 MB

The symbol “#” in the table indicates the number, I/P indicates the input image size, FCdenotes fully connected,
CL denotes convolutional layers, and size indicates the CNN model size

where * denotes the convolution operator and IMSmooth is
the smoothed image. The Gaussian kernel G is defined as
follows:

G(x, y) = 1

2πσ 2 e
− x2 + y2

2σ 2 (2)

where (x, y) is the pixel’s Cartesian coordinates and σ

denotes the standard deviation of the Gaussian kernel. After-
ward, the Otsu method, an optimum global thresholding
method, proposed by Otsu [21], is used to extract TLRs, uti-
lizing the zeros and the first-order cumulative moments of
the gray-level histogram. Otsu thresholding is optimum in
the sense that it maximizes the between class variance, a
well-known measure used in statistical discriminant analysis
[22,23]. Assume that the grey level histogram of the image,

IMSmooth, is composed of L pins. Let p(i) be the probability
of an intensity grey level i ,i∈{0,L-1}. Let T be an arbi-
trary random threshold. Let the weights ω0 and ω1 define the
probabilities of the two classes, separated by the threshold T ,
as follows: ω0(T ) = ∑T−1

i=0 p(i) and ω1(T ) = ∑i=T
L−1 p(i).

The means of the two classes are:

μ0(T ) =
∑T−1

i=0 p(i)

ω0
and μ1(T ) =

∑i=T
L−1 p(i)

ω1

The between class variance, σ 2
b , can be expressed as fol-

lows [22,23]: σ 2
b (T ) = ω0ω1(μ0 − μ1)

2. To estimate the
TLRs, an algorithm of six steps is followed. First, set ini-
tial random values for the class probabilities and means,
i.e., ω0,ω1,μ0, and μ1. Second, for all possible thresh-
olds T=1,2, ..., L-1: Update ω0, ω1, μ0, and μ1 accordingly.
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Fig. 4 AlexNet [27]
architecture

Fig. 5 ResNet-50 [28]
architecture

Third, compute σ 2
b (T ) for each threshold, T . Forth, deter-

mine the desired optimal global threshold, TOPT, that glob-
ally maximizes the between class variance to correspond
to the maximum σ 2

b (T ) for all T values. Fifth, compute
IMBTLRs, where all pixels less than TOPT are classified as
background (binary zero), and the remaining pixels are TLRs
(binary one), (see Fig. 3). Finally, Output the grey-level
TLRs image IMTLRs, by the pixel-by-pixel multiplication
of IMBTLRs with the original image IMORG as follows:
IMTLRs=IMORG * IMBTLRs. Figure 3 illustrates the step-by-
step algorithm of the proposed method for extracting TLRs.
Note that the TLRs are not the tumor class, but it contains the
regions of the grey levels that are similar to the tumor grey
levels (bright pixels).

2.3 Utilized CNNmodels

A convolutional neural network (CNN) consists of two types
of layers; convolutional layers to extract lower- and higher-
order image features, and fully connected layers to perform
the classification [24–26]. AlexNet [27] and ResNet [28]
CNN models are from the most commonly used popular
architectures, that achieve a remarkable success in medi-
cal applications (i.e., lung cancer detection [29] and face
recognition [30]), and in particular breast cancer detection
[8,11,12,14]. Therefore, they have been adopted in the pro-
posed system.

AlexNet has five convolution layers, three pooling layers,
and three fully connected layers [27,31] (see Table 1). The
AlexNet CNN architecture is shown in Fig. 4 The layers of
Conv. Layer 1 to Conv. Layer 5, in Fig. 4, are the convolution
layers. Each neuron in the convolution layers computes a dot
product between their weights and the local region that is
connected to the input volume [32]. Each convolutional layer
is followed by a pooling layer in order to perform a down
sampling operation along the spatial dimensions to reduce the
amount of the computations and improve the robustness [32].
Additionally, the fully connected layers are FC6, FC7 and
FC8, as shown in Fig. 4. The role of the fully connected layers
are to process the extracted convolutional layers’ features and
output themost relevant feature vector for classification [32].

ResNet is a short name for Residual Network. The basic
idea of a ResNet model is to skip blocks of convolutional lay-
ers by using shortcut connections (see Fig. 5) [12]. ResNet-50
is based on a residual learning framework, where layers
within a network are reformulated to learn a residual map-
ping rather than the desired unknown mapping between the
inputs and outputs. Such a network is easier to optimize and
consequently enables training of deeper networks,which cor-
respondingly leads to an overall improvement in the network
capacity and performance [12].

In order to reduce the training overhead, the weights of the
convolutional layers of the pretrained models are transferred
without training, and only the fully connected layers are
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trained using the CBIS-DDSM data. To apply transfer learn-
ing of the CNN models, the last fully connected layer of the
pre-trainedmodels (FC8 layer in AlexNet or FC1000 layer in
ResNet50) is replaced with a shallow classifier (SVM). The
vectors of activities of the FC7 layer in AlexNet or the flat-
ten layer (just before FC1000) in Res-Net50, represent the
feature descriptor of the input CBIS-DDSM image. Features
are further normalized between 0 and 1 to the input of the
SVM classifier.

2.4 Classification

To classify the mammogram images, a SVM shallow classi-
fier is used. SVM is a supervised machine learning algorithm
that sorts data in categories. The idea of SVM is to formulate
a computationally efficient way of learning by separating
hyper planes in a high dimensional feature space [33,34].
The input of the classifier is the vectors of activities (FC7 in
AlexNet or flatten layer in ResNet-50) and the output is the
ROI class. The SVM classifier is chosen using binary non-
linear kernel to reflect the variability of the classes. For the
case of four classes, We used one-versus-all SVM, in which
we fuse four binary trained classifiers, each processes a class,
where the data from the class is treated as positive, and the
data from all the other classes is treated as negative. The per-
formance is evaluated for either the ResNet-50 or AlexNet,
each along with the SVM classifier based on a standard per-
formance evaluation metric, i.e., the classification accuracy,
in order to select the best model/classifier.

2.5 Performance evaluation

To test the proposed system, we used six standard metrics
to evaluate the system performance, i.e., Accuracy (ACC),
Sensitivity (SEN ), Specificity (SPE), Positive Predictive
Value (PPV ), Negative Predictive Value (N PV ), and F1
score (FSC) defined as follows [35]:

ACC = No. of correct assessments

No. of assessments
(1)

SEN = No. of true positive assessments

No. of positive assessments
(2)

SPE = No. of true negative assessments

No. of negative assessments
(3)

PPV = No. of true positive assessments

No. of positive assessments
(4)

PNV = No. of true negative assessments

No. of negative assessments
(5)

Fig. 6 Comparison results with the ground truth (GT) and other thresh-
old (T )-based methods

FSC = 2 ∗ PPV * SEN

PPV + SEN
(6)

3 Experimental results and discussions

This section illustrates, in details, the experimental setup,
comparison results, and related discussions.

3.1 Experimentation setting

To evaluate the proposed system, CBIS-DDSM ROI dataset
is used. To train the classifier, data is randomly divided into
training set (70%) and testing set (30%). To train the deep
learning model (AlexNet and ResNet-50), the Bayesian opti-
mizer is used to minimize the binary cross entropy function,
using a learning rate of 10(−4). During training, the data is
shuffled using a mini-patch size of 128. The maximum num-
ber of epochs is set to 20.

3.1.1 Threshold cases

To verify the advantages of using the automated adaptive
Otsu thresholding to identify TLRs, different values of fixed
thresholds are investigated and the performance results of
the proposed system have been carried and compared with
values of fixed threshold cases. Assuming that the ROI grey
levels are normalized between 0 and 1, Case I uses original
ROI dataset. Case II to case VII use ROI with thresholds T
of 0.60 to 0.80 with a step of 0.05.
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Fig. 7 Confusion matrix classification using the proposed Otsu’s
method and the AlexNet using the balanced data

3.1.2 Data balancing

The experiments are run through two setting (a) imbalance
data that contains the whole data (3549 images of imbal-
anced number of images per each class), and (b) balanced
data which contains 2800 images (700 image per each class)
The proposed system adopted balancing the data to avoid the
bias toward the classes of large numbers.

3.2 Comparison results

3.2.1 Experiments using the whole imbalanced data

Two investigated deep models (i.e., AlexNet and ResNet-50)
have been compared, using the different values of thresh-
olds, for breast nodule diagnosis, i.e., classification of breast
masses into benign and malignant (BM orMM), and classifi-
cation of breast calcification into benign and malignant (BC
or MC). Table 2 overviews the achieved comparison results.
Otsu’s thresholding, besides being automated and adaptive
to each input TLR, achieves the best performance for both
the investigated ResNet-50, and AlexNet models, as shown
in Table 2. In addition, Table 2 demonstrates that when clas-
sification breast mass the AlexNet model achieves slightly
better results than the ReseNet-50 model. This may be due
to the large number of layers of the Resenet50 (50 layers)
compared to the AlexNet model (five convolutional and two
fully connected layers), that lead to data overfitting in the
case of ResNet-50 model, taking into account limited size of

the standard ROI CBIS-DDSM data. Figure 6 shows visual
comparison results of the proposed method using the whole
data. As shown in Fig. 6, the proposed method shows supe-
rior results over the competingfixed thresholdingmethods. In
addition to the ability of classifying breast calcification into
benign or malignant (BC or MC), see Table 2, the proposed
system is tested to detect the malignancy in case of calcifi-
cation nodules, which is more challenging, since the nodule
shape in case of the calcification nodules is complex and
distributed. In this experiments, ResNet-50 achieves slightly
better results, due to the complex task of the nodule diagno-
sis, in case of the calcification nodules.

Furthermore, the proposed system is tested to classify the
ROI data into one of the four classes, i.e., BC, MC, BM,
or MM. As shown in Table 2, the proposed system achieves
accuracies of 0.81 and 0.90 for using ResNet-50 andAlexNet
models, respectively, in case of using the whole imbalanced
data. As expected, the accuracy of the 4-class classifier is
significantly below that of a 2-class classifier. This is due to
the added challenge of differentiating between benign and
malignant, in additional to distinguishing between mass and
calcification.

3.2.2 Experiments using the balanced data

To remove the bias toward the classes of large number, we
adopted balancing the data, such that each class contains
700 images (a total of 2800 images selected randomly). As
expected, using balanced data further improve the perfor-
mance (see Table 2). Figure 7 shows the confusion matrix
for classifying the four classes using Alexnet and balanced
data using our proposed method. As shown in the figure,
the total accuracy of all classes reaches 93.2%, which out-
performs the case of using imbalanced data, as expected. In
order to investigate the sensitivity of the proposed method to
the selected training data, fivefold cross-validation is applied,
achieving relatively low standard deviation, which indicates
that our proposed method is insensitive to the training data
selection (see Table 3).

Table 3 shows that the proposed system achieves a bet-
ter results to the most similar related work [13]. Note that
our experiments do not consider the normal (N) class, since
the utilized standard ROI CBIS-DDSM does not contain any
normal record. To demonstrate the advantage of the proposed
system for breast cancer identification, Table 3 compares the
results of the proposed systemwith the related state-of the-art
methods. Table 3 shows the superior of the proposed system
for classifying breast masses into benign andmalignant. This
is due to that the proposed automated thresholding improves
the detection rate, since the deep model focuses to detect
tumors within only the TLR regions.
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3.3 Limitations

Although the proposed method has achieved promising
results comparingwith the competingmethods, it fails to cor-
rectly classify all the images. Last column in Fig. 6 shows
an example of incorrect classification. In the future, we will
try adding more features and/or different CNN models to
improve further the classification accuracy.

4 Conclusion

In this work, a CAD system for early detect breast cancer
based on deep learning is proposed. Unlike related work, the
utilized CNN models extract features from the TLRs based
on automated adaptiveOtsu thresholding, in order to improve
the training capabilities of the deep learning model. A SVM
classifier is used to classify mammogram images into the
nodule classes, i.e., BC, MC, BM, and MM. Experiments
results on the ROI CBIS-DDSM data confirm the superior of
the proposed method over other related works. In the future,
other databases will be investigated to test the robustness of
the proposed system. In addition, other feature models will
be tested in order to improve the performance.
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